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Abstract

In this paper, the discrete-time control of decentralized continuous-time systems, which have approximate decentralized fixed
modes, is studied. It is shown that under certain conditions, discrete-time controllers can improve the overall performance
of the decentralized control system, when a linear time-invariant continuous-time controller is ineffective. In order to obtain
these conditions, a quantitative measure for different types of approximate fixed modes in a decentralized system is given. In
this case, it is shown that discrete-time zero-order hold (ZOH) controllers, and in particular, that generalized sampled-data
hold functions (GSHF), can significantly improve the overall performance of the resultant closed-loop system. The proposed
sampled-data controller is, in fact, a linear time-varying controller for the continuous-time system.
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1 Introduction

Decentralized fixed modes (DFM) were introduced in
(Wang and Davison 1973), where it was shown that they
played an essential role in determining if a LTI plant can
be stabilized by applying a decentralized LTI controller.
In particular, it was shown that a LTI plant can be sta-
bilized using a decentralized LTI controller if and only if
the plant has no unstable DFMs. The above paper also
considered the case of more general information flow
constraints other than decentralized, and in (Davison
and Chang 1990), the above results were extended to
the case of general proper systems. A graph-theoretic
method was presented in (Lavaei and Aghdam 2007a)
to find the unrepeated DFMs of LTI systems.

Several classifications have been introduced for DFMs.
The notion of quotient fixed modes (QFM), introduced
in (Gong and Aldeen 1997), refers to the fixed modes
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of the “quotient system” associated with strongly con-
nected subsystems of the plant. They showed that QFMs
remain ”fixed” with respect to any type of decentralized
output feedback, e.g., nonlinear or time-varying control.
Thus, systems with unstable QFMs are not stabilizable
with respect to any type of nonlinear or time-varying
decentralized controller.

The notion of structurally fixed modes was introduced in
(Sezer and Šiljak 1981), using the definition of a struc-
tured matrix and structurally equivalent matrices. This
notion was used to identify the modes that cannot be
shifted by decentralized feedback regardless of the nu-
merical values of the system’s nonzero parameters.

Structured DFMs introduced in (Özgüner and Davison
1985) are those modes (if any) of a decoupled state-
space model (C,A,B), that continue to be DFMs after
perturbing the nonzero values of the system matrices
C, B. It is well known that under certain conditions,
discrete-time control can be used to stabilize an unsta-
ble continuous-time system which has unstable unstruc-
tured DFM present, e.g. see (Anderson and Moore 1981),

(Özgüner and Davison 1985), (Khargonekar and Özgüler

1994). It was shown in (Özgüner and Davison 1985)
that for almost all sampling periods, a sampled system
has the same number of structured DFMs as the orig-
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inal continuous-time system, and has no unstructured
DFMs, provided all unstructured DFMs are distinct and
are nonzero eigenvalues of the system. It immediately
follows that a continuous-time LTI system with unsta-
ble DFMs which are all unstructured (but distinct and
nonzero), can be stabilized by using a discrete-time con-
troller with a simple structure, e.g., with a zero-order
hold (ZOH). In this case, when the discrete-time equiv-
alent model of the continuous-time system is obtained
using a fixed sampling period, unstructured DFMs will
generically no longer exist in the resultant discrete-time
model, and an appropriate technique can then be used to
design a discrete-time controller to stabilize the system.
The overall controller then obtained consists of the above
decentralized LTI controller and a ZOH. This configu-
ration is equivalent to a time-varying continuous-time
controller.

The idea of using generalized sampled-data hold
functions (GSHF) instead of a simple ZOH (or first-
order hold) in control systems was first introduced in
(Chammas and Leondes 1978). Kabamba examined the
application of GSHFs in control systems, and pointed
out that by using GSHF, one can obtain much of the
efficiency of state feedback, without the requirement of
state estimation (Kabamba 1987). He also showed that
GSHFs can significantly improve the performance of
the closed-loop system. Application of GSHFs in de-
centralized systems was also investigated in (Aghdam
and Davison 1999), where it was shown that a discrete-
time decentralized controller with GSHF can result in a
significant improvement compared to a simple ZOH.

The application of GSHFs to decentralized control struc-
ture modification was in addition studied in (Aghdam et
al. 2006). It was shown that under some conditions on
the system’s controllable and unobservable subspaces,
GSHFs can be used to remove certain interconnections
in the discrete-time equivalent model, so that the re-
sultant digraph of the discrete-time model has a desir-
able acyclic form. As a result, one can apply centralized
control design techniques to each subsystem indepen-
dently to obtain a set of local controllers for the system
in the discrete-time domain. In this case, the stability
of each individual subsystem will guarantee the stability
of the overall system (due to the acyclic structure of the
discrete-time model) but depending on the strength of
the interconnections between the subsystems, the over-
all performance may be poor. It is to be noted that a dis-
advantage of generalized sampled-data hold functions is
that they are prone to robustness difficulties in the con-
tinuous time domain, e.g. see (Feuer and Goodwin 1994).

A multirate discrete-time decentralized control ap-
proach was used in (Scattolini and Schiavoni 1996) to
stabilize a system, where the outputs of different sub-
systems are measured using different rates, but with the
inputs simultaneously updated. It was also pointed out
in (Scattolini and Schiavoni 1996) that the development

of specific design procedures for decentralized stabiliza-
tion is not a trivial problem. Design of GSHFs with a
prespecified form (e.g., polynomial, piecewise constant,
etc.), on the other hand, is investigated in (Lavaei and
Aghdam 2007c) and a necessary and sufficient condition
for the existence of a stabilizing GSHF of the desired
form is derived. However, the problem of finding a sta-
bilizing discrete-time decentralized controller (in the
form of multirate control, GSHF, etc.) is in general not
straightforward, especially when the system is ”close” to
having a fixed mode due to the close matching of param-
eters in the system (this will be clarified in Example 1).

This paper considers the case when the system has
so-called unstructured approximate decentralized fixed
modes (ADFM) (Vaz and Davison 1989), which implies
that the system has a mode which is ”close” to being
an unstructured DFM. In this case, it will be shown
that the application of discrete-time control using ZOH
or generalized sampled-data functions can eliminate
such ADFM, which in turn can thence improve the
performance of the closed-loop system; as a result, de-
centralized digital controllers can potentially improve
the overall performance of the closed-loop system, in
contrast to the case when the system is controlled by a
LTI continuous-time decentralized controller.

The organization of this paper is as follows: Section 2
presents the mathematical framework to formulate the
effect of sampling on DFMs and ADFMs. Simulation
results are given in Section 3, and finally Section 4 draws
the concluding remarks.

2 Sampling and Decentralized Control

2.1 Decentralized and Quotient Fixed Modes

Brief descriptions of decentralized and quotient fixed
modes are presented here. Consider the following system
consisting of m control agents:

ẋ(t) = Ax(t) +

m∑

j=1

bjuj(t), (1a)

yj(t) = cjx(t), j = 1, . . . ,m (1b)

where x(t) ∈ R
n is the state vector, and uj(t) ∈ R

qj ,
and yj(t) ∈ R

mj , j ∈ m̄ := {1, ...,m} are the control
vector and output vector of agent j respectively, with
u := [u′

1 . . . u′
m]′ and y := [y′

1 . . . y′
m]′. Furthermore,

A, bj , and cj are matrices of appropriate dimensions.

Definition 1 The decentralized fixed modes (DFM) of
(1) are those modes of the system that remain fixed when
LTI controllers with a diagonal information flow struc-
ture are applied (Wang and Davison 1973). In other
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words, λ ∈ C is a DFM of the system (1) with respect to
a diagonal information flow matrix, if:

λ ∈
⋂

sp(A + b1K1c1 + ... + bmKmcm)

for all gain matrices Kj, whose dimension is equal to the
input-output size of control agent j, for all j ∈ m̄. Various
techniques for the characterization of decentralized fixed
modes are developed in (Davison and Chang 1990).

Corresponding to the decomposition of a system into
strongly connected subsystems, one can define a new
decentralized system with a control agent assigned to
each subsystem, which is in fact the quotient system for
(1) (Kobayashi and Yoshikawa 1982). As an illustration
of this definition, consider a decentralized control sys-
tem with the digraph of Figure 1. This system consists
of three subsystems, and only two of these subsystems
(subsystems 1 and 2) are strongly connected. The cor-
responding quotient system is depicted in Figure 2.

21 3

Controller 3Controller 2Controller 1

Fig. 1. A decentralized control system

21 3

Controller 2Controller 1

Fig. 2. A quotient system

Definition 2 Given the system (1), the DFMs of the
so-called quotient system for (1) are called quotient fixed
modes (QFM) of the system (1) (Gong and Aldeen 1997).

It was shown in (Gong and Aldeen 1997) that QFMs
remain ”fixed” with respect to any type of decentralized
output feedback, e.g., nonlinear or time-varying control.
It is desired now to show that for a LTI system with
distinct and nonzero eigenvalues, the notions of QFM
and structured DFM are equivalent.

2.2 Effect of Sampling on DFMs

It is known that sampling can eliminate distinct
and nonzero unstructured DFMs (Özgüner and
Davison 1985). The process of sampling the system (1)
will now be investigated. The discrete-time equivalent

model, corresponding to (1), is represented by:

x[k + 1] = Adx[k] +

m∑

j=1

bdj
uj [k], (2a)

yj [k] = cdj
x[k], j = 1, . . . ,m (2b)

where the discrete argument corresponding to the sam-
ples of any signal is enclosed in brackets (e.g., x[k] =
x(kT )), and where the equations relating the continuous-
time system (1) to the discrete-time equivalent model
(2) depend on the sampling period and holding process.
Assume now that a simple ZOH is applied to all con-
trol agents. The discrete-time equivalent model (2), in
this case, assuming A is invertible, is described by the
following matrices:

Ad = e
AT

, bdj
= A

−1(Ad − I)bj , cdj
= cj , (3)

for any j ∈ m̄. A controller with output u[k] can now be
constructed from y[i], i ≤ k.

Consider now applying a more general form of hold func-
tion to the system (1), instead of a simple ZOH. Gener-
alized sampled-data hold functions (GSHF) can be for-
mulated as follows:

uj(t) = fj(t)ũj [k], t ∈ [kT, (k + 1)T ), k = 0, 1, 2, ... (4a)

fj(t + T ) = fj(t), (4b)

for any j ∈ m̄. The discrete-time equivalent model (2),
in this case, is described by the following matrices:

Ad = eAT , (5a)

bdj
=

∫ T

0

eA(T−τ)bjfj(τ)dτ, (5b)

cdj
= cj , (5c)

for any j ∈ m̄. It was shown in (Willems 1988) that
if λ1 is a nonzero unstructured DFM of the original
continuous-time system and a cyclic eigenvalue of the
system matrix A (i.e., the Jordan block corresponding to
λ1 has maximal dimension), it will no longer be a DFM
of the sampled system for almost all sampling periods. A
condition will now be given, under which a continuous-
time feedback followed by sampling can eliminate any
nonzero unstructured DFMs which are repeated non-
cyclic eigenvalues of the system matrix A.

Theorem 1 Consider the nth order continuous-time de-
centralized system (1). For simplicity and without loss
of generality, assume that each control agent is single-
input single-output (SISO), i.e., ui(t), yi(t) ∈ R, i ∈ m̄.
Assume also that λ1 6= 0 is an unstructured DFM of
the system and a repeated non-cyclic eigenvalue of the

3



system matrix A (which implies that rank(A − λ1I) <
n − 1). Then the fixed mode λ1 can be eliminated by ap-
plying a continuous-time decentralized LTI output feed-
back ui(t) = Kiyi(t), i ∈ m̄ followed by ZOH sampling,
for almost all sampling periods T and almost all feedback
gains K1,..., Km, if for any partition I1 = {i1, ..., ik}
and I2 = {ik+1, ..., im} of the set m̄ = {1, ...,m}, so that
I1∪I2 = m̄ and I1∩I2 = ∅, the following condition holds:

rank



















A − λ1I bi1 . . . bik

cik+1
0 . . . 0

...
...

...

cim
0 . . . 0



















≥ n − 1. (6)

Proof of Theorem 1 From (Anderson and Clements
1981), condition (6) is equivalent to the condition that
there exist K1,..., Km so that:

rank(A + b1K1c1 + ... + bmKmcm − λ1I) ≥ n − 1 (7)

and if condition (7) holds, this implies it must hold for al-
most all K1, ...,Km. It follows immediately from Propo-
sition 2 in (Willems 1988) that the discrete-time sys-
tem obtained by sampling the resultant continuous-time
closed-loop system does not have a DFM for almost all
sampling periods T . �

Definition 3 Consider the system (1). A partition of the
system consisting of l subsystems (c̄1, A, b̄1), (c̄2, A, b̄2),
. . ., (c̄l, A, b̄l), (1 ≤ l ≤ m), where:

c̄1 =











ci1

ci2

...

cik1











, c̄2 =











cik1+1

cik1+2

...

cik2











, . . . , c̄l =











cikl−1+1

cikl−1+2

...

cikl











,

(8a)

b̄1 =
[

bi1 bi2 . . . bik1

]

, b̄2 =
[

bik1+1 bik1+2 . . . bik2

]

, . . . ,

b̄l =
[

bikl−1+1 bikl−1+2 . . . bikl

]

,

(8b)

I1 = {i1, . . . , ik1} , I2 = {ik1+1, . . . , ik2} , . . . ,

Il =
{
ikl−1+1, . . . , ikl

}
, (8c)

I1 ∪ I2 ∪ . . . ∪ Il = {1, 2, . . . , m} , I1 ∩ I2 ∩ . . . ∩ Il = ∅,
(8d)

is called a partition of size l for the system (1).

It can be concluded from the definition of a strongly
connected system that a partition of size l given by (8) for
the system (1) represents a quotient system if and only if
there exist no subsets of Ij denoted by I1

j = {p1
j , ..., p

r1
j },

I2
j = {pr1+1

j , ..., pr2
j }, j = 1, 2, . . . , l, where I1

j ∪ I2
j = Ij

and I1
j ∩ I2

j = ∅, such that:








c
p

r1+1

j

...

cp
r2
j








(sI − A)−1
[

bp1
j

. . . bp
r1
j

]

= 0, ∀s ∈ C (9)

The following initial result is obtained.

Theorem 2 Consider the system (1); then λ ∈ sp(A) is
a QFM of the system if and only if there exists an integer
l such that λ is a transmission zero of all of the following
subsystems:

([

ĉ′1 ĉ′2 . . . ĉ′l

]′

, A,
[

b̂1 b̂2 . . . b̂l

])

,

where the rows of ĉi and the columns of b̂i consist of any
subset of the rows of c̄i and columns of b̄i given by (8a),
(8b) (including empty sets) respectively (i = 1, 2, . . . , l)
such that the number of rows of ĉi is equal to the number

of columns of b̂i, i = 1, 2, . . . , l.

Proof of Theorem 2 The quotient system correspond-
ing to the system (1) has the general structure of Figure 3.
In this case, the bidirectional arcs represent two separate
edges in two opposite directions between the correspond-
ing nodes, Ci, i = 1, 2, . . . , l represent the control agents
corresponding to the strongly connected subsystems and
ik1

, . . . , ikl
are introduced in (8). The edges with no ar-

rays in this figure represent unidirectional arcs. It is to be
noted that unidirectional edges can also exist between the
nodes of the disjoint strongly connected subsystems, as
long as they do not create a loop between the correspond-
ing nodes. Here each controller Ci has a centralized struc-

C
2

C
l

C
1

i
k

l

i
k

l -1
+2

i
k

l -1
+1

i
k

1
+2

i
k

2

i
k

1

i
2

i
1

i
k

1
+1

Fig. 3. The general form of the quotient system for sys-
tem (1).

ture. This implies that there can exist feedback from each
node of the subsystem (which represents the inputs and
outputs of the respective agent) to any other node of the
same subsystem via the controller Ci. Hence, λ ∈ sp(A)
is a QFM of the system (1) if and only if it is a DFM of
the system with respect to the block diagonal matrix:

K = diag (K1,K2, . . . ,Kl−1,Kl)

where Ki (i = 1, 2, . . . , l) is a (ki−ki−1)×(ki−ki−1) gain

matrix (k0
△
= 0). It can be concluded from the structure of
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the quotient system, that λ is a QFM of the system (1) if
and only if it is a DFM of the following system (Davison
and Chang 1990):

ẋ = Ax + Bu, (10a)

y = Cx, (10b)

with the B and C matrices given below:

B =

[
k1

︷ ︸︸ ︷

bi1 . . . bi1 . . .

k1
︷ ︸︸ ︷

bik1
. . . bik1

. . .

kl−kl−1
︷ ︸︸ ︷

bikl−1+1 . . . bikl−1+1

. . .

kl−kl−1
︷ ︸︸ ︷

bikl
. . . bikl

]

,

C =














































ci1

...

cik1

...

ci1

...

cik1







k1
2 block rows

...

cikl−1+1

...

cikl

...

cikl−1+1

...

cikl







(kl − kl−1)
2 block rows














































,

and so, the application of Theorem 2 of (Davison and
Chang 1990) immediately leads to the proof of Theorem 2.
�

Proposition 1 Consider the system (1) consisting of l
strongly connected subsystems; then λ ∈ sp(A) is a QFM
of the system (1) if and only if for the partition:

([

c̄′1 c̄′2 . . . c̄′l

]′

, A,
[

b̄1 b̄2 . . . b̄l

])

representing a quotient system for (1), the following con-

dition holds:

rank



















A − λI b̄q1
. . . b̄qk

c̄qk+1
0 . . . 0

...
...

...

c̄ql
0 . . . 0



















< n

for some subsets {q1, ..., qk} and {qk+1, ..., ql} of
{1, 2, ..., l}, such that {q1, ..., qk} ∪ {qk+1, ..., ql} =
{1, 2, ..., l} and {q1, ..., qk} ∩ {qk+1, ..., ql} = ∅.

Proof of Proposition 1 The proof follows immediately
on applying the criterion of (Anderson and Clements
1981) to the decentralized structure of the corresponding
quotient system. �

Theorem 3 Consider the system (1), and suppose that
the system has distinct and nonzero modes. Let the cor-
responding decoupled model be given by:

˙̌x(t) = Λx̌(t) +

m∑

j=1

b̌juj(t), (11a)

yj(t) = čj x̌(t), (11b)

where j ∈ m̄, and Λ is a diagonal matrix consisting of the
eigenvalues of the system. For simplicity and without loss
of generality assume that m = 2, and that the system has
two strongly connected subsystems (c̄1,Λ, b̄1), (c̄2,Λ, b̄2),
where b̄1, b̄2, c̄1, c̄2 are defined in (8). Moreover, suppose
that λ1 is an observable and controllable DFM of the
system. Then λ1 is a structured DFM if and only if it is
a QFM of this system.

Proof of Theorem 3 λ1 is a QFM of (1) if and only if
the following conditions both hold:

i) λ1 is a DFM of the system consisting of the two sub-
systems 1 and 2;

ii) the two subsystems themselves are not strongly con-
nected.

It can be concluded from (Özgüner and Davison 1985)
(generalization of Lemma 3) that condition (i) holds if
and only if either conditions (a) and (b) or conditions
(c) and (d) given below hold:

a) b̄1
1 = 0 and c̄1

2 = 0

b)
[

c̄2
2 c̄3

2 . . . c̄n
2

]











λ2 − λ1 0 . . . 0

0 λ3 − λ1 . . . 0

...
...

...

0 0 . . . λn − λ1











−1 









b̄2
1

b̄3
1

...

b̄n
1











= 0
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c) b̄1
2 = 0 and c̄1

1 = 0

d)
[

c̄2
1 c̄3

1 . . . c̄n
1

]











λ2 − λ1 0 . . . 0

0 λ3 − λ1 . . . 0

...
...

...

0 0 . . . λn − λ1











−1 









b̄2
2

b̄3
2

...

b̄n
2











= 0

where b̄i
j and c̄i

j, j = 1, 2, i = 1, ..., n, represent row i of

b̄j and column i of c̄j, respectively.

Condition (ii) holds if and only if either

[

c̄1
2 c̄2

2 . . . c̄n
2

]










s − λ1 0 . . . 0

0 s − λ2 . . . 0
...

...
...

0 0 . . . s − λn










−1 








b̄1
1

b̄2
1

...

b̄n
1










= 0
or:

[

c̄1
1 c̄2

1 . . . c̄n
1

]










s − λ1 0 . . . 0

0 s − λ2 . . . 0
...

...
...

0 0 . . . s − λn










−1 








b̄1
2

b̄2
2

...

b̄n
2










= 0

for all s ∈ C. This implies that condition (ii) holds if
and only if either condition (e) or condition (f) given
below holds:

e) c̄i
2b̄

i
1 = 0, i = 1, ..., n

f) c̄i
1b̄

i
2 = 0, i = 1, ..., n

It can be easily verified that condition (b) follows from
condition (e) and condition (d) follows from condition
(f). On the other hand, because of the controllability as-
sumption b1

1 and b1
2 both cannot be zero and because of

observability assumption c1
1 and c1

2 both cannot be zero
(note that a column vector times a row vector is equal to
a zero matrix if and only if at least one of the vectors is
zero). This implies that:

- conditions (a) and (f) cannot both hold,
- conditions (c) and (e) cannot both hold.

Thus, it can be concluded that λ1 is a QFM of (1) if and
only if either condition (iii) or condition (iv) given below
holds:

iii) b̄1
1 = 0 and c̄1

2 = 0 and c̄i
2b̄

i
1 = 0, i = 1, ..., n.

iv) b̄1
2 = 0 and c̄1

1 = 0 and c̄i
1b̄

i
2 = 0, i = 1, ..., n.

It follows immediately from (Özgüner and Davison 1985)
(generalization of Lemma 3) that λ1 is a QFM if and only
if it is a structured DFM of the system. �

Remark 1 The results of Theorem 3 can be directly ex-
tended to systems with more than two interconnected sub-
systems. This implies that a DFM which is nonzero and
distinct is a structured DFM if and only if it is a QFM.

2.3 Effect of Sampling on ADFMs

A brief description of approximate decentralized fixed
modes (ADFM) as proposed in (Vaz and Davison 1989)
will now be given. Consider the system (1), and for sim-
plicity assume that the system consists of two SISO sub-
systems. In this case, λ ∈ sp(A) is a DFM if and only
if it is a transmission zero of all of the following three
systems (Davison and Chang 1990):

(c1, A, b1), (c2, A, b2),








c1

c2



 , A,
[

b1 b2

]



 .

Now, let the condition measure of a matrix M which
gives a measure of how ”close” it is to being singular,
be defined as 1/ρ(M), where ρ(M) denotes the smallest
singular value of M ; it is to be noted that other measures
could also be chosen, but for simplicity the above will be
used. Now, let the condition measures of the following
three matrices:




A − λI b1

c1 0



 ,




A − λI b2

c2 0



 ,







A − λI b1 b2

c1 0 0

c2 0 0







,

be denoted by cond1(λ), cond2(λ) and cond1,2(λ), re-
spectively, where λ ∈ sp(A), and define:

cond(λ) = min {cond1(λ), cond2(λ), cond1,2(λ)} .

Definition 4 λ is said to be a mode of magnitude
cond(λ) given above, and in this case, the larger cond(λ)
is, the closer λ is to being a DFM (i.e., λ is a DFM if
and only if cond(λ) = ∞). If cond(λ) is “large”, then the
system is said to have an approximate DFM (ADFM) of
magnitude cond(λ) at λ. A similar definition of ADFM
can be made when the number of control agents is greater
than 2, and also when the subsystems are multi-input
multi-output (MIMO), using the results of (Davison and
Chang 1990) and (Vaz and Davison 1989).

As discussed earlier, if the continuous-time system (1)
has distinct and nonzero unstructured DFMs, then
for generic sampling times T > 0 there exist no un-
structured DFMs (Özgüner and Davison 1985) in the
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discrete-time equivalent model (2) obtained by using
any nonzero hold function (ZOH or GSHF). There
may, however, exist ADFMs for these respective modes,
and since as the sampling time approaches zero, the
behavior of the discrete-time system converges to the
continuous-time system, this implies that for sufficiently
small sampling periods, the discrete-time system will
have ADFMs which tend to infinity as T → 0.

Remark 2 It can be concluded from the above discus-
sion that to avoid large ADFMs, one should choose suf-
ficiently large sampling periods. On the other hand, a
large sampling period makes the control signal sluggish.
More precisely, it is often desired to choose a sampling
frequency twice as large as the bandwidth of the sampled
signal in order to avoid excessive aliasing in the control
process. This introduces a trade-off in the size of the sam-
pling interval, and thus the choice of an “optimal” sam-
pling period involves an optimization problem.

A method will now be given to measure the magnitude
of an ADFM of a discrete-time systems using an ap-
proach similar to the continuous-time case. Consider the
discrete-time model (2) and for simplicity, without loss
of generality, assume that each control agent has a scalar
input and a scalar output, i.e., ui(t), yi(t) ∈ R, i ∈ m̄.
Subtracting x[k] from both sides of (2a) and dividing the
resultant equation by T , the following equation will be
obtained:

x[k + 1] − x[k]

T
=

(
Ad − I

T

)

x[k] +
[

bd1
T

. . .
bdm

T

]

u[k].

(12)

Equation (12) is an approximation to the original
continuous-time equation (1a). It can be verified that
as T → 0, the solution of equation (12) approaches the
solution of (1a). In this case, if λ is contained in sp(A),

then eλT
−1

T
is an eigenvalue of Ad−I

T
.

Definition 5 Given λ contained in sp(A), let condd(e
λT )

denote the minimum condition measure of the following
matrices:










eAT
−eλT I
T

bdi1

T
. . .

bdik

T

cdi1
0 . . . 0

...
...

...

cdik
0 . . . 0










,

where i1, ..., ik denote any distinct integers so that
{i1, ..., ik} ⊂ m̄. In this case, condd(e

λT ) gives a mea-
sure of the magnitude of an ADFM for the discrete-time
equivalent model. Note that for a given matrix A with
λ ∈ sp(A), condd(e

λT ) converges to cond(λ) as the
sampling interval T approaches zero.

Consider now the continuous-time decentralized sys-
tem (1). Assume that λ ∈ sp(A) is an ADFM of mag-
nitude cond(λ) = M . Let the discrete-time equivalent
representation of (1) for a sampling period T and a
given hold function be represented by (2) and (3); then
if cond(eλT ) ≪ M , this implies that λ is closer to being
a DFM for the original continuous-time system (1) as
compared to eλT for the discrete-time equivalent model
(3). In other words, a digital controller with a simple
ZOH, can potentially improve the performance of a
continuous-time closed-loop system, when there exists
an unstructured ADFM in the continuous-time system.

Remark 3 On applying the approach given in Defini-
tion 4 to the quotient system, one can define an approxi-
mate quotient fixed mode (AQFM). It can be observed that
a structured ADFM is, in fact, an AQFM (the opposite,
however, is not necessarily true). Note that if λ ∈ sp(A)
is an ADFM of ”large” magnitude and an AQFM of
”small” magnitude, this implies that the corresponding
mode is close to being a DFM but not close to being a
QFM. In other words, it is easier to shift this mode by
applying a proper time-varying control law rather than a
conventional LTI controller.

It is desired now to show how GSHFs can improve the
performance of the closed-loop system.

Lemma 1 Consider the system (1) with sampled-
data hold functions (4). For any sampling period T ,
and any arbitrary n × sj nonzero matrix b∗j , j ∈ m̄,
whose columns belong to the controllable subspace of
(A, bj), there exists a sj × sj GSHF fj so that with
uj(t) = fj(t)ũj [k], t ∈ [kT, (k+1)T ), the corresponding
discrete-time system (2), has the property that bdj

= b∗j .

Proof of Lemma 1 The proof follows by using an argu-
ment similar to that presented in (Kabamba 1987). De-
fine:

b̃dj
(t) :=

∫ t

tk

eA(t−τ)bjfj(τ)dτ.

Taking the derivative of the above equation results in

d

dt
b̃dj

(t) = eA(t−t)bjfj(t) +

∫ t

tk

AeA(t−τ)bjfj(τ)dτ

= Ab̃dj
(t) + bjfj(t).

The above set of differential equations can be written for
any column of b̃dj

(t) and fj(t), j ∈ m̄ separately. Each
of these differential equations can then be considered as a
state-space model, whose input is an appropriate column
of fj(t). Therefore, if b∗i

j (i ∈ {1, 2, ..., sj}, j ∈ m̄) is in
the controllable subspace of (A, bj), for any T > 0, there

exists a sj×1 function f i
j(t) that can transform b̃i

dj
(tk) =
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0 to b̃i
dj

(tk+1) = b∗i
j, where f i

j(t), b̃i
dj

(tk) and b∗i
j denote

the ith column of fj(t), b̃dj
(tk) and b∗j respectively, and

tk+1 − tk = T . In other words, one can find a sj × sj

GSHF, so that the matrix bdj
in the resulting discrete-

time system has the desired form. �

Lemma 1 states that one can always find a solution to
the following problem:

Problem 1: Find a sj × sj GSHF fj (non-unique), so
that the matrix bdj

in the resultant discrete-time system
is equal to any specified n × sj matrix whose columns
belong to the controllable subspace of (A, bj), j ∈ m̄.

In fact, one can use the following steps to find a possible
solution to the above problem:

i) Assume that the rank of the controllable subspace of
(A, bj) is equal to n1, for some n1 ≤ n. Find a trans-
formation V to partition the system as:

Ā := V −1AV =

[

Ā11(n1×n1)
Ā12(n1×(n−n1))

0
((n−n1)×n1)

Ā22((n−n1)×(n−n1))

]

b̄j := V −1bj =




b̄j1(n1×sj)

0
((n−n1)×sj)



 ,

where the controllable pair (Ā11, b̄j1) represents the
controllable subspace of (A, bj). The first n1 columns
of V can be any set of vectors that span the column
space of the controllability matrix [bj Abj ... An−1bj ],
and the last n− n1 columns can be any set of vectors
that results in a nonsingular matrix V .

ii) Find the controllability Gramian corresponding to
(Ā11, b̄j1) on [0, T ] as follows:

W̄T,j =

∫ T

0

etĀ11 b̄j1b̄
′

j1e
tĀ′

11dt.

iii) Then, the following GSHF is a solution (non-unique)
to Problem 1:

fj(t) = b̄′j1e
(T−t)Ā′

11W̄−1
T,j b̄

∗

j1, (13)

where b̄∗j1 is obtained from the following equation:

b̄∗j := V −1b∗j =




b̄∗j1(n1×sj)

0
((n−n1)×sj)



 .

Consider now the system (1) and assume that λ ∈ sp(A)
is an unstructured ADFM of large magnitude. It is de-
sired to find the matrices b∗j in the controllable sub-
space of (A, bj), j ∈ m̄, such that the magnitude of

the ADFM eλT in the discrete-time system ([c′1 ... c′m]′,
eAT , [b∗1 ... b∗m]) is minimized. One can use the result of
Lemma 1 and the procedure given above to find a GSHF
which leads to the matrices b∗j , j ∈ m̄ in the discrete-time
equivalent model, and hence minimizes the magnitude
of the corresponding ADFM.

Given a continuous-time system which has a large
ADFM and a small AQFM, it is to be noted that if
the discrete-time equivalent model obtained by a ZOH
has an ADFM of large magnitude, then a dynamic
discrete-time controller of any order is not necessarily
most effective in improving the overall performance,
compared to a GSHF controller. In other words, intro-
ducing more degrees of freedom by deploying a higher
order dynamic controller with a simple ZOH may not
be as effective as introducing more degrees of freedom
to the GSHF controller, as far as the performance of the
overall decentralized control system is concerned.

Remark 4 One can apply simple functions, e.g., the
class of polynomials of specific degree, instead of the func-
tion defined in equation (13), in order to minimize the
condition measure of an ADFM. For example, by using
the class of second-order polynomial functions, one can
minimize the condition measure over 3

∑m

j=1 s2
j parame-

ters (note that each second-order function includes three
coefficients). Alternately, one could also apply piecewise
constant functions, instead of polynomial functions, to
create a GSHF. The optimal choice of the GSHF (i.e.,
the choice of the proper order and coefficients in a poly-
nomial GSHF for a given system) is an open question
for research, and can be tackled by using the ”finite set
of basis functions” approach proposed in (Lavaei and
Aghdam 2007c) and (Lavaei and Aghdam 2007b).

Remark 5 It is to be noted that in practice all DFMs are
structured and there is no unstructured DFM, since un-
structured DFMs result from an exact matching of plant
parameters, which is very unlikely to happen in physical
applications (this point will be further clarified in Exam-
ple 1). However, in practice, a close matching of param-
eters of a system may cause ADFMs, for which the pro-
posed discrete-time decentralized controller can outper-
form the continuous-time counterpart.

The results obtained for DFMs, QFMs, ADFMs and
AQFMs of (1) can be summarized as follows. Using a
sampled-data controller:

• One can eliminate a nonzero non-repeated unstruc-
tured DFM and eliminate a nonzero non-repeated
ADFM which is not an AQFM (Remark 3 in present

paper); (Özgüner and Davison 1985); (Willems 1988).
• One cannot eliminate a structured DFM and cannot

eliminate an ADFM which is an AQFM (Remark 3 in

present paper); (Özgüner and Davison 1985).
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• A mode which is an unstructured DFM of the system
and a repeated non-cyclic eigenvalue of the A-matrix
in the state-space representation can be eliminated
by applying a continuous-time decentralized LTI out-
put feedback followed by sampling, provided the sys-
tem matrices satisfy a mild condition (Theorem 1 in
present paper).

• A zero DFM cannot be eliminated (Willems 1988).

In the next section, it will be shown how the control
analysis introduced so far can be efficiently used in the
design of GSHFs, in order to improve the overall per-
formance of the system, in the presence of an unstable
unstructured ADFM.

3 Numerical Example

Example 1 Consider a continuous-time controllable,
observable, non-minimum phase, unstable system with
the following state-space matrices:

A =







−1 0 −3

0 0.1 0

0 0 −3







, b1 =







1

0

1







, b2 =







0

1

1







, (14a)

c1 =
[

0 1 0
]

, c2 =
[

−1.1 0.005 0.1
]

. (14b)

This is the example given in (Aghdam and Davison
1999). The eigenvalues of this system are sp(A) =
{−1, 0.1,−3}. Applying the minimum condition measure
criterion of Section 2.3 to this system results in:

cond(−1) = 1.762, cond(0.1) = 400.0, cond(−3) = 1.186

and so, λ = 0.1 can be considered as being a large ADFM
for the system. However, this mode is not a large AQFM
as can be verified by applying Definition 4 to the corre-
sponding quotient system. To illustrate this, let the sec-
ond entry of c2 (i.e. 0.005) be replaced by a zero, to ob-
tain the perturbed matrix c̃2 = [−1.1 0 0.1]. From The-
orems 2 and 3, one can conclude that λ = 0.1 is a DFM
of the resultant system, but not a QFM. More precisely,
the following matrix:

[

A − 0.1I b1

c̃2 0

]

=










−1.1 0 −3 1

0 0 0 0

0 0 −3.1 1

−1.1 0 0.1 0










,

has rank equal to 2 due to the perfect matching of the
nonzero parameters, which confirms that this mode is an
unstructured DFM. Thus, any perturbation in the pa-
rameters of the system will eliminate this fixed mode and
if the perturbation is sufficiently small, the mode will be

an unstructured ADFM. This indeed confirms the find-
ing that λ = 0.1 is an unstructured ADFM of the system
(14) with a large magnitude of 400.0. Note that this is an
unstable mode and so to stabilize the system, the decen-
tralized continuous-time LTI controller has to “shift” it
to the left half plane, which implies that it will require a
large gain. On applying the minimum condition measure
criterion for ADFM in the discrete-time equivalent model
obtained by using a simple ZOH, the results shown in Fig-
ure 4 are obtained. These results give the minimum con-
dition measure for each eigenvalue of the discrete-time
equivalent model as a function of the sampling period.
It can be seen from these results, that for a wide range
of sampling intervals, the discrete-time equivalent model
has no ADFM of large magnitude. For instance, with a
sampling interval of T = 2.9sec, the condition measure
of the ADFM e0.1T for the discrete-time equivalent model
is 151.8 which is approximately 3 times smaller than
cond(0.1) = 400.0 for the continuous-time system. As a
rule of thumb, if the minimum condition measures as-
sociated with the unstable modes in the continuous-time
system are significantly greater than their discrete-time
counterparts, a suitable digital controller can potentially
be more effective than a LTI one.
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Fig. 4. Minimum condition measures of Example 1 ver-
sus sampling period for each eigenvalue of the discrete-time
equivalent model. (a) e−T , (b) e0.1T , (c) e−3T .

It is desired now to find a controller to stabilize the unsta-
ble system (14), and the following performance index is
considered as a measure of the system performance using
either continuous-time or discrete-time static decentral-
ized controllers:

J = E

{∫ ∞

0

(y′y + u′u)dt

}

, (15)

where E denotes the expectation operator (Aghdam and
Davison 2004). It is to be noted that in the case of
discrete-time control, this performance index takes in-
tersample ripple effects into account.

The following cases are examined:
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i) Optimal continuous-time decentralized LTI con-
troller: Consider applying the continuous-time con-
troller:

u(t) = diag (k1, k2) y(t) (16)

to (14). Then, on minimizing the performance index
defined in (15) with respect to k1 and k2, the optimal
gains k1 = 3.332, k2 = −6.577 × 102, and the perfor-
mance index of Jop = 1.105 × 105 are obtained. The
resultant performance index for x(0) = [1 1 1]′ is
1.087×105 and Figure 5 gives the corresponding input
and output signals for this case. Note that y1(0) = 1,
y2(0) = −0.995 and y1 then peaks to a value of 32.95
before settling down to zero. The performance of the
resultant controller is not satisfactory, and is a con-
sequence of the large ADFM at 0.1 in the system. In
fact, even using a decentralized continuous-time LTI
dynamic controller will not make a significant improve-
ment in the performance of the system in presence of
the large ADFM, e.g., on minimizing the performance
index (15) with respect to parameters of a first order
dynamic controller for each control agent, an improve-
ment of only 2.2% is achieved in the resulting optimal
performance index Jop.
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Fig. 5. Closed-loop simulation results for Exam-
ple 1, using optimal decentralized continuous-time
LTI controller. (a) Output signal of control agent 1
(max(|y1(t)|) = 32.95); (b) input signal of control agent 1
(max(|u1(t)|) = 109.8); (c) output signal of control agent 2
(max(|y2(t)|) = 8.122 × 10−3); (d) input signal of control
agent 2 (max(|u2(t)|) = 654.5).

ii) Decentralized discrete-time controller: Consider now
applying the discrete-time controller:

u[k] = diag (k1, k2) y[k] (17)

to (14), with a sampling period of T > 0 and a ZOH.
Then on minimizing the performance index (15) as
was done in (i), using Algorithm 1 in (Aghdam and
Davison 2004), with respect to k1, k2 and T , the op-
timal performance index of Jop = 4896 is obtained

which is approximately 20 times smaller than the re-
sult obtained in (i). The corresponding optimal gains
are given by k1 = 9.996 and k2 = −7.069 × 10−1,
and the optimal sampling period is Top = 3.085sec;
the performance index obtained for x(0) = [1 1 1]′ is
2.116× 104 and Figure 6 gives the resultant input and
output signals for this case. The transient response of
this system now has a much more reasonable magni-
tude compared to Figure 5.
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Fig. 6. Closed-loop simulation results for Example 1, using
optimal decentralized discrete-time controller. (a) Output
signal of control agent 1; (b) input signal of control agent 1;
(c) output signal of control agent 2; (d) input signal of control
agent 2.

iii) GSHFs in the form of first-order polynomials: Con-
sider now applying sampled-data hold functions
f1(t) = a1t + b1 and f2(t) = a2t + b2 to each control
agent. In this case, a two phase process is used: first,
on using the result of Lemma 1, the coefficients a1,
b1, a2 and b2 are obtained in such a way, that the
magnitude of the unstable ADFM in terms of mini-
mum condition measures in the discrete-time domain
(see Definition 5) is minimized. Then on tuning the
GSHF coefficients obtained, to minimize the perfor-
mance index (15) using Algorithm 1 in (Aghdam and
Davison 2004), the following results are obtained for
the optimal sampled-data hold functions:

Optimal f1(t) : f1(t) = −4.886t + 2.915, (18a)

Optimal f2(t) : f2(t) = 1.768t − 1.978, (18b)

where the optimal sampling period obtained is Top =
1.152sec. The resultant minimum performance index
in this case is Jop = 15.08. Note that in this case only
one parameter has been added to the control design of
each agent, compared to discrete-time control with a
ZOH, but a significant improvement has been achieved.
The corresponding input and output signals of con-
trol agent 1 and control agent 2 for x(0) = [1 1 1]′

are depicted in Figure 7 in which (a) and (b) give
the output and input signals of control agent 1, and
(c) and (d) give the corresponding signals of control
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agent 2, respectively. The resultant performance index
for x(0) = [1 1 1]′ is 50.17, which is significantly
smaller than the value obtained by using a ZOH in
case (ii).
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Fig. 7. Closed-loop simulation results for Example 1,
using optimal decentralized discrete-time controller with
first-order GSHFs (18a), (18b). (a) Output signal of control
agent 1; (b) input signal of control agent 1; (c) output signal
of control agent 2; (d) input signal of control agent 2.

It is clear that the performance indices obtained for the
optimal discrete-time decentralized controller of case (ii)
and the optimal GSHFs of case (iii) are superior to the
continuous-time decentralized controller (16). It is to be
noted that to simplify the implementation problem, one
can also use the GSHF design method given in (Aghdam
2006) to obtain a piecewise constant hold function instead
of a polynomial one.

So far, various output feedback controllers have been con-
sidered in this example. It is to be noted for this prob-
lem, that the minimum achievable performance index for
(15) using any type of controller is obtained by using the
centralized continuous-time state feedback law, and the
corresponding performance index for x(0) = [1 1 1]′ is
given by Jop = 1.448.

Remark 6 It is to be noted that the optimization al-
gorithms used for discrete-time controller design in Ex-
ample 1, minimize the continuous-time quadratic perfor-
mance index (15). This implies that the optimization al-
gorithms take intersample ripple effects into account.

4 Conclusions

In this paper, a class of decentralized linear time-varying
(LTV) controllers has been proposed for continuous-
time linear time-invariant (LTI) plants, using discrete-
time control. The controllers obtained have the prop-
erty that when the plant has a dominant mode which
is an approximate decentralized fixed mode (ADFM)
of large magnitude and an approximate quotient fixed

mode (AQFM) of small magnitude, then discrete-time
controls can outperform their continuous-time LTI coun-
terparts. It should be noted, however, that in designing
such discrete-time controllers, one cannot choose ”fast”
sampling intervals; this implies that the resulting control
obtained, although ”better” than any continuous-time
control, cannot have high performance. This is the price
to pay for having an ADFM. A condition under which
repeated decentralized fixed modes (DFM) can be elim-
inated by using a continuous-time feedback followed by
sampling has also been given. The performance of the
closed-loop system depends on the type of hold function
used in the discrete to continuous process, the sampling
interval, and the control law itself. Optimization algo-
rithms to design discrete-time controllers which account
for intersample ripple are then described.

Simulation results obtained using an optimal sampling
interval and optimal static output feedback control,
show significant improvements compared to the corre-
sponding continuous-time optimal decentralized con-
troller. They also show that using generalized sampled-
data hold functions (GSHF) instead of a simple ZOH, in
the proposed decentralized discrete-time controller, can
introduce more degrees of freedom in the discrete-time
controller design, which results in an improvement in
the overall performance of the system.
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