A ROBUST OVERRIDE SCHEME ENFORCING STRICT
OUTPUT CONSTRAINTSFOR A CLASSOF STRICTLY PROPER
SYSTEMS

Guido Herrmann, Matthew C. Turner and lan Postlethwaite

Control and Instrumentation Group, University of Leicester, University
Road, Leicester, LE1 7RH, UK, Tel.: ++44-116-252 2567,
email: ghl7@e. ac. uk,nct 6@ e. ac. uk,i xp@ e. ac. uk

Abstract: This paper presents an override controller wiginbures that constrained output
variables retain certain prescribettict bounds. The class of nominal closed loop systems
considered for the constrained output regulation probgesirictly proper and minimum phase,
assuming for each output measurement constraint one llea#atuator and the first Markov
parameter to be full rank. This necessitates the open-ldaqt o have the same input-to-
constrained-output characteristics. The advantage afthsidered class of nominal systems is
that an output constraint translates directly into a statestraint for which it is possible to use
a particular non-smooth Lyapunov function. The non-smagtpunov function is defined by
the level of the output constraint creating an invarianf@etvhich the strict output constraints
are satisfied. The override strategy is designed to retainiaral effect on the nominal control
loop in case no output constraint is violated. Copyright 2005 IFAC
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1. INTRODUCTION strongly related to the idea of the ‘maximum output ad-
missible set’ as control signal limits are assumed and

Engineers usually design controllers using conven-an ‘admissible set' is retained invariant by employing
tional design techniques and these controllers operate? Suitably chosen control law. Wolff and Buss's (2004)
well in a reasonable operating region of the closed Scheme can be also regarded as an override controller,
loop system. However, in practical systems, strict con- Since an add-on controller is devised in addition to a
straints of a plant have to be enforced, such as mechanfominal control scheme to retain amplitude bound-
ical stops in mechatronic systems which define clear€dness. Wolff and Buss (2004) can assure for their
limits either to output signals or the actuator input of a Scheme strict attainment of the amplitude limits using
p|ant_ Among those two issueS, the prob'em of output a discontinuous control law. In this Sense,. the paper
signal constraints has been of lesser interest, althougPy Wolff and Buss (2004) considers a special class of
a significant amount of publications exists: Conceptual non-linear single-input full-information feedback sys-
results have been presented by Saleeral. (2002) tems without strict consideration of disturbances. This
giving conditions on the existence of controllers for Severely contrasts the approaches by Glattfelder and
constrained systems. Other work aimed at controller Schaufelberger (1988), Glattfelder and Schaufelberger
design can be grouped into four areas: control us-(2003) and in particular by Turner and Postlethwaite
ing the ‘maximum output admissible set’ (Gilbert and (2002). There it is easily possible to consider large
Tan, 1991), model predictive control (Bemporet scale multi-input-multi-output plants for output feed-
al., 2003), invariance control (Mareczekal., 2000; back control, dlsturba.nces a_md more than one output
Mareczeket al., 2001; Mareczelet al., 2002: Wolff measurement constraint, while only ‘soft output limits’
and Buss, 2004) and override control (Glattfelder and are enforced. Thus, it is the approach of this paper
Schaufelberger, 1988; Turner and Postlethwaite, 2002;t0 develop an override scheme which crictly re-
Glattfelder and Schaufelberger, 2003). The method for tain output measurement limits for multi-input multi--
control using the ‘maximum output admissible set’ can Output systems. The scheme is robust to bounded dis-
be computationally very expensive as it is the aim to turbances assuming that the bounds are known.
compute at first the maximum reachable set assumingThis paper employs two main principles: a non-
certain plant input and output constraints. Similarly, it smooth Lyapunov function, termed max-Lyapunov
can be computationally costly to use model predictive function (Herrmannet al., 1999; Herrmann, 2000),
ideas as it is necessary to calculate a time varying(see (Blanchini, 1995) for similar ideas) and a high
controller valid for a certain finite horizon in advance gain control approach. The non-smooth max-Lyapunov
to the controller operation. For the work by Wolff function with a partially polyhedral level set has the
and Buss (2004), the method of invariant control is advantage that the output constraints for strictly proper



plants can be directly expressed in terms of a specificlt is assumed that the closed loop system has been
stability condition for the max-Lyapunov function: scaled so that the amplitude limit isfor all outputs
Since it is possible to convert the output constraints ,; 7z — [z, z, ... z, ]”. This limit may be regarded

for strictly proper plants directly into state constraints as ga strict limit, where the override controller has to be
the shape of a level set of the max-Lyapunov function activated to constrain the output signal of the closed
can be deﬁned by the |eVe| of the Out_put constraints. |00p System Of p|ant and Controner_ It is assumed
Hence, once the max-Lyapunov function has a valuethat the closed loop system matrit is Hurwitz.
larger than the output constraint limit, a high gain con- Fyrthermore, strict limits for the exogenous signals
trol law is activated which assures for bounded output [ o ™ are known:

demand and bounded disturbance the strict limit on "' — 1 %2 """ Wny :

the output measurements. As some ideas of this high |wi| < Ljy i=1,-+ Ny

gain controller relate strongly to a sliding mode control . - _ nxn
output feedback approach by Edwards and SpurgeonTh(:."".a exists a positive d.ef|n|te matrTRS €R
(1998, Chapter 5), the same class of strictly proper d€fining a Lyapunov functio;(x) = x* P, so that

plants but a reasonably arbitrary class of linear con- P,A+ ATP, <.
trollers is considered. From Edwards and Spurgeon (1998, Section 5.3), it
5 NOTATION follows that the linear system can be represented in

the following structure (employing a suitable linear

To describe controller constraints, a multi-variable sat- transformation):

uration Sat: R" — R"™ and a deadzone function .

DZ : R™: s R": are essential: X1l _ [A11]A1s
[A21/A22

1 B’wl Bul
XQ ;2:| + [36)2} W+ |:O } u (4)

Safs) = [sals;) salss) ... safs,.)]",

- X1 St
DZ(s) = [Dz(s;) Dz(s3) ... Dz(s,.)]" z=[n. 0] M 0 X= [xz]
=1 — Sa{s) wherel, . € R"=*"= is an identity matrix and3,,; €
wheres = [s; s3 s3 --- 5,,.]7 and R™*™u js full rank. The eigenvalues of the matrits
sals;) = max(min(s;, 1), —1). represent the stable invariant zeros of the closed loop

Furthermore, the following non-linear discontinuous System (Edwards and Spurgeon, 1998, Lemma 5.1).
switching functionU : R™s — R will be of interest:

e = {1 for B2y (IDz(s)]) > 0 4. AN OVERRIDE CONTROL STRATEGY USING
&=10 for £ (|Dz(s:)]) =0 A NON-SMOOTH LYAPUNOV FUNCTION
In addition, the function sigp) for a real scalas; is ~ The control inputu in (1) is to be used to satisfy the
defined as: amplitude limits ofz € R™= by introducing an override
1 for s;>0 .
sign(si) = { phorse control law:
—1 for s;<0 Z
u= M1y+ szU <—>
3. THE UNCONSTRAINED CLOSED LOOP M
CONTROL SYSTEM e
Assume the closed loop system, combining controller /glsignidl) 0 0
and plant, is defined as: 1 . 7_
. —By 0 : 0 , di=DZ2;),
X = AX + B,W+ B,u (1) 0 0 kysigid,,)
2= C.x ) —
y=0C,x ©) ®)

where0 < p < landM; € R™*™ 4 =1,2. The
wherex € R” is the closed loop system state and override control law introduces two non-linear com-
u € R"« is the override control inputy € R"= isthe ~ ponents, a switched linear term, and a high gain
exogenous inputy € R™v is the measurement output componentl,,. The controller term oti,, is mainly.
andz € R":, n. = n, < n, isthe performance output, responsible for enforcing the output limits employing
which is amplitude constrained and for which the first @ high gain controller, i.e. it is only enabled once the
Markov parameter is non-singular: output signalg are at the absolute amplitude limit bf
rank(C., By,) = n.. The other components are introduced to retain asymp-
. . o totic stability. In particular, the linear componeht, y
The input-output behaviar — zis minimum-phase. is employed for this reason, acting all the time. Thus,
Furthermore, the performance outmiis measurable,  {he component actually modifies the nominal control
hence, the range @] is a subset of the range 6f]  system (1). Nevertheless, it has to be assured that the
so that: control term My affects the control system as little
rank[CZ] = rank(C,,) as possible. Hence, the control law has to satisfy an
o v asymptotic stability constraint for vanishing exoge-
nous signalv = 0 and amplitude boundedness of the
output signalz for a suitable initial valuex(0) and

T Due to the existence of an exogenuous disturbance, it isyeasi limited w (4) while retaining the influence oMy
verified from Saberét al. (2002) that the minimum phase constraint  small.

is necessary for the presented output constrained system. . . . .
Assuming tharis a direct plant output measurement, it is easily ver- The general idea for ensuring these constraints is to

ified that the plant has to have the same input-output chaistite utilize a non-smooth Lyapunov function which assures
for the mapu — z directly that the constrained outmutemains limited to




the interval[—1, 1] for each of then, elements. This

is possible since the squared values of the elements
of z determine the value of the non-smooth ‘max-
Lyapunov’ functionV, : R"= — R:

V.= 12%2(‘4) ; (6)
Vi=zj, Vo=25--- Vo, =2, 7

so that ensuringy, < 1 for all disturbances and suit-
able initial valuex(0) assures the control constraint is
satisfied. However, for stability of the override scheme,
it will be necessary to consider a max-Lyapunov func-
tion Vx : R™ — R which considers the whole state
vectorx:

x=max(V;,V,_41) —151%?5“(%), 8)
T Fig. 1.set{x|0 < Vx(x) < 1} (striped pattern) and sék|Vx

Vi.41=X3 BeXa, g w} (gréy|pla§n) f(gr’f)L i 2}ar(1dn5 :%z = 1) V>
for B, = B € R"~"=, R, > 0. This max-Lyapunov
function is used to prove asymptotic stability in case
no exogenous inpwt has an effect on the closed loop T 3
system. Note thal} is positive definite and radially V41 = X3 ByXo < Ly, (13)
unbounded irx, while V, is positive semi-definite in ~ The high gain component,; (5) is used to assure this.
x. Both functions will be used as Lyapunov functions, Optimization for minimal effect of M;y: An £5-gain
although they are non-smooth. relationship is introduced to minimiz&/;, as well as
Asymptotic stability: Without going into the details of  the effect ofu,;. At the same time, a sector bound is
non-smooth analysis (Clarlet al., 1998; Herrmann, employed foryU(ﬁ) fromu,; (5) to assure in particu-
2000; Blanchini, 1995; Craven, 1982) and the problem |ar the stability constraint of (11). For this reason, note
of differential equations with discontinuous right hand def 2 - _— .
sides (Filipov, 1964), the necessary ideas for stability thats = YU (;;) satisfies the following inequality:

for limited exogenous inputv (4) and small enough
unconstrained states usingV,,_+1 (9):

are stated in its most simple way: Since a switching STW(y—s) >0 (14)

controller will be used, it will be of interest to show o, an arbitrary diagonal positive definite matiiX €

for w = 0 that for almost alt > 0: Rnmxnm  Thus, the stability constraint of (11) is ex-
% <O0forVi>p, p<l1. 9) ten:;eci to:

The max-Lyapunov functio¥ is absolutely contin- > +25W (y—9)

uous and differentiable almost everywheretinThe dtl
relationship of (9) can be shown by investigating every 4= (M1y+M25)T (My+ Ms)—wiw<0, (15)
single functionV; (1 < i < n, + 1) proving that Y

(Herrmann, 2000, Theorem 4.1): for any [x” s” w’] # 0 using theS-procedure (Boyd
v et al., 1994). Considering all these stability and output
L <0forVy > pu, Vo =V, (10) constraints, the main result of the paper can be sum-

This assures in a first step ultimate boundedness formarlzed in the following theorem:

the set{x|Vix < u}. The override component/;y + .
Us1 (5) is responsible for this. Asymptotic stability is Theorem 1. The override controller of (5) assures that
assured by imposing another stability constraint which (i) the disturbance free system (1)-(3y (= 0) is
is enforced by suitably designinyf,y + u,: (5) for globally asymptotically stable.
X e {xjo < VXO;)V< Ly (ii) the override componemt/1y + MQyU(ﬁ) has
S T

7 <0 Vs =X PX D for the mapw — My + ngU<§) an £,-gain
for a positive definite matrix’; € R"*". This proce-  of |ess thary (minimizing the effect of the override
dure will ensure that the origin in the disturbance free compensator fox € {x|V.(x) < 1} on the nominal
system is asymptotically approached: The LyapunoV closed loop), provided that the following, +2 matrix

functionV; remains asymptotically decreasingtifor inequalities are satisfied

anyx € {x|0 < Vi(x) < 1}. However,Vk is shown to i i

be ultimately smaller than or equalgasVx remains a PA+PBMC, +ATP, PiBuMz

decreasing function affor {x|V} > u}. Since the sets T |pB, +=CTMTM,

{X|Vx > u} and{x]0 < Vk(x) < 1} are overlapping, +C, My Bu,Per;CyMl MG, | T

asymptotic stability is assured. — J’CyW <0

Amplitude boundedness: The reduced max-Lyapunov i T -

function of (6) is of interest: * * ;Mz My—2W (16)
' VZ' Ti8iE. (‘./") ) E{(A+ BJ(Mi+M,)C,)+ (AT +CT(My+Mz) "BT)E;

\{v}r?lch has to remain decreasingtitior x € {x|V, > +21§j§nﬁg(E¢—Ej)+ﬂ.,(nz+1) (EZ__ETR(ZE) ?107)

d;? <0 (12) ETRFEA+ATEIREY i Tn115 ETRE-E)) <(88)



wherel < i <n.,7;; >0, 7Tp,41; >20(1 <5< However, the degree of violation is bounded by a given
n.), Ti(n.+1) = 0, W € R™*"v is a diagonal matrix, control system dependent bound, which can be made

~ a positive scaladZ; = diag(e;) ande; is thei-thbase ~ arbitrarily small. °
vector of lengthn and==[0 I,,_,,.] € R(»—n=)xn,
(#i7) Furthermore, it can be shown that the set 5. A SIMULATION EXAMPLE

Byp = {x|V2(x) <1,W(x) < L7, } For validation of the override control technique, the
is an invariant set and a set of ultimate boundednessmodel G = (Ag, Bg, Cc) of a well known furnace
which is reached from any initial state and is robust to example (Edwards and Spurgeon, 1998, Chapter 9) is
a bounded disturbanae (4), assuming in addition to  ysed:
(16-18):

[—0.0186 —0.0065 0.0190 0.0129
AT E. Ay —71 B | AT E; B, | 0.0026 —0.1354 0.0310 0.0040
L = S R T |0 (19 AT 00972 0.0695 ~0.1273  0.0530 |
A | —0.0193 —0.0155 —0.1121 —0.4934
Y Cungili) + Ly, =k <0, (20) 0 0
=TREA+ATEIRE G- 0 —0.0960 | *
2 Bot> w1y (BTRE—E;) |EBEBul 104969 0.0453
1<j<n. Cr — 0.6707 —0.1085 —0.0286 0.0086
[+ Tw2 | ¢~ 1 -0.2750 —0.1933 —0.2175 0.0060
Z (ng’ij?) — TmaL?, <0 (21) This multi-variable model represents a practically ex-
1< 7 < isting furnace containing at one of the side walls a

for 1 <i < mn.; Tm1,Tme > 0 and diagonal matrices burner for which the fuel supply (first actuator input)
Tw1,Tws > 0 whereE; = diags;) and, is thei-th and the oxygen trim-signal (first output measurement),

base vector of length.. Assuming for the initial state a signal proportional to the fuel/air ratio, can be ad-

: . justed. Hence, one important task is to control the
X(0) € By the output constraint faris ensured. ¢ temperature of this furnace. At the same time, eco-

_ ) _ _ logical constraints necessitateltmit the oxygen con-

Please find the proof in the appendix of this paper.  centration (second output measurement) in the gaseous
combustion products which are released through the

Remark 1. Assuming the variables of the matrix in- flue in the roof. The assumption here is that this model
equality of (16) areM,, M,, P,, W and~ then it is is valid for the operation point defined by the out-
easily seen that (16) is not linear or bilinear in these put pair[675°C, 3%]. Although the furnace has been
variables but third order. Furthermore, the variables practically tested for an oxygen concentration range of
M, and M- are also variables of the, — 1 matrix [2%, 11%)] (Edwards and Spurgeon, 1998, Chapter 9),
inequalities of (17). Due to this coupling of (16) and itis here the task to to retain the oxygen concentration
(17), it is not possible to use a change of variable in the interval(3 — 2)%, (3+2)%] to take into consid-
approach employing linear transformation techniques eration the need for lower oxygen concentration. For
to decrease the order of the three coupled matrix in-instance, a concentration of abaift; is considered
equalities of (16)-(18). However, the Schur comple- by Casaca and Costa (2003). Note that the interval
ment can be used to obtain from (16) an equivalent [(3 — 2)%, (3 + 2)%] is symmetric with respect to

bilinear expression: the oxygen concentration operational point. For con-
trol, the temperature follows a tracking demand in the
[ PA+PB,MC,+ AP, P.B ciw T interval [675°C, 800°C]. The oxygen concentration is
+CIMIBIP, +P,B, M| v a measure for the efficiency of the furnace, which is
* —~T10 0 <0 directly related to the air supply of the furnace: An
* x |- MT excess of supplied air causes an undue loss of heat
[ * * —T through the flue, while a lack of air will lead to an

Thus, it is now possible to use bilinear matrix inequal- NcOmplete combustion.

ity solution methods (Fukuda and Kojima, 2001; Goh A linear H..-controller K = (A, Bg, Ck, Ck) has
etal., 1995; Balakrishnan and Boyd, 1992) to solve the been designed, weighting the sensitivifyand the
matrix inequalities of (17)-(18) and (22) to minimize controller outputK' S, ensuring rise/settling times of

the £,-gain~. ° about 10 sec.. The closed loop system including the
H.-controller reduced to 4th order is represented by:
Remark 2. Note that for some nominal control sys- 1.1309 —0.0001 —0.0657 —0.2995 —0.0327 —0.0125 0.0676 0.0749

tems, it may not be necessary to.intrc.)duce the override Pf{}?fg 59@‘3{58 R :4;5:;322713 5‘?@?‘5@6 :é’??g“ 2:22?8{ 22233
termM,y+u,; asy — 0. Hence, inthis case, only the  A=¢%10 16705 60016 004586+ ~0.0111 0.0950, ~0.5145 —0 5755

high gain component,; (5) acts to retain the ampli- 0:5958 0:0037 00919 35783 _0:0235 _0.0853 _0.0060 00965
tude constraint for. The non-linear override controller —0:2807 0 0 0 0 —0.0000 0.0375 —0.1229
term u,, acts due to the discontinuous character so 0.0028 —ogms U0 0000 0106
that the amplitude limits for are always retained (for Jp22r, —04560 0 0 0
suitable initial value ok(0) and boundea\), although ~ Buw= 273560 —5s 6 o |»Be=| o |
Uy is only used foriz;| > 1,i = 1,...,n.. However, 0 0 00049 0. 9

this precludesiteal’ conditions: the non-linear term 0 0 0 0 0

U2 has to be able to switch infinitely fast. In a practical 2964.00.000.0180 —0.3710 —0.412

discrete implementation this is usually not possible ¢, =| o o 001 0 0 0 |,C:=[1000000d,
so that the output constraint will always be violated. 0 9100 0 0 9



Thus, only the oxygen trim signal is used to retain ‘ ‘ ‘ ‘ ‘
the constrained oxygen concentration in the required I
interval of[1%, 5%]. For the override controller design A
a local optimization approach was found sufficient, I
minimizing theL,-gain~y to v < 277 (15):

M =}-3.505800.9153 28.0111 2.3139 1.3166] ,
Mo=[-0.9043 —83.7869-10"° 0.3898 10.261 —0.4716 1.4245 | - 10710

while for the considered temperature demand range
a value ofk; = 50 was found suitable. The value
u = 0.99 ensures that the non-linear override term
u,1 (5) is used only for a very short moment. When
comparing in Figure 2 the complementary sensitivity

Oxygen conc. [%]

L L
100 120 140

response for the nominal closed loop & 0) (1) 0 R e e

and the controlled system using the linear override Fig. 4. Oxygen concentration in response to temperature step
component only« = My) (5), it is observed that demands employing override controller (5) (line) and linear
the effect ofM;y (5) is minor. override component only(= M1y, dashed)
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Fig. 2. Nominal ¢« = 0, dashed) and modifiedi(= My, line) Fig. 5.0xygep trim signal for temperature step demands employ-
complementary sensitivity response ing override controller (5) (line) and linear override compo
nentonly & = My, dashed)

.
10"

The complete override controlier &= My + Uo1 + at the allowed limit. In particular a high frequency

Uo2), Of (5) was tested using a fast sampling approach,
i.e. the overall control system was simulated as a dis_component can be observed.

crete algorithm using a high sampling frequency of
200 Hz. The control system (Figure 3) in response to 6. CONCLUSIONS
a series of slow temperature demand changes demonT
strates that the override scheme of (5) is indeed ef-
fective for enforcement of a strict output limitation of

the oxygen concentration (see Figure 4). However,

he paper has presented a nonlinear override control
scheme which allows to limit the output measurement
to a given interval which is symmetric to the operation
point. The override controller consisting of a linear, a
switched linear and a non-linear high-gain component
is designed so that the nominal loop is affected as
little as possible. For this, the map of the exogenous
outputs to the linear and the switched linear override
controller term is£,-gain minimized using a set of
bilinear matrix inequality conditions.

The non-smooth max-Lyapunov function is used to
prove asymptotic stability for closed loop control with-
out the effect of exogenous signals while all output
constraints are satisfied for a given invariant set de-
fined by the controller designer.

A simulation example for temperature control of a
‘ ‘ ‘ ‘ ‘ ) linear model for a practically existing furnace has
° ® © Crmeseg. 0 shown that the override controller is effective for the

Fig. 3. Temperature in response to step demands employing over-considered demand profile.
ride controller (5) (line) and linear override componentyonl|
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APPENDIX - PROOF OF THEOREM 1 HATHCX MlWQ)TBgl)EﬁZ%( ErEj) Xy
It is easily verified that the extended Lyapunov con- 1<j<n,

straint of (15) is satisfied for the matrix inequality con- - = -

dition of (16). Similarly, a matrix inequality condition + ‘XlE’ (‘EiBMV\H_ EiAllXQ‘_ki)<0 (25)
is formulated for the stability constraint of (9) and (10) then d‘? < 0 for V; = V.. The first quadratic
for i1 < Vx assumingv = 0. For this, theS-procedure  component is negative for. > 1 as (17) is shown
(Boyd et al., 1994) is used to include the following to be negative definite. Thus, it remains to chobse
relations forV; = V, (i < n. + 1) into the stability large enough so that the term (see (19))

constraintZ: < 0 of (10): . _ 2
(‘EiBw1W+EiA12X2‘ —ki) <0 (26)

T T . .
X EX—X"Eix >0, . . .
’ X2 0,17 is negative for bounde#, (13) and bounded distur-
T bancew (4). Using again theS-procedure to extend
T T=Tp— 4 = S
X EX—X"="PEX2>0, (26), it follows that if (19) and (20) are satisfied,
These relations follow fronV; = V;. Thus, forl < th EB A s is ulti-
i < n, the S-procedure implies the matrix inequality en( wtWHEidpXe| —ki) < 0 andV. is ult
of (17). ForV,,_1 = V4, the following relation is to- mately smaller than for small enough,, .1 (x2) (or
be considered: [x2|) and boundedv. This also implies thaB 5 and
XTETPEX — XTExX > 0 {x|Vx(x) < L?,} are sets of ultimate boundedness as
o~ well as invariant sets for the override control scheme.
Thus, the strict limits on the output are ensured
assuming for the initial stateg0) € By s. |

and

implying the matrix inequality constraint of (18). Note
that the second non-linear override componapy
improves the stabilizing condition of (17) and acts for
V, > 1 for which reason it has not been considered in
this case.



