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Abstract

The paper presents a new family of controllers for swinging up a pendulum. The swinging up of the pendulum is derived
from physical arguments based on two ideas: shaping the Hamiltonian for a system without damping; and providing damping
or energy pumping in relevant regions of the state space. A family of simple smooth controllers without switches with nice
properties is obtained. The main result is that all solutions that do not start at a zero Lebesgue measure set converge to the
upright position for a wide range of the parameters in the control law. Thus, the swing-up and the stabilization problems
are simultaneously solved with a single, smooth law. The properties of the solution can be modified by the parameters in the
control law. Control signal saturation can also be taken into account using the Hamiltonian approach.
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1 Introduction

The family of the inverted pendula has attracted the
attention of control researchers in recent decades as a
benchmark for testing and evaluating a wide range of
classical and contemporary nonlinear control methods
(see [1,5,11], to mention only a few references). The prob-
lems associated with this control system can be found
in many applications, such as attitude control of a space
booster on takeoff (where the objective of the attitude
control is to keep the space booster in a vertical posi-
tion), and stability of walking robots. The people mover
Segway and the Josephson junction are described by the
same equations. There are different versions of the in-
verted pendulum system offering a variety of interesting
control problems. In this paper we are only concerned
with a two-dimensional model of the pendulum and,
thus, the acceleration of its pivot is assumed to be the
control input.

Swing-up and stabilization of the pendulum is usually
solved by switching between different laws: first, a law
that performs the swing-up is used (usually designed
by energy considerations [5]) and, once the pendulum is
near the vertical position, the controller switches to a
local law [13]. Rantzer has supplied an interesting ap-
proach to smoothly merge both local and global solu-
tions to the problem, guarantying the stability of the

system [10]. In [12] a single controller is also proposed
but it requires a strategy for commutation of the refer-
ence value. In [2,7] a new strategy was proposed that
solves both problems with a single control law, without
commutation between different laws, but by commuta-
tion of a controller parameter.

In the paper, we return to the idea of [2,7]. An energy
shaping control law is designed in such a way that: 1) the
closed-loop energy presents a minimum at the desired
position; and 2) the energy shaping controller is globally
defined. Since the chosen target energy has other minima
different than the desired equilibrium, a combination of
energy dissipation (damping) and injection (pumping)
is needed in order to globally stabilize the origin. To
that end an oval closed curve circumscribing about the
region where pumping is needed is introduced. The re-
sulting law is smooth, no commutations are needed, and
the origin of the final closed-loop system is asymptoti-
cally stable in S × R except for a set of zero measure.
The final control laws have parameters that are easy to
tune. A criterion for global stability with its proof is also
included. Previous results of this approach have been re-
ported in [3,4,8].

The results presented in this paper are related to the
ones presented in [1]. In that paper, an energy shaping
controller is combined with a smooth pumping-damping
strategy. The current paper enhance these results in sev-
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eral aspects:

• In [1] the energy shaping term is proposed without
justification. Here, we justify a family of target ener-
gies. The energy presented in [1] is a particular case,
not necessarily the simplest one.

• The damping-pumping term presented here is much
simpler than the one in [1].

• The effect of control action saturation is considered in
this paper.

The paper is organized as follows. In Sect. 2 energy shap-
ing is used to fit a Hamiltonian target system that has
a center at the desired upright position. This Section
focuses on a particular choice of the desired energy. In
Sect. 3 a pumping-damping strategy is introduced that
makes the upright position the only stable equilibrium
point. Section 4 is devoted to the stability analysis of the
closed-loop system. Section 5 is devoted to the case of
control signal saturation. The paper ends with a Section
of conclusions.

2 Energy Shaping

The normalized model of the pendulum, when the con-
trol input is the acceleration of the pivot, is given by

ẋ1 = x2

ẋ2 = sinx1 − u cosx1,
(1)

where x1 is the angular position of the pendulum with
the origin at the upright position and x2 is the velocity
of the pendulum. This system is defined on a cylindrical
state space S ×R.

Our goal is to design a single smooth controller that is
able to swing up the pendulum from (almost) all initial
conditions and to maintain the pendulum at the upright
position. We will base the derivation on the potential
energy shapingmethod, choosing as desiredHamiltonian
functions of the form

Hd(x1, x2) = Vd(x1) +
x2
2

2
, (2)

where the potential energy Vd should have a minimum
at the desired upright position. Then, the generalized
Hamiltonian target system adopted is

[

ẋ1

ẋ2

]

=

[

0 1

−1 −ka(x)

][

∂Hd/∂x1

∂Hd/∂x2

]

, (3)

which, with Hd as given by (2), yields

ẋ1 = x2

ẋ2 = −V ′

d(x1)− ka(x)x2.
(4)

Usually ka(x) > 0 and, thus, it is a damping coefficient;
in this paper, a pumping-damping mechanism is used
and therefore ka(x) < 0 in some regions of the state
space.

One of the problems for choosing an appropriate Vd(x1)
function is related to the term cosx1, affecting to the
control signal u in the second equation of (1). For in-
stance, the most elementary choice is Vd = − cosx1,
which has an appropriate shape (a single minimum at
the desired upright position), but it leads to the control
law u = 2 tanx1 (for the case ka = 0) which cannot be
implemented in the full domain |x1| ≤ π because the
feedback law is unbounded for x1 = ±π/2.

To solve the matching problem of the open (1) and closed
(4) loop behaviors, and in order to avoid the division by
cosx1, a good choice of V ′

d is

V ′

d = − sinx1 + β(x1) cosx1, (5)

and then, for ka = 0 (that is, for the conservative case;
the case ka 6= 0 is discussed later), u = β(x1). Some
additional conditions should be imposed on the function
β. First, β(0) = 0 to guarantee that the origin (0, 0) is an
equilibrium of the closed-loop system. To ensure that the
controlled pendulum moves in a cylindrical state space,
the closed-loop system should display some periodicity.
Then, it is reasonable to make β(x1) = sinx1β̄(cosx1).
This choice facilitates the integration of (5) to get Vd.
Furthermore, we should impose that V ′(0) = 0, V ′′(0) >
0, and for symmetry reasonsVd(x1) = Vd(−x1). A family
of functions Vd that fulfill these conditions is given by

Vd = a0 + cosx1 − a2 cos
2 x1 − a3 cos

3 x1 − · · · , (6)

which allows us to determine β(x1) from (5). In effect,

β(x1) = sinx1(2a2 + 3a3 cosx1 + · · ·). (7)

In this paper we will be concerned with the special case

Hd(x1) =
x2
2

2
+ cosx1 − a cos2 x1 −

1

4a
. (8)

Other cases are considered in [3].

The reason for the choice of a0 is clear below. With the
choice (8) the matching problem is solved with the feed-
back law

u = 2a sinx1. (9)

It should be noted that controller (9), with a = 1, was
proposed in [6] in another context. Control law (9) gives
a Hamiltonian closed loop system whose level curves are
shown in Fig. 1.
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Fig. 1. Some level curves for function Hd(x1, x2) with a = 1.
In solid the level curve Hd = 0.

So far we have focused our attention in the solvability of
the matching problem and we have not considered the
global behavior of the target system. Function Vd im-
plicit in (8) has some undesirable features. As required,
for a > 0.5 it has a minimum at the origin, but it has
another minimum that makes the desired equilibrium
point not to be the only possible equilibrium. For this
Vd the additional minimum coincides with the undesired
hanging position.

The fact of having undesirable minima apart of the de-
sired one, extends to the full family of Vd given by (6).
Ideally we would like to have an energy function which
has a unique minimum at x1 = 0. Unfortunately this
cannot be achieved with potential energy functions Vd

such that V ′

d is given by (5) and (7) because as V ′

d =
− sinx1 + sinx1 cosx1β̄(cos x1) then, we have V ′

d = −1
for x1 = π/2 (and V ′

d = 1 for x1 = −π/2). This means
the there is at least one maximum at |x1| = x0

1 in the in-
terval (0, π/2) (resp. (−π/2, 0)). These maxima will give
rise to saddles in the energy function (2). Function Vd

implicit in (8) has one pair of undesirable minima but
other choices for Vd may have more minima. In any case
the undesired minima cannot be avoided.

With pure damping strategies, the extra minima give
rise to undesired basins, which we will call “undesirable
wells” in the energy landscape, because they hamper the
global nature of the stability of the equilibrium at the
upright position.

Notice that the reference for the potential energy a0 has
been chosen so that the curve Hd = 0 limits the unde-
sirable well (i.e. the curve passes through the saddles).

To overcome the difficulty associated with the undesir-
able wells we propose a strategy that consists in pump-
ing energy inside them, to make the trajectories to leave
their basin. This strategy is similar to the one intro-
duced in [1], but the one presented here has more physi-
cal meaning, as we are dealing with energy. This strategy
is discussed in the next section.

3 Damping and Pumping

Since for ka = 0 the system is Hamiltonian all tra-
jectories are stable but not asymptotically stable. It is
then easy to influence the system significantly by chang-
ing damping ka 6= 0. Even a small change can have a
major impact. To do so we introduce the control law
u = ues + upd where ues = 2a sinx1 is the energy-
shaping control term (9) and upd is an additional control
signal which have to be chosen to provide the appro-
priate damping or pumping. As we have seen, the first
term, ues, of the control law gives a closed-loop system
with Hamiltonian (8). It is easy to see that system (1)
with u = ues + upd is a PCH system [9] with natural
passive output y = g⊤(x)∂Hd/∂x = −x2 cosx1, where
g(x) = [0 − cosx1]

⊤. This means that taking as input
upd = −kay the system behaves in such a way that Hd

decreases. That is good when the trajectory is in the
good well or approaching it. But when it is in an undesir-
able well we have to inject energy. Therefore we should
modulate the sign of ka accordingly.

Making u = ues + upd in (1), the instantaneous energy
variation is given by

Ḣd = −x2upd cosx1. (10)

By choosing upd = bF (x1, x2)x2 cosx1, with b > 0 being
a tuning parameter, the sign of the time derivative ofHd

is determined by the sign of the new function F (x1, x2)
(to be defined). Hence the control law is

u = 2a sinx1 + bx2F (x1, x2) cosx1. (11)

The first term of this controller can be interpreted as a
nonlinear spring and we can therefore call it the “spring
term”. This termmakes the pendulum to behave conser-
vative. The second one is the pumping-damping term.

Figure 1 shows that the level curve for Hd(x1, x2) = 0
separates the state space into three regions. Region A,
which contains the desired equilibrium where the pen-
dulum is upright, is bounded by the solide curve. Region
C, which contains the equilibrium where the pendulum
hangs straight down, is bounded also by the solid line.
The rest is region B, which later will be divided into the
regions B1 and B2 that appear in the figure.

A natural choice is to take F negative in region C and
positive elsewhere. To have a continuous control law the
function should also vanish on the boundary of region
C. Thus, we could consider a curve that matchesHd = 0
at the boundary of region C (for a = 1, one such a func-

tion is F = |x2|+
√
2 cosx1 − 1/

√
2). However, this idea

does not work: it makes the stable manifold of the sad-
dle points “very attractive” causing trajectories to tend
to the saddle and, once there, the behavior is very sensi-
tive to disturbances (this behavior around the saddles is
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similar to the behavior around the origin in usual swing-
up laws [5]). Therefore, from a strict mathematical point
of view, trajectories could not leave region C with this
choice and they would turn around the heterocline join-
ing the saddles.

To avoid this problem, it is proposed to search for a
smooth closed curve close to the boundary of any unde-
sirable well, but not coinciding exactly with this bound-
ary. An example is the dashed curve in Fig. 1 where a
new region, B2 ⊂ B, has been introduced. Energy is in-
jected by the controller in this region. As it will be seen
below, this “imperfect matching” between curvesH = 0
and F = 0 gives a closed-loop system with appropriated
properties. Actually, the fact that B2 is not an empty
set is a key point in the approach proposed here. The
problems that this “incorrect” injection of energy raises
will be discussed below in Sect. 4.

Our problem now is to find a simple function F with
these characteristics. A possible choice is to consider
ovals of the form

F (x1, x2) = α2x
2
2 + α1 cosx1 − 1 = 0, (12)

and making curves Hd = 0 and F = 0 to match at the
saddle point and at x1 = π. This requirement yields

F (x1, x2) =
x2
2

2
+

2a+ 1

4a
(2a cosx1 − 1). (13)

It can be seen that the oval F (x1, x2) = 0 circumscribes
about the boundary region of C and it is a reasonable
approximation for Hd = 0 as it is shown in Fig. 1. Func-
tion F (x1, x2) takes a positive value in regions A and B1,
and a negative one in regions C and B2. The fact that
F = 0 circumscribes about region C will be used below
for the stability proof.

Control law (11) has good physical interpretation. The
first term shapes the energy function so that the equi-
librium at the origin is a center. The second term intro-
duces energy damping in region A and almost all of re-
gion B, and energy pumping in region C. The size of the
regions are adjusted by the parameter a and the amount
of damping by the parameter b.

4 Stability Analysis

We will now analyze the stability of the closed-loop sys-
tem. To formulate a global stability criterion for control
we introduce the following functions:

K(x1, x2)
△
= cos2(x1)F (x1, x2)

ϕH(x1)
△
=

√

1

2a
+ 2a cos2 x1 − 2 cosx1

ϕF (x1)
△
=

√

1 + 2a

2a
(1− 2a cosx1), x0 ≤ x1 ≤ π

where x0 = arccos(1/2a), and from them the index

Φ(a)
△
=

x0
∫

0

ϕH(x1)K(x1, ϕH(x1))dx1

+

π
∫

x0

ϕF (x1)K(x1, ϕH(x1))dx1. (14)

Function ϕH(x1) is the x2 coordinate of the upper curve
defined byHd(x1, x2) = 0 (withHd given by (8)) and the
function ϕF (x2) is the x2 coordinate of the upper curve
defined by F (x1, x2) = 0 (plotted with dashed trace in
Fig. 1). We have the following result.

Theorem 1 Consider system (1) with control law (11)
where F given by (13) and b > 0. Then, for any a > 0.5
such that Φ(a) > 0, the origin is asymptotically stable in
S ×R except for a set of zero measure.

Proof We will investigate how the energy Hd given by
(8) changes in the different regions. From Fig. 1 it is clear
that in region A, which is bounded by the level curve
Hd = 0 and contains the origin, we have Ḣd ≤ 0. There-
fore, applying LaSalle invariance principle, it is easy to
see that the origin is (at least locally) asymptotically
stable and that region A belongs to the domain of at-
traction of the origin. Convergence is faster the larger b
is.

In region C we haveHd ≤ 0 and Ḣd ≥ 0. All trajectories
will leave the region, faster the larger b is. In region B
we have Hd ≥ 0 but the derivative Ḣd can be both
positive and negative. Therefore, as shown in Fig. 1, we
have divided the region into two subregions B1 = {x ∈
B|F (x) > 0} and B2 = {x ∈ B|F (x) ≤ 0}; that is, B2

is the region where the control law “incorrectly” injects
energy.

Introduce D = B2 ∪ C. In B1 we have damping and
the energy will decrease. It thus remains to investigate
what happens with trajectories originating in D. To ac-
complish this we will investigate the total change in en-
ergy along the trajectories (we will consider the case for
x2 > 0; the case x2 < 0 can be analyzed with a simi-
lar argument). In D we have ẋ1 > 0 except at the sad-
dle equilibrium. Taking into account that in D we have
Ḣd ≥ 0, almost all trajectories in D will thus eventually
leave D. We will separate two cases characterized by tra-
jectories that enter A after leaving D and trajectories
that do not. The trajectories that enter A will converge
to the origin. Now, on the other hand, we will show that
the trajectories that do not directly enter A will suffer a
net energy loss over a period (i.e. a complete pendulum
revolution) if Φ(a) > 0. In this way and taking into ac-
count that x1 is defined on the manifold S, the system
will enter region A in finite time (perhaps after some
complete revolutions).
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Fig. 2. Example of a trajectory entering and leaving region
B2 (shadowed in the figure).

We have Ḣd(x1, x2) = −bx2
2K(x1, x2). Dividing by ẋ1

gives dHd(x1, x2) = −bx2K(x1, x2)dx1.

Consider the change of energy over the interval 0 ≤ x1 ≤
π for trajectories that start in D and do not enter region
A, (see, for instance, trajectory P0P1P2P3P4 in Fig. 2).
Due to symmetry, the following reasoning also applies to
the interval [−π, 0]. The total energy change along the
trajectory is ∆Hd where

−∆Hd =

π
∫

0

bx2K(x1, x2)dx1

=

x0
∫

0

bx2K(x1, x2)dx1 +

π
∫

x0

bx2K(x1, x2)dx1.(15)

A lower bound for this expression can be found with
the help of Fig. 2. In this figure, a trajectory entering
and coming out of region B2 (shadowed in the figure) is
represented, as well as the curves Hd(x1, x2) = 0 (given
by x2 = ϕH(x1)) and F (x1, x2) = 0 (given by x2 =
ϕF (x1)). The first represented point for the trajectory is
P0 (with x1 = 0) and the last one isP4 (x1 = π). PointP1
is the point that corresponds to x1 = x0. The trajectory
enters region B2 at the point P2 and it comes out of it
at point P3. Of course, these points are unknown since
we cannot integrate the system equations but the figure
illustrates the following argument. The first integral in
the last right-hand side of (15) corresponds to the curve
between P0 and P1 corresponding to region B1. In this
region and for a given value of x1 we have x2 ≥ ϕH(x1)
and F (x1, x2) > F (x1, ϕH(x1)). This yields

x0∫

0

bx2K(x1, x2)dx1 ≥

x0∫

0

bϕH(x1)K(x1, ϕH(x1))dx1. (16)

The argument corresponding to the second integral in
the right-hand side of (15) is a little more involved since
it corresponds to points in region B1 (points between
P1 and P2 and points between P3 and P4 in Fig. 2) as
well as to points in region B2 (points between P2 and
P3). For the points in region B1, F (x1, x2) > 0 and, fur-
thermore, x2 ≥ ϕF (x1) and F (x1, x2) > F (x1, ϕH(x1)).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0

0.5

1

a

Φ
(a
)

Fig. 3. Plot of function Φ(a).

This yields

x2K(x1, x2) ≥ ϕF (x1)K(x1, ϕH(x1)). (17)

For the points in region B2, we have F (x1, x2) ≤ 0,
x2 ≤ ϕF (x1) and F (x1, x2) > F (x1, ϕH(x1)) and, thus,
inequality (17) is also fulfilled:

x2K(x1, x2) ≥ ϕF (x1)K(x1, ϕH(x1)).

Consequently,

π
∫

x0

bx2K(x1, x2)dx1 ≥
π
∫

x0

bϕF (x1)K(x1, ϕH(x1))dx1.(18)

This inequality if fulfilled independently of the location
of points P2 and P3 (and even if the trajectory entered
and came out of region B2 several times). Using (16) and
(18), the total energy change (from (15)) fulfills

−∆Hd ≥
x0
∫

0

bϕH(x1)K(x1, ϕH(x1))dx1

+

π
∫

x0

bϕF (x1)K(x1, ϕH(x1))dx1 = bΦ(a) > 0,

which means that the net energy balance along a semi-
revolution (from x1 = 0 to x1 = π) is negative. A similar
reasoning can be applied to the interval [−π, 0] and for
the corresponding cases with x2 < 0 arriving at the
same conclusion. Therefore, trajectories tend to region
A where convergence to the origin is guaranteed.

Finally, using LaSalle arguments it can be seen that the
only invariant set with Ḣd = 0 only contains equilibria.
The only stable equilibria is the origin, while the other
ones are hyperbolic. With this, the proof is completed.

✷

Remark 1 The plot of the function Φ in Fig. 3 shows
that stable systems are obtained for all a > 0.94 and b >
0. The positive slope of this curve is intuitively reasonable
since the size of region A increases with increasing a.

Remark 2 The estimate is conservative because energy
pumping in D = B2 ∪ C is overestimated and damping
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Fig. 4. Simulated swing-up for a = 1 and b = 0.1.

−1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

x1/π

x
2

0 5 10 15 20
−1.5

−1

−0.5

0

0 5 10 15 20
−2

0

2

0 5 10 15 20
−2

0

2

4

x
1
/
π

x
2

u

u ues
upd

t

Fig. 5. Simulated swing-up for a = 1 and b = 1.

outsideD is underestimated. This means that it is possible
to have stable systems, for any value of b, for values of
a smaller than 0.94. By simulation it can be seen that
the actual value for this bound is a = 0.81. The system
can also be stable for smaller values of a by making b
sufficiently large.

In order to clarify the ideas of the proof and the behavior
of the closed-loop system some simulations are included.
Figures 4 and 5 show two swing-ups for different values
of parameter b. These simulations illustrate the effect
of parameter b: the larger b is, the quicker the system
evolves (note the different scales in the time axis) and
the larger the pumping-damping term upd is.

5 Control signal saturation

This section is devoted to the modification of control
law (11) in order to cope with bounded control signal.
In absence of friction, the term upd can be made arbi-
trarily small by decreasing arbitrarily a positive tuning
parameter. The only consequence is that the transient
behavior is slower. On the contrary, upper bounds can
not be arbitrarily imposed on the energy shaping term
absolute value [8].

Consider system (1) with the control law

u = ues = 2a sinx1 (19)

which only does energy shaping. Assume that the con-
troller saturates at u = û, i.e., |u| ≤ û (for a start, ûmay
be considered equal to ū, but it will redefined below) .
Then, we have for the closed loop system

ẋ1 = x2

ẋ2 = sinx1 − cosx1satû(2a sinx1),
(20)

where satû denotes the saturation at ū satû(·) =
sgn(·)min{| · |, û}. Define in the plane (x1, x2) the fol-
lowing three regions:

• Region R1 = {(x1, x2) : | sinx1| ≤ û/(2a)}. In this re-
gion the system behaves as without saturation.

• Region R2 = {(x1, x2) : sinx1 > û/(2a)}. In this re-
gion u = û/(2a).

• Region R3 = {(x1, x2) : sinx1 < −û/(2a)}. In this re-
gion u = −û/(2a).

Consider the following function

Hsat =















H1 if x ∈ R1,

H2 if x ∈ R2,

H3 if x ∈ R3,

(21)

with

H1(x1, x2) = cosx1 − a cos2 x1 +
x2
2

2
+

û2

4a
+ a (22)

H2(x1, x2) = x2
2/2 + cosx1 + û sinx1 (23)

H3(x1, x2) = x2
2/2 + cosx1 − û sinx1. (24)

This function is continuous and its derivatives are also
continuous. It can be shown that system (20) is Hamil-
tonian with Hamiltonian function given byHsat. Figure
6 shows some level curves for this function. Therefore,
the qualitative description of the system with saturation
(Fig. 6) is very similar to one corresponding to the un-
saturated case (Fig. 1): both systems are Hamiltonian;
nevertheless their Hamiltonians are different: Hd given
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by (8) in the unsaturated case and H = Hsat given by
(21) in the case of saturation.

5.1 Pumping and damping

The introduction of the pumping-damping term in a sim-
ilar way to Sect. 3 has to be done carefully since the
pumping-damping term can distort the boundary be-
tween the zones making that Hamiltonian Hsat is not
longer continuous and, thus, invalidating stability anal-
ysis similar to the one of Sect. 4. A simple way to avoid
this problem is to introduce u in the following way:

u = satδū(ues) + sat(1−δ)ū(upd), (25)

with 0 < δ < 1. In this way the energy shaping term
is saturated at û = δū (this is the reason why a sym-
bol different from ū was used for the saturation of ues

previously) and the pumping-damping term does not in-
terfere with it. With this choice, the previous analysis is
still valid (of course, Hamiltonian (21) is no longer con-
stant but it is modulated by upd).

As in Sect. 3, the pumping-damping term is chosen of the
form (11) but functionF has to be redefined since it must
circumscribe about the undesirable wells. We choose
function F of the form F (x1, x2) = α2x

2
2+α1 cosx1−1.

We will impose that the curve F = 0 intersect with
the curve Hsat = H∗ at the saddle points and at
x1 = π. This yields α1 = 2a and α2 = 2a

2a+1 for

û ≥
√
4a2 − 1 and α1 =

√
1 + û2, α2 = 1+α1

2(1+α1)−û2/(4a)

for û <
√
4a2 − 1.

5.2 Stability Analysis

Function Hsat can serve as a basis for the generaliza-
tion of the analysis carried out in Sect. 4 and the stabil-
ity proof for the saturation case can be easily obtained.
Here, only the main points are presented. The closed-
loop system is

ẋ1 = x2

ẋ2 = sinx1 − satδū(ues) + sat(1−δ)ū(upd),
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Fig. 7. Values of a and δ for which Φ(a, b, δ, ū) > 0. Graph
for b = 0.1 and ū = 2.

with ues = 2a sinx1 and upd = bx2F (x1, x2) cosx1.
We have chosen function Hsat such that, for upd = 0,

Ḣsat = 0. Therefore,

Ḣsat = −x2 cosx1sat(1−δ)ū(bx2F (x1, x2) cos x1).

Using the same arguments of Sect. 4 it suffices to esti-
mate the net energy balance along full revolutions yield-
ing

−∆Hsat
△
= −

π∫

0

Ḣsat

ẋ1

dx1

≥

x0
1∫

0

sat(1−δ)ū(bϕH (x1)F (x1, ϕH (x1)) cos x1) cos x1dx1

+

π∫

x0
1

sat(1−δ)ū(bϕF (x1)F (x1, ϕH (x1)) cos x1) cos x1dx1

△
= Φ(a, b, δ, ū).

It can be seen that stability is guaranteed if ∆Hsat ≤ 0
and this condition is fulfilled if Φ(a, b, δ, ū) > 0. There-
fore, we can state the following theorem:

Theorem 2 Consider system (1) with control law (25)
with ues and upd defined above. Then, for any a > 0.5
such that Φ(a, b, δ, ū) > 0, the origin is asymptotically
stable in S ×R except for a set of zero measure.

The applicability of this result is more complicated than
the one of the unsaturated case since, the corresponding
function Φ for the last case only depends on a. Never-
theless, the previous theorem is still useful. For a given
pendulum, parameter ū has a physical value. The control
designer has to find values of parameters a > 0.5, b > 0
and 0 < δ < 1 such that Φ(a, b, δ, ū) > 0. For example,
parameter b may be fixed and a graph such as the one of
Fig. 7 can be obtained. In this figure, which correspond
to ū = 2, b = 0.1, the marks represent the values of a
and δ that give a positive Φ(a, b, δ, ū) and, thus, give rise
to an almost-globally stable system.

In Fig. 8 we present the results of two simulations in or-
der to show the usefulness of the proposedmodifications.
In the first simulation, the original control law is simu-
lated with saturation in the control action (a = 10, b =
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Fig. 8. Results of two simulations with a = 10, b = 0.1,
and ū = 2: a) with the original controller b) with the new
controller with δ = 0.8.

0.1, ū = 2). It is shown that the controller does not work
properly. In the second simulation the new controller
with δ = 0.9 (which corresponds to the good region in
Fig. 7) is used showing a good behavior. Better transient
behavior can be obtained choosing different values for
the tuning parameters.

6 Conclusions

This paper presents a newmethod to design a single con-
troller for swinging up and stabilizing a pendulum based
on energy-shaping. The controller drives the system to
the desired upright position from any initial condition
except for a set of zero measure. The energy shaping is
based on a family of energy functions which provide a
Hamiltonian structure for the pendulum. A damping-
pumping term is added to provide damping around the
desired equilibrium to change it from being stable to
being asymptotically stable. Negative damping (energy
pumping) is introduced in the region around the un-
desirable equilibria to make them unstable. To accom-
plish this damping and pumping strategy a new concept
of circumscribing ovals has been introduced. A stability
criterion has been stated and proven. The resulting con-
trol law avoids any commutation between different sub-
controllers. An open problem is the performance com-
parison of the different choices for potential energy func-
tions as well as for the circumscribing ovals. Modifica-
tions to the control law for the case of saturated control
signal have also been studied.
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