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a b s t r a c t

Data-based control design methods most often consist of iterative adjustment of the controller’s
parameters towards the parameter values which minimize an H2 performance criterion. Typically,
batches of input–output data collected from the system are used to feed directly a gradient descent
optimization — no process model is used. A limiting factor in the application of these methods is the
lack of useful conditions guaranteeing convergence to the global minimum; several adaptive control
algorithms suffer from the same limitation. In this paper theH2 performance criterion is analyzed in order
to characterize and enlarge the set of initial parameter values from which a gradient descent algorithm
can converge to its global minimum.

© 2008 Published by Elsevier Ltd

1. Introduction

Control performance criteria are a key element in control
systems theory. Not only are they fundamental from a conceptual
point of view but this concept also leads to a large variety of control
design methods, which are formulated as optimization problems.
The solution of these optimization problems usually relies on full
knowledge of the process to be controlled and of the characteristics
of its disturbances. Often it is also required that the controller’s
transfer function can be freely chosen. These conditions are often
not fulfilled in practice, which motivates the development of
methods for the design of fixed structure regulators with partial
or even conceivably no a priori modelling of the process. The
minimization of the performance criterion, in these methods, is
performed directly from data collected from the system, which
motivates the designation data-based control design.

Several data-based control design methods explicitly optimiz-
ing performance criteria have appeared in the literature, with dif-
ferent approaches and for different performance criteria. These
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criteria express either one or a combination of the fundamental
control objectives: reference tracking, noise rejection, and eco-
nomic use of control energy. In Kammer, Bitmead, and Bartlett
(2000) an iterative procedure based on spectral analysis, named
Frequency Domain Tuning (FDT), has been proposed for the min-
imization of an H2 performance criterion for a system with zero
reference; hence, no tracking objective is pursued. The Virtual
Reference Feedback Tuning (VRFT) method (Campi, Lecchini, &
Savaresi, 2002; Campi & Savaresi, 2006) is based on a clever ma-
nipulation of variables which transforms an H2 performance cri-
terion into one which is quadratic in the design parameters. The
resulting quadratic cost function can beminimized directly, so that
no iterations are required. However, only the reference tracking
objective is treated (unless a two degree of freedom controller is
used, as in Lecchini, Campi, and Savaresi (2002)) and the global
minimum of the resulting quadratic function coincides with that
of the original criterion only under ideal conditions. Not suffer-
ing from this second limitation, but again an iterative procedure,
is Correlation-based Tuning (CbT) (Karimi, Mišković, & Bonvin,
2003, 2004), which uses instrumental variable ideas to eliminate
the deleterious effect of noise on the achievement of its reference
tracking objective. Data-based optimization of a general H2 per-
formance criterion appears in Hjalmarsson, Gunnarsson, and Gev-
ers (1994). There, a method for obtaining an unbiased estimate of
the gradient of the cost function directly from closed-loop data is
proposed; this method has been named Iterative Feedback Tuning
(IFT). IFT is discussed in depth in Hjalmarsson, Gevers, Gunnarsson,
and Lequin (1998), Hjalmarsson (2002) and extended in Procházka,
Gevers, Anderson, and Ferrera (2005) to evenmore general perfor-
mance criteria, which contain robustness enhancement objectives.
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It has been found that a limiting factor in the application of
data-based control design is the possible lack of convergence to
the global minimum of the criterion. Closely related is the problem
of convergence of model reference adaptive control (MRAC)
algorithms, which is also formulated as the optimization of an H2
criterion. The fundamental difference between MRAC and data-
based design is that in MRAC, controller updates are made at each
time sample, whereas in data-based control design each controller
update is done based on a batch of data. Convergence of MRAC
is a thoroughly studied subject (Åström & Wittenmark, 1995;
Goodwin & Sin, 1984). Convergence properties of IFT have also
been studied but not fully established (Hildebrand, Lecchini, Solari,
& Gevers, 2005). Typically, convergence to local minima cannot be
excluded, even under ideal conditions. The convergence problem
is usually approached, in data-based control design as well as in
adaptive control, through analysis of the optimization algorithm.
Remedies to lack of convergence are accordingly prescribed as
modifications to the optimization algorithm, usually ad hoc and
requiring additional experiments or complexity of the algorithm.

In this paper, we take a different approach to the problem of
securing convergence to the global optimum of H2 performance
criteria via a data-based approach. We do not concern ourselves
with analyzing or deriving algorithms to solve the optimization
problem; instead, we focus on the cost function itself. If the cost
function to be optimized is sufficiently ‘‘well-behaved’’, then the
properties of any one specific optimization procedure become less
material for the purpose of assuring convergence: any (correct)
algorithmwill converge properly.We thus aimat requiring simpler
algorithms and less data for the optimization — and simplicity is
a major credential for a data-based design algorithm. In contrast
with some other data-based schemes mentioned above, we deal
with general H2 optimization, which includes tracking, noise
rejection and control effort.

Our principal concern is to give intuitively meaningful and
appealing conditions for the set of parameter values that are
guaranteed to lie within the domain of attraction of the global
minimum of a performance index, when minimization is attempted
using gradient descent approximations. When these conditions
are not satisfied by the desired criterion, we show how it can
be changed, possibly with the use of intermediate criteria that
do satisfy these conditions and whose minima converge to the
minimumof the desired criterion. The idea behind the introduction
of intermediate criteria is to enlarge the domain of attraction to the
global minimum of the global procedure without compromising
the final performance. This procedure has been baptized cost
function shaping.

The paper is organized as follows. Notation, definitions,
preliminary results and a formal statement of the problem are
presented in Section 2. The core of our analysis appears in
Section 3. There the H2 performance criterion is broken up into
three terms, each one representing one of the fundamental control
objectives. It is shown that, under some structural hypothesis, the
three terms present a similar analytical structure which allows
the derivation of convergence properties. Then the cost function
shaping is presented in Section 4. In Section 5 the effect of relaxing
the previous structural assumptions is analyzed. A concluding
discussion is given in Section 6.

2. Preliminaries

2.1. Definitions

Consider a linear time-invariant discrete-time single-input–
single-output process

y(t) = G(z)u(t) + ν(t). (1)

In (1), z is the forward-shift operator, G(z) is the process transfer
function, u(t) is the control input and ν(t) is the process noise.
The noise is a quasi-stationary process which can be written as
ν(t) = H(z)e(t) where e(t) is white noise with variance σ 2

e . Both
transfer functions, G(z) and H(z), are rational and causal (proper).
It is assumed that H(∞) = 1, that is the impulse response h(t) of
the filter H(z) satisfies h(0) = 1.

This process is controlled by a linear time-invariant controller
which belongs to a given – user specified – classC of linear transfer
functions. This class is such that C(z)G(z) has positive relative
degree for all C(z) ∈ C; equivalently, the closed loop is not delay-
free. The controller is parametrized by a parameter vector ρ ∈ Rp,
so that the control action u(t) can be written as
u(t) = C(z, ρ)(r(t) − y(t)) (2)
where r(t) is the reference signal, which is assumed to be quasi-
stationary and uncorrelated with the noise, that is
E[r(t)e(s)] = 0 ∀t, s
where E[·] denotes expectation. The system (1) and (2) in closed
loop becomes
y(t, ρ) = T (z, ρ)r(t) + S(z, ρ)ν(t)

T (z, ρ) =
C(z, ρ)G(z)

1 + C(z, ρ)G(z)
= C(z, ρ)G(z)S(z, ρ)

where we have now made the dependence on the controller
parameter ρ explicit in the output signal y(t, ρ). It is also assumed
that the controller parametrization has a certain structure, as
specified below.

Assumption A. Linear parametrization:

C(z, ρ) = ρTC̄(z), ρ ∈ Rp (3)

where C̄(z) is a column vector of fixed rational functions.

Some of themost common controller structures are indeed linearly
parametrized, PID with fixed derivative pole being the most
popular. In addition, one can create a set of stable basis functions,
a finite sum of which can approximate any stable controller in L2
norm on the unit circle as close as desired; similarly for a controller
that is totally unstable. If a controller has poles on the unit circle,
the best approximation is to duplicate the poles and the residues,
but that is strictly not necessary if the controller is part of a stable
closed loop. Hence, Assumption A does not represent a significant
loss of generality.

For later reference,weprovidehere someadditional definitions.
We say that a scalar quasi-stationary signal x(t) is persistently
exciting of order k – in short, PEk – if its spectrum Φx(eȷω)
has at least k nonzero components. For a vector field V (eȷω) =

[v1(eȷω)v2(eȷω) . . . vk(eȷω)]T, where each vi(eȷω) is a function of the
frequency variable ω, we say that the vector V (eȷω) has full-rank if
the functions vi(eȷω) form a linearly independent (LI) set over the
reals, that is, if 6 ∃η ∈ Rk, η 6= 0 : ηTV (eȷω) = 0 ∀ω ∈ R.

2.2. Problem statement

We want the closed loop to achieve a given performance,
which is specified by a ‘‘desired’’ closed-loop transfer function
Td(z), called reference model in the literature. We thus search for
the controller parameters that make the output of the system
the closest to the desired one, that is, we solve the following
optimization problem.
min

ρ
J(ρ)

J(ρ) , E[λ(y(t, ρ) − yd(t))2 + (1 − λ)u2(t, ρ)] (4)
where yd(t) = Td(z)r(t) is the desired output and λ ∈ [0, 1]
is a user-specified constant. This control design formulation is
representative of several well-known model-based control design
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methods, such as LQR/LQG (Anderson & Moore, 1989) and
generalized predictive control (GPC) (Bitmead, Gevers, & Wertz,
1990), in which solutions of (4) may be achieved by means of
tools such as Riccati equations, Linear Matrix Inequalities (LMIs),
Bilinear Matrix Inequalities (BMIs), etc (Boyd, El Ghaoui, Feron, &
Balakrishnan, 1994).

Such model-based design requires the knowledge of a process
model, namely the transfer functions G(z) and H(z), and possibly
the noise variance σ 2

e as well. Obtaining a good model for a
real process usually demands, among other tasks, collecting data
from real system operation. Data-based design, on the other hand,
addresses the minimization of the criterion (4) directly from
data collected from the system, without the intermediate step
of deriving a process model from these data. Such methods
as IFT (Hjalmarsson et al., 1998) and FDT (Kammer et al.,
2000) rely on iterative optimization procedures, mostly gradient
descent algorithms. The quantities required in the optimization
procedure are the cost function’s gradient and possibly its
Hessian, which are estimated pointwise directly from batches of
input–output data collected from the closed-loop system. These
methods bear no claim on convergence to the global minimum
of the criterion; convergence to a local minimum only can be
guaranteed (Hildebrand et al., 2005; Hjalmarsson et al., 1994).

In this paper we are concerned with this particular but core
aspect of data-based design: the convergence of iterative solutions
of (4) to its global minimum. In order to proceed we need some
definitions on optimization, which are given in the following
subsection.

2.3. Optimization

Let J(ρ) : Rn
→ R+ be a differentiable cost function with

an isolated global minimum ρ∗. Successive approximations for the
global minimum are obtained by a recursion ρi+1 = f (ρi). A set of
initial conditions for which the algorithm converges to ρ∗ is called
a domain of attraction (DOA).

Definition 2.1. Let ρ∗ be the global minimum of a function J(ρ) :

Rn
→ R+. A set Ω ⊂ Rn is a domain of attraction of an algorithm

ρi = f (ρi−1) for the function J(ρ) if limi→∞ ρi = ρ∗∀ρ0 ∈ Ω . �

A gradient descent algorithm is one in which the iteration is
given by
ρi+1 = ρi − γi∇J(ρi) (5)

where ∇J(ρ) =
∂ J(ρ)

∂ρ
and γi > 0 ∀i. The rationale behind this

algorithm is clear: updates are made in the opposite direction of
the gradient, so, at least for sufficiently small γi, at each iteration
a smaller value for the cost is achieved. Its convergence properties
which are relevant for our analysis are established in the following
theorem.

Theorem 2.1. Consider a twice-differentiable function J(·) : Rn
→

R+. Assume that this function has an isolated global minimum ρ∗ and
define the set Bα(ρ∗) = {ρ : (ρ − ρ∗)

T(ρ − ρ∗) < α}. If

(ρ − ρ∗)
T
∇J(ρ) > 0 ∀ρ ∈ Bα(ρ∗), ρ 6= ρ∗ (6)

then there exists a sequence γi, i = 1, . . . ,∞ such that Bα(ρ∗) is a
DOA of algorithm (5) for J(ρ).

Proof. Let V (ρ) = (ρ − ρ∗)
T(ρ − ρ∗) be a Lyapunov function for

the discrete-time system (5). Then

V (ρi+1) − V (ρi) = (ρi − γi∇J(ρi) − ρ∗)
T

× (ρi − γi∇J(ρi) − ρ∗) − (ρi − ρ∗)
T(ρi − ρ∗)

= −2γi(ρi − ρ∗)
T
∇J(ρi) + γ 2

i ∇J(ρi)
T
∇J(ρi)

which is negative provided that 0 < γi <
2(ρi−ρ∗)T∇J(ρi)
∇J(ρi)T∇J(ρi)

. For
ρi ∈ Bα(ρ∗) the existence of suchγi is guaranteed by condition (6),

which also implies that ∇J(ρi) 6= 0 ∀ρi 6= ρ∗, ρi ∈ Bα(ρ∗).
The proof is completed by noting that Bα(ρ∗) is a connected and
bounded level set of V (ρ). �

Condition (6) implies that:
• the angle between the gradient and the vector ρ − ρ∗ is always

in the interval (−π/2, π/2);
• the gradient is never zero — there are no extrema (minima,

maxima) or saddle-points in Bα(ρ∗) other than the global
minimum ρ∗.

Actual convergence also involves the proper choice of algorith-
mic parameters, the sequence γi in particular, an issuewhichwedo
not address in this paper. When the cost function does obey condi-
tion (6) in a given set, then we say that this set is a candidate DOA,
because then we can find γi such that this set will be a DOA for the
gradient descent algorithm (5).

Definition 2.2. Let ρ∗ be the global minimum of a function J(ρ) :

Rn
→ R+. A ball Bα(ρ∗) is a candidate DOA for J(ρ) if ρ∗ ∈ Ω and

(6) is satisfied for all ρ ∈ Ω . �

In an actual data-based design (IFT, CbT, FDT), the gradient
in (5) is replaced by an estimate ∇̂J(ρi). It is a well-known
fact (see Hjalmarsson et al. (1998), for instance) that such a
gradient descent algorithm converges, in a stochastic sense, to
a minimum of the cost function provided that the estimate is
unbiased and that appropriate γi have been chosen. The reasoning
in Theorem 2.1 remains valid, with ∇̂J(ρi) replacing ∇J(ρi), and
some slack in condition (6) becomes necessary to compensate
for the estimate errors. Also notice that in this stochastic setting
only convergence to a neighborhood of the global optimum can be
achieved (stochastic convergence) and hence condition (6)must be
verified only outside this neighborhood.

3. Analysis of the cost function

Under the assumption that the reference and the noise
are uncorrelated, we can split the cost J(ρ) in (4) into three
components:
J(ρ) = λ[Jy(ρ) + Je(ρ)] + (1 − λ)Ju(ρ) (7)
where we have defined
Jy(ρ) = E[((T (z, ρ) − Td(z))r(t))2]

Je(ρ) = E[(S(z, ρ)ν(t))2]
Ju(ρ) = E[u(t, ρ)2].

The minimization of Je(ρ) for a free-form controller with known
process model is a classical problem known as minimum variance
control, whose solution is well known (Åström, 1970; Åström &
Wittenmark, 1973; Kammer et al., 2000). The minimization of
Jy(ρ) has also been widely studied in the literature, particularly
in the context of model reference adaptive control (Åström &
Wittenmark, 1995; Goodwin & Sin, 1984). In this paper we refer
to Jy(ρ) as the reference tracking criterion.

Let Γ be the set of all control parameter values that render the
closed-loop system BIBO-stable, that is, Γ , {ρ : T (z, ρ) is BIBO-
stable}. For ρ ∈ Γ Parseval’s theorem yields:

Jy(ρ) =
1
2π

∫ π

−π

|T (eȷω, ρ) − Td(eȷω)|2Φr(eȷω)dω (8)

Je(ρ) =
1
2π

∫ π

−π

|S(eȷω, ρ)|2Φν(eȷω)dω (9)

Ju(ρ) =
1
2π

∫ π

−π

|C(eȷω, ρ)|2|S(eȷω, ρ)|2

× [Φr(eȷω) + Φν(eȷω)]dω (10)
where Φx(eȷω) indicates the spectrum of a signal x(t).
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3.1. Reference tracking

Let us start by studying the reference tracking cost, that is,
Jy(ρ). To that end, we define the ideal controller Cd(z), which is the
controller transfer function that would exactly achieve the desired
closed-loop transfer function Td(z):

Cd(z) =
Td(z)

G(z)(1 − Td(z))
. (11)

Let us assume that none of the unstable poles and zeros of G(z) (if
there are any) are cancelled by Cd(z). Clearly, this assumption is
automatically verified for processes that are stable and minimum
phase. For unstable and/or nonminimum-phase processes, the
satisfaction of this property is determined by the choice of the
reference model; this is an inherent feature of model reference
design. When a process model is available, the reference model
can and must be chosen to satisfy this assumption, otherwise
the global minimum of the performance criterion would deliver
a destabilizing controller. In data-based design, it is also possible
to cope with this limitation by leaving the zeros of the reference
model as free parameters, as shown in Lecchini and Gevers (2002).

If and only if the ideal controller Cd(z) lies within the class of
controllers considered, then the closed-loop system can be made
to behave exactly as the reference model by a proper choice of the
parameter ρ. We will assume that this is the case in most results
that follow, so let us formalize this assumption.
Assumption By — Cd(z) ∈ C, or, equivalently,

∃ρd : C(z, ρd) = Cd(z) = ρT
d C̄(z). (12)

This assumption is dual to the assumption in identification
theory that the process model belongs to the model class
considered. Similar assumptions will be made for the two other
cost components Ju and Je. Though assumptions of this nature are
standard in our context (Åström &Wittenmark, 1995; Campi et al.,
2002), they are not weak ones. We can, however, expect them to
be violated only moderately in a well-formulated design problem;
it does not make good engineering sense to formulate a problem
in which one searches for a performance that is radically different
from what can be achieved. The case where Assumption By is
‘‘almost’’ satisfied is analyzed in Section 5.

Under Assumptions A and By the global minimum of Jy can be
found by VRFT (Lecchini & Gevers, 2002), which ismost opportune,
since it is a direct (noniterative) method. However, VRFT design
for controllers with just one degree of freedom can only cope
with Jy and not with general H2 criteria, as we do later in this
paper. Moreover, when assumption By is not satisfied VRFT yields
a controller that is not the minimum of Jy. In these cases, VRFT
can still be used to provide an initial condition for an iterative
optimization procedure. Note also that without Assumption A
and By we cannot guarantee that the global minimum will be
reached, but they are not necessary for the application of data-
based controller tuning.

From (3) and (12), and adopting the convention that gradients
are column vectors, we get:
C(z, ρ) − Cd(z) = (ρ − ρd)

TC̄(z)
∇C(z, ρ) = C̄(z) ∇C∗(z, ρ) = C̄∗T (z)
where C̄∗(eȷω) = C̄T (e−jω). Calculating the gradient of Jy(ρ)
in (8) and using the above yield (the calculations are given in
Appendix A)1:
∇Jy(ρ) = M(ρ)(ρ − ρd) (13)

M(ρ) ,
1
π

(∫ π

−π

Φr |G|
2
|S(ρ)|2R{S∗

d S(ρ)C̄ C̄∗
}dω

)
.

1 In order to make the expressions shorter we will henceforth omit the
dependence on eȷω when the signals appear inside integrals.

Here R{·} denotes the real part of a complex number and the
desired sensitivity function is defined as Sd(z) = 1 − Td(z). It is
clear that Jy(ρd) = 0 and ∇Jy(ρd) = 0 so that ρd is the global
minimum of Jy(ρ). Writing condition (6) for this function we get

(ρ − ρd)
T
∇Jy(ρ) = (ρ − ρd)

TM(ρ)(ρ − ρd) > 0

∀ρ ∈ Bα(ρd), ρ 6= ρd. (14)
Thus, whether this condition is satisfied in a given set depends on
the properties of thematrixM(ρ) for all ρ contained in this set; let
us examine these properties. From (13):

M(ρ) =
1
π

∫ π

−π

Φr |G|
2
|S(ρ)|2R{S∗

d S(ρ)}R{C̄ C̄∗
}dω

−
1
π

∫ π

−π

Φr |G|
2
|S(ρ)|2={S∗

d S(ρ)}={C̄ C̄∗
}dω

, Ms(ρ) + Ma(ρ). (15)
It is straightforward to verify that Ma(ρ) is anti-symmetric,
whereas Ms(ρ) is symmetric — hence their subscripts. Since
xTQx = 0 for any anti-symmetric matrix Q and any x ∈ Rn, (14)
can be written as

(ρ − ρd)
TMs(ρ)(ρ − ρd) > 0 ∀ρ ∈ Bα(ρd), ρ 6= ρd (16)

which is satisfied ifMs(ρ) is positive definite.
Now, C̄(eȷω)C̄∗(eȷω) is positive semi-definite by construction

and its sum over a sufficiently large number of frequencies is
positive definite provided that the vector field C̄(eȷω) is full-rank
(the functions in C̄(eȷω) form an LI set over the reals). The same is
true for its real part.With this we have proven the following result.

Theorem 3.1. Let C̄(eȷω) be full-rank and r(t) be PEp.2 Let Υ ⊆ Γ
be a connected set such that ρd ∈ Υ and, for all ρ ∈ Υ :

R{S∗

d (e
ȷω)S(eȷω, ρ)} > 0 ∀ω. (17)

Then

(ρ − ρd)
T
∇Jy(ρ) > 0 ∀ρ ∈ Υ , ρ 6= ρd. �

Some comments are in order:
(1) Whereas the first two conditions of the theorem (reference is

PEp and C̄ is full-rank) are necessary for the integral in (15)
to be bounded away from zero, condition (17) is not. If (17)
is violated only at those frequencies where the input power is
low, then the integral is likely to be positive. This is a powerful
idea in adaptive control whichwill be further explored in what
follows.

(2) Condition (17) can also be expressed as

max
ω

|6 S(eȷω, ρ) − 6 Sd(eȷω)| < π/2 ∀ρ ∈ Υ . (18)

Thismaximum-phase difference between two transfer functions
is a metric that can be used to measure the distance between a
given ρ and the global optimum ρd.

(3) Condition (17) is satisfied if and only if the following transfer
function is strictly positive real (SPR).

Sd(eȷω)

S(eȷω, ρ)
. (19)

(4) To check the SPR condition (18) we need to know roughly the
phase of the sensitivity S(z, ρ), and a rough estimate can be
obtained from the same data used for the design. So, checking
condition (18) does not require a process model.

(5) A similar SPR condition involving sensitivity functions has
been obtained for correlation-based tuning (CbT) in Karimi
et al. (2004). This SPR condition is established for the class of
controllers in the form of rational functions.

2 Recall that p is the dimension of the parameter vector ρ.

Please cite this article in press as: Bazanella, A. S., et al. Iterativeminimization ofH2 control performance criteria. Automatica (2008), doi:10.1016/j.automatica.2008.03.014



ARTICLE  IN  PRESS
A.S. Bazanella et al. / Automatica ( ) – 5

The conditions of Theorem 3.1 have a clear interpretation:

• the input must be persistently exciting of order at least equal to
the dimension of the parameter vector;

• the parametrization of the controller cannot be redundant, that
is, it must represent the class of controllers considered with a
minimum number of parameters;

• the parameter values in Υ must be ‘‘close enough’’ to the ideal
parameter value ρd, so that the respective sensitivity functions
are not too different, in the sense that their phases are close, but
actually with no specific restriction on their magnitudes.

Example 3.1. Let G(z) =
1

z−a , |a| < 1, C(z, ρ) = ρ z−a
z−1 . The

ideal controller Cd(z) belongs to the controller class considered if
and only if the reference model is of the form Td(z) =

1−b
z−b ; then

ρd = 1 − b. The sensitivity function is given by

S(z, ρ) =
1

1 + C(z, ρ)G(z)
=

z − 1
z − (1 − ρ)

.

For two arbitrary sensitivity functions generated by ρ1, ρ2 ∈ Γ ,
we have
S(z, ρ1)

S(z, ρ2)
=

z − (1 − ρ2)

z − (1 − ρ1)
.

The set of stability parameters ρ is Γ = {ρ : |1 − ρ| < 1}. Let us
define αi = 1 − ρi for convenience of notation. From the positive
real lemma (Boyd et al., 1994), this function is SPR if and only if
there exists q ∈ R+ satisfying the inequalities:

q(1 − α2
2) > 0

(α2 − α1)
2q2 + 2(α1α2 − 1)q + 1 , η(q) < 0.

The first inequality requires α2 < 1, which is the case for ρ2 ∈ Γ .
The second one will be satisfied for some real positive q if and only
if the roots of the polynomial η(q) are real and at least one of them
is positive. The roots of η(q) are given by

q =

−(α1α2 − 1) ±

√
(α2

1 − 1)(α2
2 − 1)

(α2 − α1)2
.

These roots are real if and only if (α2
1 − 1)(α2

2 − 1) ≥ 0, which is
satisfied for all ρ1, ρ2 ∈ Γ . Moreover, for ρ1, ρ2 ∈ Γ , −(α1α2 −

1) > 0, so one of the roots is positive. Hence, whatever reference
model Td(z) we choose such that it is BIBO-stable and can be
achieved exactly with the controller class considered, Γ will be a
candidate DOA for the global minimum ρd = 1 − b. �

It is typically the case that some information on G(z) is necessary
in order to verify the satisfaction of Assumption By, as well as to
check condition (17). In the example, the knowledge of the model
structure alone is enough to verify that Assumption By can be
satisfied with a PI controller class C(z, ρ) = ρ z−a

z−1 . In order to
actually choose a controller class that satisfies Assumptions By and
A we need to know also the pole value a. This knowledge, on the
other hand, allows also characterizing the whole set of reference
models for which Assumption By is satisfied, and verifying that
condition (17) is satisfied for all these reference models. So,
although some information on the process must be available in
order to use the results of this paper, this required information is
far less than what is required for model-based design — namely,
knowledge of G(z) to a reasonable degree of accuracy.

Example 3.2. Let G(z) =
1

z−0.5 , C(z, ρ) = ρ z
z−0.9 and Td(z) =

2.4z
z2+z+0.45

. The ideal controller, which minimizes Jy(ρ), is achieved
for ρd = 2.4. The stability set is Γ = (−0.05, 2.85). It is
straightforward to verify that Sd(eȷω)

S(eȷω,ρ)
is SPR for all ρ ∈ Υ =

Fig. 1. Example 3.2— frequency response of Sd(eȷω) (full line) and S(eȷω, ρ) (dashed
line) for ρ = 0.5 (ρd = 2.4).

(1.35, 2.85). So, from Theorem 3.1, the cost Jy(ρ) has no other
extrema than ρd within the set Υ and this set is a candidate DOA
for Jy(ρ). For ρ 6∈ Υ the SPR condition is not satisfied, so there may
exist local minima or maxima in this set. Whether such extrema
exist depends on the particular reference applied to the system, as
will be seen later. �

Let us re-examine (13) and (16) in the light of the final remark in
the example above, noting thatM(ρ) is a scalar here. Theorem 3.1
tells us, based on these equations, that if all the factors inside the
integral that forms Ms(ρ) are positive, then the integral cannot be
zero and (16) is satisfied. There is only one term inside that integral
that can be nonpositive: R{S∗

d S(z, ρ)}. If this term is negative in
a range of frequencies and positive in another range, then there
exists a Φr such that it ‘‘weighs’’ equally these two frequency
ranges, thus causing the integral to vanish. The following corollary
results immediately from this argument.

Corollary 3.1. Let C̄(eȷω) be full-rank and consider a given set Υ ⊆

Γ , with ρd ∈ Υ . If for some ρ1, ∃ω : R{
Sd(eȷω)

S(eȷω,ρ1)
} < 0 then there

exist PEp reference signals r(t) such that ∇Jy(ρ1) = 0. This, in turn,
implies that for such reference signals: condition (6) is not satisfied at
ρ1; ρ1 is an extremumof Jy(ρ); and any set Υ 3 ρ1 is not a candidate
DOA for Jy(ρ). �

Example 3.3. Consider again the system of Example 3.2. The SPR
condition is not satisfied for ρ < 1.35. For ρ = 0.5, for instance,
we have the situation presented in Fig. 1, where it is clear that the
SPR condition is indeed not satisfied, since there are frequencies
where the phases of Sd(z) and S(z, 0.5) differ by more than π

2 rad.

It can be seen in this figure that R{
Sd(ej1)

S(ej1,0.5)
} = 0, so if only

this frequency (ω = 1 rad) is excited, the gradient will be zero
at this particular value of ρ. Indeed, by applying r(t) = sin(1 · t)
we have the cost presented in Fig. 2, which has a local maximum
at ρ = 0.5. �

Hence, convergence can be guaranteed by properly restricting
the reference spectrum to those frequencies where the phase
difference is small. This idea has been explored in adaptive
control (Riedle, Praly, & Kokotovic, 1986) and is one of the bases
of the cost function shaping presented in what follows.

3.2. Control effort

From (10), the cost function associated with the control energy
is given by

Ju(ρ) =
1
2π

∫ π

−π

∣∣∣∣ ρTC̄(eȷω)

1 + ρTC̄(eȷω)G(eȷω)

∣∣∣∣2
× [Φr(eȷω) + Φν(eȷω)]dω. (20)
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Fig. 2. Cost Jy(ρ): global optimum at ρd = 2.4 and a maximum at ρ = 0.5.

It is evident from (20) that ρu , 0 is the global minimum of
Ju(ρ), which results in Ju(0) = 0. The gradient is given by (see
Appendix A.2)

∇Ju(ρ) = Mu(ρ)ρ (21)

Mu(ρ) =
1
π

[∫ π

−π

(Φr + Φν)|S(ρ)|2R{S(ρ)C̄ C̄∗
}dω

]
.

From (21) it is also clear that ∇Ju(0) = 0. Note that this optimal
controller belongs to any linearly parametrized class of controllers;
it is achievable with ρ ∈ Γ if and only if the process is open-loop
BIBO-stable.We can apply for Ju(ρ) the same reasoning as for Jy(ρ),
mutatis mutandis, which gives the following result.

Theorem 3.2. Let C̄(eȷω) be full-rank, let Υ ⊆ Γ be a connected set
such that 0 ∈ Υ , and let

Re{S(eȷω, ρ)} > 0 ∀ρ ∈ Υ . (22)

Then

ρT
∇Ju(ρ) > 0 ∀ρ ∈ Υ , ρ 6= 0. �

The SPR condition (22) has the same interpretation as (17): it
represents the distance of the achieved sensitivity to the desired
one. The difference between the two cases is the value of the
desired sensitivity, which now is given by Su(eȷω) = S(eȷω, 0) = 1.

3.3. Noise rejection

The cost Je(ρ) represents the variance of the output due to
the noise. The minimization of this variance for the case where
the controller is not constrained is a classical topic in control
theory known as minimum variance control. The solution of this
problem, when G(z) is minimum phase, is given by the following
controller (Åström, 1970):

Ce(z) =
H(z) − 1

G(z)
.

Applying this controller, the obtained sensitivity is

Se(z) =
1

1 + Ce(z)G(z)
=

1
H(z)

.

The sensitivity Se(z), being the one that is obtained with the best
possible controller, is the desired sensitivity for the performance
criterion Je(ρ). We can use this fact to rewrite the cost (9) in amore
insightful form (see Appendix A.3):

Je(ρ) = σ 2
e +

1
2π

σ 2
e

∫ π

−π

|H|
2
|S(ρ) − Se|2dω. (23)

Clearly, if the minimum variance controller were applied, then the
sensitivity would equal the desired sensitivity Se(z) and the cost
would evaluate to σ 2

e . We can give Je the same treatment as before

and obtain similar results. We start with the assumption that the
minimum variance controller can be implemented in our class C.
Assumption Be — There exists ρe: C(ρe, z) = Ce(z).

The remarks previously made about Assumption By apply ipsis
literis here. Under Assumption Be the gradient is given by
∇Je(ρ) = Me(ρ)(ρ − ρe) (24)

Me(ρ) =
σ 2
e

π

∫ π

−π

|H|
2
|G|

2
|S(ρ)|2R{S∗

e S(ρ)C̄ C̄∗
}dω

which is similar to (13) and (21). So, once again we have a similar
result.

Theorem 3.3. Let C̄(eȷω) be full-rank. Let Υ ⊆ Γ be a connected set
such that ρe ∈ Υ and that, for all ρ ∈ Υ ,

R

{
Se(eȷω)

S(eȷω, ρ)

}
> 0 ∀ρ ∈ Υ . (25)

Then

(ρ − ρe)
T
∇Je(ρ) > 0 ∀ρ ∈ Υ , ρ 6= ρe. �

3.4. Combining the three objectives

Each one of the three cost components represents a different
control objective whose minimum is achieved at different values
of the parameter vector. When the three components are put
together to form the whole cost, we can also write the gradient
of the combined criterion in the nice form of a symmetric matrix
multiplying the difference to the minimum, as done previously for
the gradient of each individual cost.
∇J(ρ) = λMy(ρ)(ρ − ρd) + λMe(ρ)(ρ − ρe)

+ (1 − λ)Mu(ρ)ρ

= M(ρ)(ρ − ρ∗) (26)
where
M(ρ) = [λMy(ρ) + λMe(ρ) + (1 − λ)Mu(ρ)]

ρ∗ = M−1(ρ)[λMy(ρ)ρd + λMe(ρ)ρe].

A sufficient condition for M(ρ) to be nonsingular is that each one
of the individual matrices My(ρ), Me(ρ) and Mu(ρ) has a positive
definite symmetric part. On the other hand, if the symmetric parts
of each one of these matrices – My(ρ), Me(ρ) and Mu(ρ) – are
positive definite, then so is the symmetric part of M(ρ). Under
these conditions the total cost J(ρ) has similar properties to each
one of its components and we can state a result which is similar to
the ones presented previously for each term separately.

Theorem 3.4. Consider the cost (26), let C̄(eȷω) be full-rank and let
r(t) be PEp. Let Υ ⊆ Γ be a connected set containing ρe, ρd and 0
such that, for allρ ∈ Υ , Sd(eȷω)

S(eȷω,ρ)
, Se(eȷω)

S(eȷω,ρ)
and S(eȷω, ρ) are SPR. Assume

further that ρ∗ ∈ Υ . Then

(ρ − ρ∗)
T
∇J(ρ) > 0 ∀ρ ∈ Υ , ρ 6= ρ∗ �

4. Cost function shaping

4.1. The problem data

For simplicity of presentation we shall focus on the reference
tracking criterion Jy, but the results to be discussed are also valid
for the other two criteria, since they have the same analytical
structure. Among the variables present in (15) and (17), which
determine the convergence properties, some can be manipulated
by the designer and others cannot. Let us take a closer look at each
one of these variables to see which ones are under the designer’s
control. Start with the process characteristics — G(z), H(z) and
σ 2
e ; these are given and unknown, and we certainly cannot change

them.
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The controller class C is given and known; it is a designer’s
choice that is usually made in a previous stage of system
conception, sowe cannot change it here. For example, the available
hardware often imposes the controller class. On the other hand,
the particular parametrization C̄(z) used to represent this class can
often be manipulated. It has been proven in this paper, and also
noted elsewhere (Kammer et al., 2000), that this parametrization
must represent the classC with theminimal number of parameters
but it can otherwise be freely chosen. Though this choice does play
a role in the properties of the cost function, and thus might be
useful for cost function shaping, we do not explore it in this paper.

The initial controller parameter ρ0 could, in theory, be selected
at will. However, finding an initial controller that is guaranteed
to provide a stable closed loop is not without danger when the
process is unknown, even though a method like VRFT can be very
helpful. Also, the main application field envisaged for model-free
tuning methods is the performance improvement of controllers
that have been operating in a stable, but not optimally performing
way. In this situation, which is probably the most common in
practice, the initial controller is imposed upon us. So, whether it
is possible to choose ρ0 in a given practical situation is determined
by case-specific and rather subjective considerations.

The remaining items are determined strictly by the perfor-
mance criterion: Td(z), λ and Φr . Once the choice of performance
criterion has been made, these variables are fixed; changing them
would implyminimizing another criterion, not the one the user has
chosen. Nevertheless, if our criterion of choice is too hard to opti-
mize starting from our given controller ρ0, we may consider min-
imizing an easier criterion as an intermediate task. Then, taking
the new controller resulting from this optimization as the initial
controller, it might be easier to optimize the desired criterion. Ac-
tually, we can think of inserting more than one intermediate task,
optimizing at each time a criterion that is closer to the desired one,
and guaranteeing that each one of these intermediate optimiza-
tion tasks will converge. This is the central idea of what we have
called ‘‘cost function shaping’’: to manipulate one or more of the
variables Td(z), λ and Φr stepwise so that the resulting intermedi-
ate cost functions have a larger domain of attraction to their global
optimum, in such a way as to eventually minimize the desired cost
function. Aswill be seen inwhat follows, each one of the cited vari-
ables has its ownway of influencing the convergence properties of
the optimization.

4.2. Cautious control

Starting from an initial controller which delivers a given
performance – say T0(z) – which we consider poor, let us choose
a first intermediate reference model T 1

d (z). This reference model
should not require at once the achievement of a performance
that is much better than the one we already have with T0(z).
Instead, T 1

d (z) should be cautious, aiming at a modest performance
improvement, one which is closer to the (poor) performance T0(z)
than the real reference model of interest, namely Td(z). Once
the global optimum of this new criterion (ρ1

∗
) has been attained,

we can pick a second, more ambitious, reference model T 2
d (z)

(i.e. one closer to Td(z)), and optimize it starting from ρ1
∗
as the

initial controller. This argument can be used successively, with
several intermediate reference models, until the desired reference
model Td(z) is achieved. This concept of cautious control is a
familiar one in data-based control design (Hjalmarsson et al.,
1994; Kammer, 2005) and in iterative identification and control
design (Zang, Bitmead, & Gevers, 1995); it is also a fundamental
precept of the windsurfer approach to adaptive control (Lee,
Anderson, Kosut, & Mareels, 1993; Lee, Anderson, Mareels, &
Kosut, 1995). In Anderson and Gevers (1998), the problem of
impractical control objective was recognized and it was suggested
performing successive iterates of the criterion achieving designs

Fig. 3. Example 4.1 — cautious control: The H2 cost J(ρ) for different reference
models — at each intermediate step the global optimum becomes larger.

which approach the optimum. We illustrate the procedure by
means of an example.

Example 4.1. Consider the data in Example 3.2, a cost function
J(ρ) as in (7) with λ = 0.75, and that the noise can be described
by H(z) =

z2−1.15z+0.45
z2−1.4z+0.45

and σe = 0.1. This system is excited by
a square-wave reference with period T = 6 s. The behavior of
the cost function J(ρ) is shown by the starred line in Fig. 3 — it
presents a local maximum at ρ ≈ 0.6. If the initial controller is one
with very low gain (corresponding to ρ < 0.6), then convergence
via gradient descent to the global optimum ρ∗

≈ 2 is impossible.
Consider the use of three intermediate reference models, starting
from T 1

d (z) =
0.6z

z2−0.8z+0.45
, and going successively to T 2

d (z) =

1.2z
z2−0.2z+0.45

, T 3
d (z) =

1.8z
z2+0.4z+0.45

and finally Td(z) =
2.4z

z2+z+0.45
.

Then the intermediate cost functions behave as shown in
Fig. 3. There, the final cost function is marked with ∗ and each
intermediate cost function can be identified visually by the fact
that each new intermediate cost presents a larger global optimum
than the previous one (ρ∗ > ρ∗

3 > ρ∗

2 > ρ∗

1 ). For the first cost
function (T 1

d (z)) Γ is a candidate DOA and for each intermediate
cost function the global optimum belongs to a candidate DOA of
the next one. �

4.3. Manipulation of the reference spectrum

It has been proven that the SPR property of a particular transfer
function is sufficient for uniqueness of extrema within a given set.
However, the SPR condition is not a necessary condition; it can
be circumvented by a proper manipulation of the reference r(t).
To realize how to do that, we first explore the properties of the
sensitivity functions that enter the SPR condition (17).

4.3.1. Properties of the sensitivity

Lemma 4.1. Let S(z, ρ) = (1 + ρTC̄(z)G(z))−1 and let Γ be the
set of all parameter values such that the closed loop is stable. For all
ρ1, ρ2 ∈ Γ :
6 S(1, ρ1) = 6 S(1, ρ2) 6 S(−1, ρ1) = 6 S(−1, ρ2).

Proof.

6 S(eȷω, ρ) =

n∑
i=1

6 (eȷω − bi) −

n∑
i=1

6 (eȷω − ai(ρ))

where bi are the poles of the loop transfer function C̄(eȷω)G(eȷω)
and ai(ρ) are the closed-loop poles. For ω = 0 we have

6 S(1, ρ) =

n∑
i=1

6 (1 − bi) −

n∑
i=1

6 (1 − ai(ρ)).
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But
∑n

i=1
6 (1−bi) does not depend on ρ and

∑n
i=1

6 (1−ai(ρ)) =

0 ∀i, ρ ∈ Γ because ai(ρ) belong to the unit disc for all ρ ∈ Γ . The
same argument is valid for ω = π . �

From the property above and the continuity of S(eȷω, ρ) we can
also conclude that the phase difference between two sensitivity
functions is small for frequencies close to ω = 0 and ω = π .

Lemma 4.2. For all ρ ∈ Γ , ∃ωl, ωh such that:

|6 S(eȷω, ρ) − 6 Sd(eȷω)| <
π

2
∀ω ≤ ωl

|6 S(eȷω, ρ) − 6 Sd(eȷω)| <
π

2
∀ω ≥ ωh. �

According to the previous results, if only those frequencies for
which the phase difference |6 S(eȷω, ρ) − 6 Sd(eȷω)| is small are
contained in the reference spectrum, then the integral in (15) will
still be bounded away from zero, even if the phase difference
exceeds π/2 in some frequency ranges. For instance, if the
reference spectrum is concentrated at the borders of the frequency
spectrum – where the phase difference is always small – then
Ms(ρ) will be positive definite and the minimum is unique in the
stability set Γ . This is formalized in the following theorem.

Theorem 4.1. Let C̄(eȷω) be full-rank and let r(t) be PEp. Then ∃ωl,
ωh such that Φr = 0 ∀ω ∈ (ωl, ωh) implies that ρd is the unique
extremum of Jy(ρ) in Γ .3 �

4.3.2. Applying a different reference
Theorem 4.1 tells us that we can always find a reference for

which the candidate DOA of ρd is the entire stability set Γ .
So, whatever reference we have, we can always choose another
reference for which the optimization can be performed from any
initial controller and that will yield the same final result. In other
words, if our cost function is difficult to minimize, we minimize
instead another one, which is easier and has the same global
minimum. This is also the central idea in VRFT (Campi et al., 2002)
and some particular designs in MRAC (Åström & Wittenmark,
1995). Note, however, that this argument no longer holds for the
combined cost Jy(ρ) + Je(ρ), which is the one to be minimized in
the presence of noise. Nevertheless, we could expect that if Je(ρ)
was significantly smaller than Jy(ρ) away from ρd, the approach
would be effective.

Example 4.2. Consider again Example 4.1 and use the tracking
of square waves with larger periods as intermediate objective
functions. In making the period larger, the reference spectrum
becomes more concentrated at low frequencies. The result of
optimizing the cost J(ρ) successively for three different square
waves is shown in Fig. 4. It can be observed that for the initial cost,
given by the referencewith the largest period (T = 30 s), the global
optimum is at ρ1

∗
= 0.65 and Γ is a candidate DOA. The cost with

the second reference (T = 20 s) has a minimum around ρ2
∗

= 1
and there are no other extrema in the set (ρ1

∗
, ρ2

∗
). Finally, ρ2

∗
is

within a candidate DOA for the desired cost function. �

Similar theoretical results can be established for Je and Ju,
though these are of limited use for cost function shaping, since we
cannot manipulate Φν .

Proposition 4.1. Let C̄(eȷω) be full-rank. Then:
• ∃ων

l , ω
ν
h such that Φν ≈ 0 ∀ω ∈ (ων

l , ω
ν
h) implies that ρe is the

unique extremum of Je(ρ) in Γ ;
• ∃ωu

l , ω
u
h such that Φr + Φν ≈ 0 ∀ω ∈ (ωu

l , ω
u
h) implies that 0 is

the unique extremum of Ju(ρ) in Γ . �

3 Or, in case Γ is not a connected set, its whole connected subset which contains
the global optimum.

Fig. 4. Example 4.2—H2 performance criterion J(ρ) for different reference spectra:
Square wave, T = 30, 20, 6 s; as the period is decreased the global optimum
increases.

4.3.3. Choosing the data window
We have shown that convergence can be achieved by applying

to the process a properly chosen reference. But the procedure
above requires that we actually apply to the process a reference
that is different from the one it is supposed to track. This
is something that will not always be allowed in practice.
Alternatively the cost function can be manipulated such that it
‘‘sees’’ a different reference spectrum even though the reference
is not actually changed. To realize this, notice that the cost Jy(ρ)
as originally defined is not computable in practice. What can be
computed is the quantity

Ĵy(ρ,N) =
1
N

N∑
t=1

(y(t, ρ) − yd(t))2. (27)

If the signal-to-noise ratio is large, then

Ĵy(ρ,N) ≈
1
N

N∑
t=1

[(T (z, ρ) − Td(z))r(t)]2.

Under the standing assumption that all signals are quasi-
stationary, it is a standard result that the sum above converges to
Jy(ρ) as the data window size N grows:

lim
N→∞

Ĵy(ρ,N) = Jy(ρ).

It is also clear that Ĵy(ρ,N) is a quadratic function of ρ −ρd. Hence
ρd is an isolated global minimum of Ĵy(ρ,N) provided that N > p
(recall that p is the dimension of the parameter vector).

We would like to have a reference whose spectrum is
concentrated either at very low or at very high frequencies. But
the spectrum of the same reference is computed differently when
measured under different time windows. Indeed, define e(t) =

(T (z, ρ) − Td(z))r(t) and the signal eN(t) obtained as the periodic
repetition of a truncation at t = N of e(t), that is
eN(t + kN) = e(t) t = 1, . . . ,N
for all integers k. Now calculate the associated cost:

JN(ρ) = E[eN(t)]2 = lim
m→∞

1
m

m∑
t=1

[eN(t)]2

= lim
k→∞

1
kN

k
N∑

t=1

[eN(t)]2

=
1
N

N∑
t=1

[eN(t)]2 =
1
N

N∑
t=1

[e(t)]2 = Ĵy(ρ,N).

The approximated cost Ĵy(ρ,N) equals the exact cost that would
have been obtained should rN(t) , [T (z, ρ) − Td(z)]−1eN(t) have
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Fig. 5. Example 4.3 — performance criterion Ĵy(ρ, 4) for square-wave reference,
T = 6 s.

been applied to the system. Hence, using a different N for the
calculations has the same effect on the cost function as applying
a different reference signal. For instance, if the reference is a step,
taking smaller N is equivalent to applying a reference with more
energy at higher frequencies. On the other hand, taking data after
the transient will make the spectrum more concentrated at low
frequencies. The following example illustrates the procedure.

Example 4.3. Reconsider once again Example 4.2. Take the
original reference, with T = 6 s, but include only four data in the
cost function, that is, consider the minimization of Ĵy(ρ, 4). This
cost function presents the desired quasi-convexity in Γ , as shown
in Fig. 5. �

5. The unmatched case

Let us analyze now the ‘‘unmatched control class’’ case, that is,
the case where the ideal controller does not belong to the control
class. We perform the analysis for the reference tracking criterion
Jy; similar results apply to the two other cost components — Je and
Ju. We thus want to analyze the behavior of the cost function Jy
when assumption By is replaced by another, much weaker one:
Assumption Cy — The cost function Jy presents a unique global
minimum ρ∗, that is, ∃ρ∗ ∈ Γ : J(ρ) > J(ρ∗)∀ρ 6= ρ∗; moreover,
the global minimum satisfies

∇J(ρ∗) = 0,
∂2J(ρ)

∂ρ2
|ρ∗

� 0.

When Assumption By is satisfied, ρd is this global minimum
(ρ∗ = ρd) and C(z, ρ∗) = Cd(z) — the ideal controller can be
achieved. When Assumption By is not satisfied, the best controller
that can be obtained is C(z, ρ∗) 6= Cd(z) and Assumption Cy
replaces Assumption By in our analysis. Assumption Cy rules out
the occurrence of global minima at infinity or at the border
of the stability set Γ , which is quite reasonable: a meaningful
performance criterion should not require infinite control gains or
operation of the system at the verge of instability, where it would
not be robust.

The mismatch between the best controller allowed by the
controller class under consideration and the ideal controller is
defined by the following transfer function

K(z) , Cd(z) − C(z, ρ∗). (28)
Now substitute (28) into (A.6) to get

∇Jy(ρ) =
1
π

∫ π

−π

Φr |GS(ρ)|2

× R{(C(ρ) − C(ρ∗) − K)∗S∗

d S(ρ)C̄}dω

= M(ρ)(ρ − ρ∗) − m(ρ) (29)

Fig. 6. Example 5.1 — reference tracking criterion.

where M(ρ) is as defined previously in (15) and we have also
defined

m(ρ) =
1
π

∫ π

−π

Φr |GS(ρ)|2R{S∗

d S(ρ)C̄K ∗
}dω. (30)

Eq. (29) is similar to (13), but perturbed by the vector function
m(ρ). This perturbation is unknown, continuous and satisfies
m(ρ∗) = 0. In addition, m(ρ) is bounded for all ρ ∈ Γ . Thus,
|m(ρ)| can be linearly bounded, that is, for any given set Υ ⊆ Γ

containing the global optimum ρ∗:

∃αΥ ∈ R+
: |m(ρ)| < αΥ |ρ − ρ∗| ∀ρ ∈ Υ . (31)

Theorem 5.1. Let C̄(eȷω) be full-rank, r(t) be PEp and αΥ as defined
in (31). Let Υ ⊆ Γ be a connected set such that ρ∗ ∈ Υ and, for all
ρ ∈ Υ :

R{S∗

d (e
ȷω)S(eȷω, ρ)} > 0 ∀ω.

If, in addition, the perturbation term m(ρ) is such that its bound αΥ

in (31) satisfies Ms(ρ) � αΥ I ∀ρ ∈ Υ , then

(ρ − ρ∗)
T
∇Jy(ρ) > 0 ∀ρ ∈ Υ , ρ 6= ρ∗.

Proof. Using (29) we have

(ρ − ρ∗)
T
∇Jy(ρ) = (ρ − ρ∗)

T
[M(ρ)(ρ − ρ∗) − m(ρ)]. (32)

Then the result is proven by simple substitution of the assumptions
of the theorem into (32). �

Clearly, computing estimates of the mismatch bound αΥ requires
some rough information about the process, which could be used
directly in (30) for this purpose. How to get the best estimate
with minimum prior information is an important topic of future
research.

Example 5.1. Let G(z) =
1

z−0.5 and consider a reference tracking
performance criterion with Td(z) =

0.3
z−0.7 ; then Cd(z) =

0.3z−0.15
z−1 .

Consider the class of all delay-free integral controllers: C =

{C(z) : C(z) = ρC̄(z), ρ ∈ R, C̄(z) =
z

z−1 }; then Cd(z) 6∈ C.
The global minimum is ρ∗ = 0.15. The SPR condition (19) yields

Sd(z)
S(z, ρ)

=
z2 + (ρ − 1.5)z + 0.5

(z − 0.7)(z − 0.5)

which is SPR for all 0 < ρ < 1.1. This implies that this interval is
a candidate DOA provided that K(z) – and hence m(ρ) – is small
enough. Indeed, it can be seen in Fig. 6 that the corresponding cost
function is quasi-convex in the predicted interval. �
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6. Concluding remarks

The typical way around convergence problems in iterativemin-
imization of H2 performance criteria is to propose more sophis-
ticated or information-demanding algorithms. Instead, we have
analyzed the cost function itself with a view tomanipulating some
design variableswithout compromising the final performance. Our
main concern has been to determinewhether or not given domains
in parameter space can be made a DOA for a gradient descent op-
timization algorithm. We have established that this is determined
by the maximum-phase difference, over all frequencies and for all
parameter values in a given domain, between the sensitivity func-
tions obtained for the different parameter values and the desired
sensitivity function (the one obtained at the global optimum). A
given domain can be made a DOA for a gradient descent algorithm
if thismaximumdifference is smaller thanπ/2. Itmay happen that
thewhole set of stabilizing controllers is such a domain. Then a gra-
dient descent algorithm with any ‘‘reasonable’’ initialization – one
which provides a BIBO-stable closed loop – will converge to the
global optimum.

From these analytical results it is possible to derive means
to shape the cost function such that it becomes well-behaved as
desired. This cost function shaping makes use of the variables
that the designer has at his/her disposal: the reference signal, the
intermediate reference models, the data window and the initial
controller. Regarding the reference signal, applying references
with frequency content sufficiently constrained to low and/or high
frequencies is appropriate. Different reference spectra can also
be simulated by taking different data windows with the same
applied reference. Concerning the intermediate reference models,
they should be sufficiently close to each other so that the global
minimum of one intermediate criterion is within the DOA of the
next, but not too close so that too many intermediate steps are
required to reach the desired performance. A procedure to safely
and effectively generate intermediate models, introducing an
adequate but not excessive dose of caution into the control design,
would be very welcome, and not only in the context of data-based
design. Hence, an important topic for future research is to provide
quantitative guidelines for cost function shaping as well as for
estimation of the mismatch bound αΥ . In this research we foresee
the application of ν-gap stability margin measures (as in Kammer
(2005)) and of overbounds on the process characteristics that
can be directly estimated from the input–output data: transfer
function order and relative degree, L2 gain, etc.

Appendix. Gradient calculations of the cost function

In this section, in the interest of brevity, we drop the
dependence on z and ω for all transfer functions and signals and
define the following notation:

I{X(eȷω)} ,
1
2π

∫ π

−π

X(eȷω)dω

A.1. Jy

∂ Jy(ρ)

∂ρ
= I{[T (ρ) − Td]∗

∂

∂ρ
[T (ρ) − Td]

+ [T (ρ) − Td]
∂

∂ρ
[T ∗(ρ) − T ∗

d ]Φr} (A.1)

T (ρ) − Td =
C(ρ)G

1 + C(ρ)G
−

CdG
1 + CdG

= (C(ρ) − Cd)GSdS(ρ) (A.2)

(T (ρ) − Td)∗ = (C(ρ) − Cd)
∗G∗S∗

d S
∗(ρ) (A.3)

∂T (ρ)

∂ρ
=

∂

∂ρ

C(ρ)G
1 + C(ρ)G

= GS2(ρ)
∂C(ρ)

∂ρ
(A.4)

∂T ∗(ρ)

∂ρ
= G∗S∗2(ρ)

∂C∗(ρ)

∂ρ
. (A.5)

Inserting (A.2)–(A.5) in (A.1):

∂ Jy(ρ)

∂ρ
= I

{
Φr

[
(C(ρ) − Cd)

∗G∗S∗

d S
∗(ρ)GS2(ρ)

∂C(ρ)

∂ρ

+ (C(ρ) − Cd)GSdS(ρ)G∗S∗2(ρ)
∂C∗(ρ)

∂ρ

]}
= I

{
Φr |GS(ρ)|22R

{
(C(ρ) − Cd)SdS∗(ρ)

∂C∗(ρ)

∂ρ

}}
where R{·} indicates the real part of a complex quantity.

Let us use Assumption A from now on. Then
∂ Jy(ρ)

∂ρ
= I

{
Φr |GS(ρ)|2

[
(C(ρ) − Cd)

∗S∗

d S(ρ)C̄

+ (C(ρ) − Cd)SdS∗(ρ)C̄∗T ]}
= 2I

{
Φr |GS(ρ)|2R

{
(C(ρ) − Cd)

∗S∗

d S(ρ)C̄
}}

. (A.6)

Finally, if Assumption By is also satisfied:

∂ Jy(ρ)

∂ρ
= 2I{Φr |GS(ρ)|2R{S∗

d S(ρ)C̄ C̄∗
}}(ρ − ρd). (A.7)

A.2. Ju

As is clear from (8) and (10), the ρ-dependent part of the
integrand in Ju is the same as in Jy, which allows determining the
gradient based on the results above.

∂ Ju(ρ)

∂ρ
= 2I

{
(Φr + Φν)|S(ρ)|2R

{
C∗(ρ)S(ρ)

∂C(ρ)

∂ρ

}}
= I

{
(Φr + Φν)|S(ρ)|2

{
C∗(ρ)S(ρ)

∂C(ρ)

∂ρ

+ C(ρ)S∗(ρ)
∂C∗(ρ)

∂ρ

}}
dω. (A.8)

Under Assumption A we get
∂ Ju(ρ)

∂ρ
= I{(Φr + Φν)|S(ρ)|2R{S(ρ)C̄ C̄∗

}}ρ.

A.3. Je

Since e(t) is white noise with variance σ 2
e :

Je(ρ) = σ 2
e I{|S(ρ)H|

2
}.

Let Se =
1
H . Then

Je(ρ) = σ 2
e I{|HS(ρ)|2} = σ 2

e I{|1 + HS(ρ) − 1|2}

= σ 2
e [1 + I{|H|

2
|S(ρ) − Se|2}]

where we have used the fact that HS(ρ) − 1 is a strictly proper
transfer function, which implies that the integral of its real part is
zero. Then

∂ Je(ρ)

∂ρ
= σ 2

e I

{
|H|

2 ∂

∂ρ
|S(ρ) − Se|2

}
(A.9)

∂

∂ρ
S(ρ) =

∂

∂ρ

1
1 + C(ρ)G

= −GS(ρ)2
∂C(ρ)

∂ρ
. (A.10)
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From (A.10) we get:

∂

∂ρ
|S(ρ) − Se|2 = −

[
S∗(ρ)Se(Ce − C(ρ))

∂C∗(ρ)

∂ρ

+ S(ρ)S∗

e (Ce − C(ρ))∗
∂C(ρ)

∂ρ

]
|S(ρ)|2|G|

2.

Now, under Assumptions A and Be:

∂

∂ρ
|S(ρ) − Se|2 = |S(ρ)|2|G|

2
[S∗(ρ)SeC̄ C̄∗

+ S(ρ)S∗

e (C̄ C̄
∗)T](ρ − ρe). (A.11)

Substituting (A.11) into (A.9) gives

∂ Je(ρ)

∂ρ
= Me(ρ)(ρ − ρe) (A.12)

Me(ρ) = σ 2
e I{|H|

2
|G|

2
|S(ρ)|2R{S∗(ρ)SeC̄ C̄∗

}}.
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