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Abstract

A parsimonious mathematical model of pulse modulated regulation of non-basal testos-
terone secretion in the male is developed. The model is of third differential order, reflecting
the three most significant hormones in the regulation loop, but is yet shown to be capable
of sustaining periodic solutions with one or two pulses of gonadotropin-releasing hormone
(GnRH) on each period. Lack of stable periodic solutions is otherwise a main shortcoming
of existing low-order hormone regulation models. Existence and stability of periodic so-
lutions are studied. The periodic mode with two GnRH pulses on the least period has not
been described in medical literature but is found to explain experimental data well.
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1 Introduction

Hormonal (endocrine) regulation is a complex biological system where hormones,
often measured as their serum concentrations, interact via numerous feedback and
feed-forward relationships, see [17,7]. Regarding mathematical modeling of hor-
mone dynamics, one considers two general tendencies — hormone clearing from
the blood which implies decrease of the serum concentration and hormone secretion
contributing new amounts of the hormone into the blood stream. Clearing rate is ba-
sically proportional to the hormone concentration while secretion of a hormone is
defined by concentration and dynamics of other hormones. Concentration rise in a
hormone can either stimulate secretion of a given hormone or inhibit it. In this way,

1 Corresponding author, e-mail: Alexander.Medvedev@it.uu.se

Preprint submitted to Information Technology, Uppsala University 10 April 2007



positive and negative feedbacks arise between different hormone concentrations in
the blood stream of an organism. The loop of interacting hormones is closed and
dynamically stable which guarantees homeostasis, i.e. biological self-regulation.
To correct the dynamic behaviors of endocrine systems, exogenous signals can be
used, e.g. medication, different kinds of medical treatment, physical activity, spe-
cial diet, etc.

In the endocrine system of testosterone (Te) regulation in the male, essential role
is played by the luteinizing hormone (LH) and gonadotropin-releasing hormone
(GnRH). While Te is produced in testes, LH and GnRH are secreted in different
parts of the brain — hypophysis (pituitary gland) and hypothalamus, respectively.
Therefore, the dynamics of LH and GnRH are closely related to the neural dy-
namics. The secretion of GnRH stimulates the secretion of LH which, in its turn,
stimulates the production of Te, while Te inhibits the secretion of GnRH and LH
[24].

Experimental studies based on high-resolution time assay series reveal (see e.g.
[21]) that concentrations of Te and LH in the adult male exhibit oscillative behav-
ior and their exact signal form depends on the individual. Direct measurements
of GnRH in the human are difficult to implement due to ethical reasons but ex-
periments on animals confirm that also secretion of GnRH is oscillative and it is
furthermore pulsatile, see e.g. [15]. Oscillations in hormone concentrations are of
a broad spectrum. Ultraradian harmonics with a period of 1 − 3 hours, depending
on the individual, are present as well as circadian rhythm of 24 hours is clearly
observed. Children who do not reached puberty and adults suffering from e.g. cata-
tonic schizophrenia do not have significant variation in the hormone levels, [21].

In this paper, periodic solutions of a recently suggested in [2] low-order mathemat-
ical model of the GnRH–LH–Te axis are studied. The model takes into account the
pusatile nature of GnRH release and is shown to be capable of sustained oscillations
of different types. The novelty of the model is that it combines relative simplicity
facilitating stringent mathematical analysis with sufficient flexibility allowing for
its use in parameter estimation.

First, a brief overview of results related to mathematical modeling of testosterone
regulation in the male is provided to highlight the gap filled in by the model in
hand. Then existence and stability results for periodic solutions of the model are
presented. The model analysis suggests that periodic solutions with one or two
GnRH pulses are feasible. It is proven that a periodic solution with one pulse of
GnRH is unique for a given set of model parameters. In the periodic mode with two
GnRH pulses, the model is found to be consistent with biological data.
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2 Mathematical models of testosterone regulation

Secretion of the hormones comprises two components - basal and pulsatile (non-
basal). Basal secretion of Te is a slow continuous process while the pulsatile one is
directed by episodic release of GnRH.

A mathematically sensible model of the GnRH–LH–Te axis has first been sug-
gested in [21]. It comprises three differential equations

Ṙ = f(T )−B1(R),

L̇ = G1(R)−B2(L),

Ṫ = G2(L)−B3(T ),

(1)

where R(t), L(t) and T (t) represent the serum concentrations of GnRH (termed as
LHRH in [21]), LH and Te, respectively. The pulsatile nature of GnRH secretion,
already discovered at that time [4], is not taken into account in (1).

Functions B1, B2, B3 describe clearing rates of the hormones and G1, G2, f are the
rates of their secretion. All those are non-negative quantities. The first five functions
are non-decreasing and can approximately be regarded as linear ones

Bi(x) = bix, i = 1, 2, 3,

Gi(x) = gix, i = 1, 2,

where bi, gi are positive numbers. Therefore, (1) takes the form

Ṙ = f(T )− b1R,

L̇ = g1R− b2L,

Ṫ = g2L− b3T.

(2)

As pointed out in [1], the linearity assumption is an idealization. In practice, these
functions go into saturation for large values of the argument. Function f(x) is non-
increasing and highly nonlinear. In [21], analytical sufficient conditions for (2) to
have a stable periodic solution are given. Specialized forms of f(x) are studied in
more detail. If f(x) is chosen to be a Hill function [7], f(x) = K/(1+βxρ) (where
all parameters are positive), then the condition for the existence of a periodic con-
dition is ρ > 8. According to [17,13] this value of ρ is not realistic. In fact, it is
not unusual that extremely high values of ρ (up to several hundreds, see [18]) are
necessary to achieve limit cycles in the system. Another possible choice is a nonlin-
earity involving Heaviside function (unit step). The resulting system of equations
has been studied by simulation in [18].

In [22], model (1) has been extended to account for the delay in the transport of
LH from hypophysis to testes. Besides, a periodic excitation describing circadian
rhythm has been introduced.
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The models by Smith have been further studied and followed up on by other re-
searchers [1,17,6,5].

The Smith models and their modifications are illustrative and give an idea about the
general tendencies of the considered endocrine system. Unfortunately, they poorly
correspond to the experimentally observed behaviors that are far from being peri-
odic and also include irregular components.

Existing stochastic models demonstrate, as a rule, better agreement with clinical
data compared to the models with regular dynamics. The most complete stochastic
model of the GnRH–LH–Te axis, taking into account quite subtle biological con-
siderations, is suggested in [26,14]. The model has been developed on the basis
of LH and Te assays taken from a large number of patients with sampling time of
10 min. The concentrations of GnRH, LH and Te are described by the system of
stochastic differential equations. Modifications of the model that take into account
circadian rhythm and external disturbances can also be found in [26,14]. Clearly,
the stochastic model [26,14] is quite complex and involves a significant number of
adjustable parameters. This makes it possible to coerce the model into many dif-
ferent kinds of dynamical behavior but, at the same time, makes it the best of the
currently available ones at explaining experimental data.

A quite simple stochastic model based on handling random events was suggested
in [13].

3 Pulse modulation model of testosterone regulation

As follows from the preceding sections, there is no single broadly accepted math-
ematical model of testosterone regulation in the male. Furthermore, the biological
mechanism of the involved feedbacks is not at all clear, even qualitatively. The pul-
satile secretion of GnRH that generally stems from the pulse dynamics of neurons
[10] is studied in [26,14,18,11] and [3]. When the concentration of serum Te rises,
the pulses of GnRH become sparser and their amplitude (or area) diminishes [24].

To capture the above described pulsatile feedback mechanism, the GnRH producing
cells of hypothalamus can be modeled as a pulse element implementing pulse-
amplitude and pulse-frequency modulation [9]. Then Te is the modulating signal
and GnRH is the modulated pulse signal. The pulsatile LH secretion can be seen
as the response of the continuous part of the system on the pulse signaling of the
hypothalamus.
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3.1 Model formulation

Consider now model (2), where f(T ) is no longer a nonlinear function, but rather an
operator describing pulse-amplitude-frequency modulation. There are not so many
kinds of pulse-amplitude modulation, they are mostly related to the choice of the
pulse form, but there is a rich variety of pulse-frequency modulation schemes and
some of them are described in [9]. Unfortunately, no currently available biological
evidence can substantiate the choice of one of the latter. At the same time, given the
low pulse rate in the considered system, the choice of a certain modulation scheme
can have a major impact on the closed-loop dynamics.

Let us denote x1 = R(t), x2 = L(t), x3 = T (t). Consider a system

ẋ1 = −b1x1 + ξ(t),

ẋ2 = −b2x2 + g1x1,

ẋ3 = −b3x3 + g2x2,

(3)

where b1, b2, b3, g1, g2 are positive parameters,

ξ(t) =
∞∑

n=0

λnδ(t− tn). (4)

Here δ(t) is the Dirac delta-function. Suppose that the GnRH pulse firing times tn
are given by

tn+1 = tn + τn, τn = Φ(x3(tn)), (5)

where Φ(·) is a frequency modulation characteristic, and

λn = F (x3(tn)), (6)

where F (T ) is an amplitude modulation characteristic. Without loss of generality,
assume t0 = 0. Unlike modulators used in technical applications, Φ(·) is non-
decreasing and F (·) is non-increasing. The functions Φ and F are positive and
have the constant bounds due to physiological limitations

0 < Φ1 6 Φ(·) 6 Φ2, 0 < F1 6 F (·) 6 F2.

Thus (5), (6) denote a combined (pulse frequency and pulse amplitude) modulation
of Type 1, [9].

The first equation in (3) can be equivalently rewritten as a differential equation

ẋ1 = −b1x1, tn < t < tn+1,

with jumps
x1(tn + 0) = x1(tn − 0) + λn.
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Thus the static nonlinear functions Φ(·) and F (·), together with the decay rate b1,
completely define the mechanism of the pulsatile feedback. Notice here that Dirac
delta sequence (4) is an auxiliary artifact and has no effect on the boundedness of
the biologically meaningful variables in the model.

System (3) in vector-matrix form with x ∈ R3 is

dx

dt
= Ax + Bξ(t), y = Cx, (7)

where

A =




−b1 0 0

g1 −b2 0

0 g2 −b3




, B =




1

0

0




, CT =




0

0

1




.

The jump conditions are

x(tn + 0) = x(tn − 0) + λnB. (8)

Obviously, A is Hurwitz stable and CB = 0. Equation (7) does not have equilibria
because all the modulation characteristics are positive.

3.2 Boundedness of solutions

A plausible mathematical model of hormone regulation should not produce un-
bounded solutions. The result below proves that the solutions of (3)–(6) are always
bounded from below and above.

Theorem 1 All the solutions of system (3)–(6) stay within the following limits

Vi 6 lim inf
t→+∞ xi(t) 6 lim sup

t→+∞
xi(t) 6 Hi, i = 1, 2, 3,

where

V1 =
F1

eb1Φ2 − 1
, H1 =

F2

1− e−b1Φ1
, (9)

V2 =
g1V1

b2

, H2 =
g1H1

b2

, (10)

V3 =
g1g2V1

b2b3

, H3 =
g1g2H1

b2b3

. (11)

Proof: see Appendix A.
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4 Periodic solutions

Since the processes of endocrine regulation are self-sustained, only periodic solu-
tions of system (3)–(6) are treated here. Consider the translation operator along the
trajectories x(t) of (3)–(6):

Q : x(tn − 0) 7→ x(tn+1 − 0).

Obviously,
Q(x) = eAΦ(Cx)(x + F (Cx)B).

Following [27], a periodic solution is called m-cycle if there are exactly m impulses
of sequence (4) fired on its least period.

Then 1-cycle corresponds to a fixed point x0 of the operator Q(·), i.e.

Q(x0) = x0. (12)

and has the initial condition x(t0 − 0) = x0. The periodic solution corresponding
to this mode is characterized by the period τ0 and the pulse amplitude λ0. Denote
y0 = Cx0.

Assume that the numbers b1, b2, b3 are distinct. This assumption is biologically
feasible since all the involved hormones have different half-life times. Introduce
the numbers

α1 =
1

(b2 − b1)(b3 − b1)
,

α2 =
1

(b1 − b2)(b3 − b2)
,

α3 =
1

(b1 − b3)(b2 − b3)
.

Obviously α1 + α2 + α3 = 0 and two of these numbers are positive, while the third
number is negative.

Theorem 2 System (3)–(6) has one and only one 1-cycle. The cycle parameters
λ0, τ0 and y0 can be evaluated by solving the following system of transcendental
equations

y0 = λ0g1g2

3∑

i=1

αi

ebiτ0 − 1
,

λ0 = F (y0), τ0 = Φ(y0).

(13)

Proof: see Appendix B.
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Notice that Theorem 2 says nothing about stability of the solution in question. From
Theorem 1 it is known that all the solutions of model (3)–(6) are bounded but bi-
furcation is yet possible. In the sequel, stability is understood as orbital asymptotic
stability with respect to small perturbations in the initial conditions.

Consider a periodic solution xp(t) of (3)–(6) with the initial condition xp(t0− 0) =
x0. Let Ω ⊂ R3 be the trajectory corresponding to xp(t), i.e. the set of all points in
the state space that the solution goes through

Ω =
⋃

θ∈[t0−0,∞)

{xp(θ)}.

The solution xp(t) will be called stable, if there is a neighborhood D of x0 such
that for each solution x(t) originating from D at t0 − 0 the limit relationship

inf
ξ∈Ω

‖x(t)− ξ‖ → 0 as t →∞

is valid for an arbitrary vector norm ‖ · ‖. Notice that the starting time is essen-
tial here. This type of stability is usually termed as orbital stability and does not
generally imply stability in Lyapunov sense, see [20],[12].

Local stability of a 1-cycle can be checked by linearizing the mapping Q(x) in a
neighborhood of the fixed point x0.

Theorem 3 Suppose that x0 satisfies (12) and the functions F (·) and Φ(·) have
continuous derivatives F ′(·) and Φ′(·) in a neighborhood of y0 = Cx0. Then the
1-cycle with the inital condition x(t0 − 0) = x0 is stable if

A1 = eAΦ(y0)
[
I + F ′(y0)BC

]
+ Φ′(y0)Ax0C (14)

is Schur stable ( i.e. all its eigenvalues lie strictly inside the unit circle).

Proof: see Appendix C.

For a 2-cycle, the initial conditions x(t0 − 0) = x0 solve the equation

Q(Q(x0)) = x0. (15)

Consider a 2-cycle xp(t) with the pulse parameters τ0, λ0, τ1, λ1. Denote

x̂0 = Q(x0), y0 = Cx0, ŷ0 = Cx̂0.

Theorem 4 Suppose that x0 satisfies (15). Then parameters of the 2-cycle with the
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initial value x(t0 − 0) = x0 satisfy the following transcendental equations

y0 = g1g2

3∑

i=1

αi
λ0 + λ1e

biτ0

ebi(τ0+τ1) − 1
,

ŷ0 = g1g2

3∑

i=1

αi
λ1 + λ0e

biτ1

ebi(τ0+τ1) − 1
,

λ0 = F (y0), τ0 = Φ(y0),

λ1 = F (ŷ0), τ1 = Φ(ŷ0).

(16)

Proof: see Appendix D.

Theorem 5 Let F (·) and Φ(·) have continuous derivatives in some neighborhoods
of y0 and ŷ0. Consider the matrix

A2 = Â1Â2, (17)

where

Â1 = eAΦ(ŷ0)
[
I + F ′(ŷ0)BC

]
+ Φ′(ŷ0)Ax0C,

Â2 = eAΦ(y0)
[
I + F ′(y0)BC

]
+ Φ′(y0)Ax̂0C.

Then the 2-cycle with the initial value x(t0−0) = x0 is stable if A2 is Schur stable.

Proof: see Appendix E.

5 Piecewise affine modulation functions

Following [18], consider a special case when F (·) and Φ(·) are piecewise affine.
Namely, let

F (y) =





F2, 0 6 y < ∆1,

−kF y + bF , ∆1 6 y 6 ∆2,

F1, y > ∆2,

Φ(y) =





Φ1, 0 6 y < ∆1,

kΦy + bΦ, ∆1 6 y 6 ∆2,

Φ2, y > ∆2.

where
0 < F1 < F2, 0 < Φ1 < Φ2, 0 < ∆1 < ∆2.
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and kF , bF , kΦ and bΦ are selected to render continuous functions:

kF =
F2 − F1

∆2 −∆1

, bF =
∆2F2 −∆1F1

∆2 −∆1

,

kΦ =
Φ2 − Φ1

∆2 −∆1

, bΦ =
∆2Φ1 −∆1Φ2

∆2 −∆1

.

Thus, the function Φ(y) is rising from Φ1 to Φ2, while F (y) is falling from F2 to
F1. The functions saturate simultaneously and are constant on two intervals y 6 ∆1

and y > ∆2.

Consider a solution x(t) of (3)–(6). The solution x(t) will be called saturated, if all
the values

yn = Cx(tn − 0), n = 0, 1, . . . , (18)

belong to the saturation intervals of F (y) and Φ(y). The solution x(t) will be called
semi-saturated, if some of the values (18) belong to the saturation intervals, and
some do not.

Theorem 6 Any saturated m-cycle is stable.

Proof: Indeed, apply Theorems 3, 5 with F ′ = 0, Φ′ = 0. Then

A1 = eAΦ(y0), A2 = eAΦ(ŷ0)eAΦ(y0).

Since the matrix A is triangular, the eigenvalues of A1 are e−biΦ(y0) and the eigen-
values of A2 are e−biΦ(ŷ0)e−biΦ(y0). Obviously, these numbers are less than one. By
applying similar reasoning to any solution with m > 2, it is concluded that such a
solution also is stable.

The piecewise affine character of ϕ enables a systematic analysis of saturated peri-
odic solutions of model (7). Direct calculations yield the following saturation con-
ditions.

Proposition 1 A saturated 1-cycle exists iff one of the following inequalities holds:

g1g2F2

3∑

i=1

αi

ebiΦ1 − 1
6 ∆1,

g1g2F1

3∑

i=1

αi

ebiΦ2 − 1
> ∆2.

Proposition 2 A saturated 2-cycle exists iff one of the following inequalities is
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satisfied:

g1g2F2

3∑

i=1

αi
ebiΦ1 + 1

e2biΦ1 − 1
6 ∆1;

g1g2F1

3∑

i=1

αi
ebiΦ2 + 1

e2biΦ2 − 1
> ∆2;

min{y0, ŷ0} 6 ∆1, max{y0, ŷ0} > ∆2,

where

y0 = g1g2

3∑

i=1

αi
F2 + F1e

biΦ1

ebi(Φ1+Φ2) − 1
,

ŷ0 = g1g2

3∑

i=1

αi
F1 + F2e

biΦ2

ebi(Φ1+Φ2) − 1
.

6 Simulation results

The values of the model parameters in this section are not biologically motivated
but rather chosen to clearly illustrate the dynamical behaviors of the system.

Consider piecewise affine F (·) and Φ(·) with

∆1 = 1.5, ∆2 = 4, Φ1 = 60, Φ2 = 100, F1 = 3, F2 = 5.

In simulation, the following periodic solutions of system (3)–(6) have been ob-
served

• The system exhibits a stable 1-cycle.
• The system exhibits a stable 2-cycle. Besides, there is an unstable 1-cycle.

No other types of behavior are found.

As an example, consider different types of behavior in system (7) arising from
variation of the element b1 in the matrix of the linear part

A =




−b1 0 0

2 −0.15 0

0 0.5 −0.2




.

This corresponds to alternations in the clearing rate of GnRH.

(1) For b1 6 0.03 the system has a stable saturated 1-cycle (λn = 3).
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Fig. 1. Periodic solution for b1 = 0.08. 1-cycle evolves to 2-cycle.

(2) For b1 = 0.04 the system has an unstable unsaturated 1-cycle and a stable
semi-saturated 2-cycle (saturation with λn = 3).

(3) For 0.05 6 b1 6 0.08, the system has an unstable unsaturated 1-cycle and a
stable saturated 2-cycle.

(4) 0.09 6 b1 6 0.11 the system has an unstable unsaturated 1-cycle and a stable
semi-saturated 2-cycle (saturation with λn = 5).

(5) For b1 > 0.12 the system has a stable saturated 1-cycle (λn = 5).

The intervals (0.03, 0.04) and (0.11, 0.12) contain the values of b1, for which a
period-doubling bifurcation takes place, [27]. It worth to notice that classical bifur-
cation theory does not apply in this case since the functions F ′(·) and Φ′(·) are not
continuous.

The graphs of the transition from the unstable mode with single pulse on the period
to the stable mode with a double pulse on the period are shown in Fig. 1. Periodic
solutions in the state space are depicted in Fig. 2. Notice the prominent discontinu-
ous behavior of the model along GnRH axis, due to the pulse-modulated feedback.

7 Partial model validation on experimental data

In the previous section, it is shown that the model under consideration is capable
of sustained nonlinear oscillations with two pulses of GnRH on the least period.
In medical literature, it is an established thesis that pulses of GnRH from hypotha-
lamus cause pulses of LH secretion in pituitary in a nearly uniformly one-to-one
ratio, [23]. In a typical endocrinological study, pulses of GnRH and LH are counted
using a pulse detection algorithm run on a hormone concentration time series, as
in the classical CLUSTER algorithm by Veldhuis and Johnson, [25]. Pulses are
recognized over a sliding window as significant increases followed by significant
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Fig. 2. Trajectories in the state space. Notice the discontinuous behavior along GnRH axis
due to pulse modulated feedback.

decreases. In this way, minor pulses can be missed due to slow sampling or regarded
as nuisance. In this section, it is demonstrated that the signal form predicted by the
model studied in this paper for the case of two pulses of GnRH on the least period
is consistent with LH serum concentration data observed in a young human male at
a sampling time of 10 min. The data set was kindly provided by Prof. Veldhuis of
Mayo Clinic.

In the model, the amplitude and onset time of GnRH pulses are governed by weighted
δ-functions generated by the impulse feedback controller, see Fig. 3. The spiky
pulses of GnRH cause much more sluggish pulses of LH. Assuming that the pe-
riodic mode has two pulses of GnRH at the least period T and setting t = 0 at
the beginning of a period, gives two weighted δ-functions produced by the impulse
controller in the mathematical model on each period

Θ(t) = λ0δ(t) + λ1δ(t− t1).

This results in the following evolution in the concentration of GnRH

R(t) = λ0e
−b1t, 0 6 t < t1,

R(t) = η(b1)e
−b1t, η(x) = λ0 + λ1e

xt1 , t1 6 t < T,

and of the measured model output LH

L(t) =
λ0g1

b2 − b1

(e−b1t − e−b2t), 0 6 t < t1,

L(t) =
g1

b2 − b1

(
η(b1)e

−b1t − η(b2)e
−b2t

)
, t1 6 t < T.

Since GnRH concentrations cannot be measured in the human, the problem of eval-
uating the model parameters b1, b2, g1, λ0, λ1 from experimental data involves de-
convolution. From the equations above, it becomes clear that λ0 and g1 cannot be
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estimated separately from measurements of LH but only in a product. Therefore,
the values of λ0 and λ1 cannot neither be estimated but only their ratio.

According to [26],

0.23 min−1 6 b1 6 0.69 min−1,

0.0087 min−1 6 b2 6 0.014 min−1.
(19)

The rise time of an LH pulse, defined as the time interval between the onset of the
pulse and the time when the hormone concentration achieves its highest value, is
independent of the driving δ-function sequence and is expected to be within the
following bounds

5.75 min 6 tmax =
ln b1 − ln b2

b1 − b2

6 14.75 min.

A general recommendation for the choice of sampling time is to have 3–10 samples
on the rise time interval. With the sampling time of 10 min in the data set, the
system is definitely undersampled.

Using standard nonlinear least squares, the model parameters have been estimated
from a data set representing a LH pulse, see Fig. 4. The following parameter values
have been obtained b1 = 0.07, b2 = 0.033, t1 = 89, λ1 = 0.04. Assuming λ0 = 1.0,
the feedforward gain from GnRH to LH is estimated to g1 = 0.23. Despite the rea-
sonably good agreement between the identified model and the underlying data, the
estimated parameters are far outside of the intervals indicated in medical literature,
cf (19). The estimated elimination rate of GnRH is much slower than expected
while the estimated elimination rate of LH is twice that of the highest expected
one. On the one hand, it is plausible to assume that considerable differences ex-
ist between the biochemical reactions in vitro and in vivo. Besides, the parameter
estimates are inaccurate due to the slow blood analysis sampling.

Notably, the second impulse of GnRH is quite small and amounts to only 4% of the
first one. However, its impact on the signal form is well pronounced and repeats
itself throughout the whole data set recorded on this particular patient. Data for
other patients do not necessarily follow the same dynamic pattern. The observed
behavior is apparently not an artifact since its is not related to certain regular assay
timing or hormone concentration level.

8 Conclusions

The process of pulsatile endocrine regulation can suitably be described by means
of pulse-modulated systems. A simple dynamic model of GnRH–LH–Te axis in the
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scale are not biologically motivated.
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Fig. 4. Model with identified parameters (solid line) and two estimated pulses of GnRH
compared to experimental data (* denote measurements).

male is suggested and shown to produce stable periodic solutions with one or two
GnRH pulses on the least period. Results on existence, uniqueness and stability of
these periodic solutions are provided. The periodic mode with two GnRH pulses
on the least period has not yet been described in medical literature but is supported
by experimental data.

In clinical or experimental data, the regularity of hormone oscillations is heavily
perturbed by many impacting factors. Both the amplitudes and periods of GnRH
pulses are subject to significant variations which are often described as stochas-
tic. However, the underlying dynamics of the GnRH–LH–Te axis can probably be
explained by simple deterministic models, provided they take into account the feed-
back mechanism of hormonal regulation.
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A Proof of Theorem 1

The proof generally follows the method of [16,8]. Let tn 6 t < tn+1. Then

x1(t) = e−b1(t−tn)x1(t0 − 0) + x̃1(t),

x̃1(t) =
n∑

k=0

λke
−b1(t−tk).

The first term vanishes as t →∞, so it suffices to establish bounds on x̃1(t). Since
F1 6 λn 6 F2 and 0 6 t− tn 6 Φ2,

F1e
−b1Φ2

n∑

k=0

e−b1(tn−tk) 6 x̃1(t) 6 F2

n∑

k=0

e−b1(tn−tk).

Using the equality

tn − tk = (tn − tn−1) + (tn−1 − tn−2) + . . . + (tk+1 − tk),

it follows
(n− k)Φ1 6 tn − tk 6 (n− k)Φ2.

Now, (9) can be obtained by summing two geometric series. Bounds (10) and (11)
follow from (9) and (3), respectively.

B Proof of Theorem 2

Let us prove that a solution x0 of (12) exists and is unique. Equation (12) is equiv-
alent to

x0 = F (y0)(e−AΦ(y0) − I)−1B. (B.1)

with y0 = Cx0. Then (B.1) implies

y0 = F (y0)C(e−AΦ(y0) − I)−1B. (B.2)

The converse statement is also true: if y0 satisfies (B.2), then (B.1) gives a solu-
tion of (12). (Equation (B.2) is sometimes called “equation of periods” [19,9].) By
assumption, the function F (y) is positive and non-increasing. Consider a scalar
function

U(y) = C(e−AΦ(y) − I)−1B.

To prove the theorem it suffices to show that U(y) is also positive and non-increasing.
Since Φ(y) is positive and non-decreasing, we only need to prove that the function

U0(y) = C(e−Ay − I)−1B
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is positive and non-increasing for y > 0. Because A is Hurwitz stable, U0(y) van-
ishes as y → ∞. Let us show that the derivative of U0(y) is non-positive. Direct
evaluation of the matrix exponential gives

eAt =




e−b1t 0 0

E21(t) e−b2t 0

E31(t) E32(t) e−b3t




,

where
E21 =

g1

b2 − b1

(e−b1t − e−b2t),

E32 =
g2

b3 − b2

(e−b2t − e−b3t),

E31 = g1g2

3∑

i=1

αie
−bit.

By streightforward computations it can be shown that

U0(y) = g1g2

3∑

i=1

αi

ebiy − 1
.

With the help of this representation (B.2) can be rewritten in the form (13). It fol-
lows that

U ′
0(y) = g1g2

3∑

i=1

(−αi)φy(bi), φy(t) =
tety

(ety − 1)2
.

Since U0 is symmetric in bi, suppose, without loss of generality, that b3 > b2 > b1.
Then α1 > 0, α3 > 0 and α2 < 0. The function U0(y) is non-increasing for y > 0
if

α1φy(b1) + α3φy(b3) > (−α2)φy(b2). (B.3)
Define a number ν = −α1/α2. Then 0 < ν < 1 and (B.3) can be written as

νφy(b1) + (1− ν)φy(b3) > φy(b2),

b2 = νb1 + (1− ν)b3.
(B.4)

It can be verified that φ′′y(t) > 0 for y > 0, t > 0. So the function φy(t) is convex
and (B.4) is satisfied.

C Proof of Theorem 3

Denote Xn = x(tn − 0). Then Xn satisfies a discrete time equation

Xn+1 = Q(Xn) (C.1)
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and Xn ≡ x0 is an equilibrium of (C.1). Expanding Q(x) in a series in a neighbor-
hood of x0 one obtains

Q(x) = Q(x0) + A1(x− x0) + o(‖x− x0‖) as x → x0,

so the equilibrium x0 is locally asymptotically stable since A1 is Schur.

Denote
a = F (Cx0), ω = Φ(Cx0).

Let xp(t) be a 1-cycle starting from x0 at t = t0 − 0

x0 = eAω(x0 + aB), (C.2)
xp(t) = eAt(x0 + aB), 0 < t < ω. (C.3)

Let us take a solution x(t) starting at t = t0−0 in a sufficiently small neighborhood
of x0. A it was shown above, x(tn − 0) → x0 as n →∞. Since the functions F (·)
and Φ(·) are continuous and

tn+1 − tn = Φ(Cx(tn − 0)), λn = F (Cx(tn − 0)),

we conclude that

tn+1 − tn → ω, λn → a as n →∞.

Since
x(tn + 0) = x(tn − 0) + λnB, xp(t0 + 0) = x0 + aB,

we get
x(tn + 0) → xp(t0 + 0) as n →∞. (C.4)

For any integer n one has

x(t) = eA(t−tn)(x(tn + 0) + λnB), tn < t < tn+1.

Rewrite this formula as

x(t) = eA(t−tn)(x(tn + 0)− x0 − aB) + x̃(t), (C.5)

x̃(t) = eA(t−tn)(x0 + aB). (C.6)

As we consider tn < t < tn+1, we have 0 < t− tn < Φ2 and the value ‖eA(t−tn)‖ is
bounded uniformly in n and t. In view of (C.4), we conclude that the first additive
in (C.5) vanishes as n →∞.

Consider x̃(t). Firstly, suppose that

tn < t < min{tn+1, tn + ω}.

Then (C.3) and (C.6) yield x̃(t) = xp(t− tn) ∈ Ω.

20



Now suppose that tn+1 > tn + ω and tn + ω 6 t < tn+1. Since eA(t−tn) =
eA(t−tn−ω)eAω, one gets

x̃(t) = eA(t−tn−ω)x0, tn + ω 6 t < tn+1.

Because
0 6 t− tn − ω 6 tn+1 − tn − ω → 0 as n →∞,

x̃(t) approaches x0 ∈ Ω as n →∞. The proof is complete.

D Proof of Theorem 4

Equation (15) is equivalent to a system of transcendental equations

x0 =
[
e−A(τ0+τ1) − I

]−1
(λ0I + λ1e

−Aτ0)B,

x̂0 =
[
e−A(τ0+τ1) − I

]−1
(λ1I + λ0e

−Aτ1)B,

y0 = Cx0, λ0 = F (y0), τ0 = Φ(y0),

ŷ0 = Cx̂0, λ1 = F (ŷ0), τ1 = Φ(ŷ0).

(D.1)

By direct calculations it can be verified that

C
[
e−A(τ0+τ1) − I

]−1
e−AτB

= g1g2

3∑

i=1

αi
ebiτ

ebi(τ0+τ1) − 1

for any number τ . Excluding x0, x̂0 from (D.1) we come to equations of periods in
the form of (16).

E Proof of Theorem 5

Let Xn = x(tn − 0). Then

Xn+2 = Q(Q(Xn)).

In a small neigborhood of x0 one obtains

Q(Q(x)) = Q(Q(x0)) + A2(x− x0) + o(‖x− x0‖)

as x → x0. Then X2n → x0 as n → ∞ provided that the initial perturbations are
small enough. At the same time, X2n+1 = Q(X2n) → x̂0 = Q(x0) as n →∞.
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The periodic solution xp(t) is characterized by the parameters

a = F (Cx0), a1 = F (Cx̃0),

ω = Φ(Cx0), ω1 = Φ(Cx1).

Then

xp(t) = eAt(x0 + aB), 0 < t < ω,

xp(t) = eA(t−ω)(x̂0 + a1B), ω < t < ω1.

Applying the arguments given in the proof of Theorem 3 to the intervals t2n < t <
t2n+1 and t2n+1 < t < t2n+2, leads to the stability statement.
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