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∗ Department of Electrical Engineering, Linköping University
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Abstract: An algorithm is proposed for computing which sensor additions that make a diagnosis
requirement specification regarding fault detectability and isolability attainable for a given
linear differential-algebraic model. Restrictions on possible sensor locations can be given and if
the diagnosis specification is not attainable with any available sensor addition, the algorithm
provides the solutions that maximize specification fulfillment. Previous approaches with similar
objectives have been structural, but since this algorithm is analytical, it can handle models where
structural approaches fail. A Mathematica implementation of the algorithm can be downloaded
from http://www.fs.isy.liu.se/Software/LinSensPlaceTool/.
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1. INTRODUCTION

Systematic methods for fault diagnosis and process su-
pervision are important in many industrial applications.
To be able to perform model based supervision, some
redundancy is needed and this redundancy can be provided
by some sensors together with a model description of
the process behavior. Scientific attention has mainly been
devoted to design of a diagnosis system given a model of a
process equipped with a set of sensors. Not as much atten-
tion has been devoted to decide which sensors to include
in the process. The topic of this paper is to, based on a
differential-algebraic model, decide where to put sensors
so that a given fault isolation performance specification is
attainable.

Examples of related previous works are [1] where sensor lo-
cation for optimal detection performance is studied, or [5]
where an optimization problem related to sensor selection
is studied. Another example is [14] where a PCA-based
monitoring technique is optimized by suitable sensor se-
lection. These papers have a rather different objective and
do not address the fault isolation problem. More closely
related are the works [2,11,13] who all have a similar
objective but, contrary to this paper, utilizes a structural
description of the model instead of the analytical equa-
tions.

The basic principles of the algorithm developed in this
paper are the same as in [6] which is a structural algo-
rithm. The objective here is the same, but since we now
consider analytical models, other theoretical tools have to
be applied and basic algorithmic steps are fundamentally
different. The motive for this analytical approach is that
structural methods might give incorrect answers for some
models. The example in Section 5 is taken from [8] where
the reasons for shortcomings of structural methods are
investigated. The paper [6] includes a discussion on how
different structural approaches for sensor placement relate
to each other and this is relevant also here.

2. PROBLEM FORMULATION

Before the main objective of the paper is formally pre-
sented, a small example is discussed that illustrates the

fundamental problems in sensor placement for fault di-
agnosis. The example is modeled by a fifth order linear
system of ordinary differential equations. This example
will be used throughout the paper and consists of the
following equations:

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1 + f2

e4 : ẋ4 = −4x4 + x5 + f3

e5 : ẋ5 = −5x5 + u + f4

where xi are the state variables, u a known control signal,
and fi the faults we want to detect and isolate.

Faults are modeled by fault signals that are included in
the model equations and fi 6= 0 indicates a fault. From
now on fi will be used to denote both the fault signal
and the corresponding fault mode. Let F denote the set
of faults. A detectability performance specification is then
a set Fdet ⊆ F specifying the detectability requirement
and an isolability requirement is a set I of ordered pairs
(fi, fj) ∈ Fdet ×Fdet, meaning that fi is isolable from fj .
Note that the isolability specification is specified on the set
of detectable faults Fsetdet. Now, we define minimal sensor
set which is a minimal set of sensors to add to achieve a
specified performance specification.

Definition 1. (Minimal sensor set). Let P be the set of
possible sensor locations, i.e. the set of measurable vari-
ables, and let S be a multiset defined on P. Given a
detectability and isolability specification, S is a minimal
sensor set if the specification is fulfilled when the sensors
in S are added, but not fulfilled when any proper subset
of S is added.

Note that S is a multiset, which is similar to a set but
allows multiple instances of a member. Generalizations of
the standard set operations like union and intersection are
straightforward. Multisets are used instead of regular sets
since it may be necessary to add more than one sensor
measuring the same variable.

Returning to the example, a first question is then what
are the minimal sensor sets achieving detectability of all
faults? Here it is assumed that sensors measure a state-
variable or a function thereof. It can be shown, using



conditions for fault detectability in linear systems, see
e.g. [9], that {x1}, {x2}, {x3, x4} are minimal sensor sets
achieving detectability.

A second step is to not only require detectability, but also
isolability properties. Here isolability refers to isolability
as it is commonly used in FDI and the consistency based
diagnosis AI community, see e.g. [3]. For details on how
isolability is defined in this paper, see Sections 3 and 4.
It can be shown that there are 5 minimal sensor sets
that achieve maximal fault isolation: {x1, x3}, {x1, x4},
{x2, x3}, {x2, x4}, and {x3, x4}. Thus, adding sensors mea-
suring all the variables in any of these sets, or a superset
of the variables, achieves maximum fault isolability.

Now, it is of course the case that the new sensors may
also become faulty. If we want also faults in the new
sensors to be isolable from the other faults we may have
to add additional sensors. In this case, if maximum fault
isolability is desired also for faults in the new sensors,
there are 9 minimal sensor sets where one sensor set is
two sensors measuring x1 and one for x3, i.e. the multiset
S = {x1, x1, x3} is a minimal sensor set.

The problem formulation of the paper can now be stated
as:

Given a model, possible sensor locations, and a
detectability/isolability performance specifica-
tion, find all minimal sensor sets with respect
to the required specification.

The methods developed in sections that now follow aim
at addressing this problem for general linear differential-
algebraic models.

3. THEORETICAL BACKGROUND

This section will formally introduce the model class used in
the paper and state some basic results on fault detectabil-
ity and fault isolability for linear systems that will be used
in the development of the algorithm. The results in this
section are primarily based on the presentation in [10] but
equivalent results exist for other model descriptions.

3.1 The Model

The class of models considered is written as

H(p)x + L(p)z + F (p)f = 0 (1)

where x(t) ∈ Rnx , z(t) ∈ Rnz , f(t) ∈ Rnf . The matrices
H(p), L(p), and F (p) are polynomial matrices in the
differentiation operator p. If discrete time systems are
considered, the differentiation operator can be replaced by
the time shift operator. The vector x contains all unknown
signals, which includes internal system states and unknown
inputs. The vector z contains all known signals such as
control signals and measured signals, and the vector f
contains the fault-signals corresponding to faults that need
to be detected. Let the sets X , Z, and F represent the set
of unknown variables, known variables, and fault variables
respectively.

The theoretical development in this paper will be done
under two mild assumption on the model (1). The first
assumption states that if there exists a solution x(t)
to the model equation (1), given a fault f(t) and an
observation z(t), then x(t) is unique. In polynomial algebra
this translates into that matrix H(s) has full column rank.
This is not a restrictive assumption since any complete
physical model will, given an initial condition, have a

unique solution. The second assumption is that for all
columns Fi(s) in F (s), it holds that

Fi(s) ∈ Im [H(s) L(s)] (2)

This is a mild assumption stating that for any given fault
signal f(t) there exist signals z(t) and x(t) consistent with
the model equation (1).

Example 1. As an example, consider a model given by the
following descriptor equations:

Eẇ = Aw + Buu + Bdd + Bff (3a)

y = Cw + Duu + Ddd + Dff (3b)

where y is the vector of existing outputs, u the inputs, w
the unknown state-space variable, d unknown disturbances
to be decoupled, and f the faults. Letting E = I in
the equations above, an ordinary state-space description
is obtained. In general, E can be non-singular and even
non-square.

In a sensor placement analysis there is a need to define
possible sensor locations. Here the convention is used that
possible sensors measure single variables in the set of
unknown variables X . For cases where there are possible
sensors that measure a linear function of more than one
variable, include the equation

yp = Cpw

and let yp be in the set of unknown variables. In matrix
form, the model equations become
[

0 −(pE − A) Bd

0 C Dd

−I Cp 0

](

yp

w
d

)

+

[

0 Bu

−I Du

0 0

]

(

y
u

)

+

[

Bf

Df

0

]

f = 0

where X is the set of variables in (yp, w, d) and possible
sensor locations is a subset of these variables. ⋄

3.2 Basic Results on Detectability and Isolability

It will be convenient to define the set of observations z
that is consistent with different fault modes. For example,
the set of observations consistent with the fault-free model
is written as

O(NF ) = {z|∃x : H(p)x + L(p)z = 0} (4)

and the observations consistent with the case of fault fi

O(fi) = {z|∃x,∃fi : H(p)x + L(p)z + Fi(p)fi = 0} (5)

With this notation, a definition on detectability is imme-
diate.

Definition 2. Fault fi is detectable in (1) if

O(fi) * O(NF ) (6)

Although intuitive, a detectability condition, proved in
[10], directly related to the model matrices are given next.

Theorem 1. Fault fi is detectable in (1) if and only if

Fi(s) 6∈ Im H(s)

Detection is a special case of isolation, i.e. a fault is
detectable if the fault is isolable from the no-fault mode.
By noting this similarity the following definition is natural.

Definition 3. Fault fi is isolable from fault fj in (1) if

O(fi) * O(fj) (7)

Similarly as for detectability, a condition for fault isolabil-
ity directly related to the model matrices is given by

Theorem 2. Fault fi is isolable from fault fj in (1) if and
only if

Fi(s) 6∈ Im [H(s) Fj(s)] (8)



Proof. The result follows from Theorem 1 and observing
that

O(fj) = {z|∃x,∃fj .[H(p) Fj(p)]
(

x
fj

)

+ L(p)z = 0}

which is in the form (4) with H(p) replaced by [H(p) Fj(p)].
�

Note that both detectability and isolability is defined as
model properties and not properties of a given set of
residual generators. Later in the paper, we will use that
fault isolability on the set of detectable single faults is a
symmetric relation and this is proved next.

Corollary 1. Let fault fi and fj be two detectable faults.
Fault fi is isolable from fault fj if and only if fault fj is
isolable from fault fi.

Proof. Assume that Fi(s) ∈ Im[H(s) Fj(s)], i.e. there
exist rationals x1(s) and x2(s) such that

Fi(s) = H(s)x1(s) + Fj(s)x2(s)

Since fi is detectable, x2(s) 6≡ 0 according to Theorem 1
and

Fj(s) = Fi(s)x
−1

2
(s) − H(s)x−1

2
(s)x1(s)

The above proves that Fi(s) ∈ Im[H(s) Fj(s)] implies that
Fj(s) ∈ Im[H(s) Fi(s)] and by symmetry the converse
implication follows analogously. �

4. SENSOR PLACEMENT ANALYSIS

Theoretical results and an algorithm to solve the problem
posed in Section 2 is here formulated.

4.1 Sensor placement for detectability

A basic building block in the final algorithm will be to find
all minimal sensor sets that achieve detectability of faults
in a set of equations where the matrix H(s) in (1) has full
column rank. A key step in determining which sensors to
add is formalized in the following lemma in a constructive
and algorithmic fashion.

Lemma 1. Let X be the set of unknown variables, fi ∈ F
a non-detectable fault, and X(s) the unique solution to

H(s)X(s) = Fi(s) (9)

Then fault fi becomes detectable if and only if any
unknown in the set {xj ∈ X |Xj(s) 6= 0} is measured.

Proof. It is straightforward to show that extended sys-
tem, with the sensor equation ynew = Cx added, also
fulfills condition (2). The set of possible sensors locations
are the set of unknowns X and C is therefore a selec-
tion matrix. According to Theorem 1, fault fi becomes
detectable if and only if

[

Fi(s)
0

]

/∈ Im

[

H(s)
C

]

(10)

Hence, fi becomes detectable if and only if there is no
solution X(s) to the equations

H(s)X(s) = Fi(s)

CX(s) = 0

If X(s) the unique solution of (9), then CX(s) 6= 0 if and
only if any unknown in the set {xj ∈ X |Xj(s) 6= 0} is
measured. This proves the Lemma. �

The result above did not take into consideration that one
may have a restriction on possible sensor locations. Thus,

based on the result, let P ⊆ X be a set of possible sensor
locations and introduce the detectability set

D(fi) = {xj ∈ P|Xj(s) 6= 0 ∧ H(s)X(s) = Fi(s)} (11)

For a fault fi that is not detectable, the set D(fi) is the set
of variables such that detectability is achieved if and only if
any variable in the set is measured. If P is a proper subset
of X then D(fi) might be empty for a non-detectable fault
which means that it is not possible to achieve detectability
of the fault by adding any sensors in P. For a detectable
fault, there is no solution to H(s)X(s) = Fi(s) and
D(fi) = ∅.

Lemma 1 characterizes which sensors to add to achieve
detectability of a specific fault in case of P = X . The
following theorem summarizes which sensors to add to
achieve maximum fault detectability when a restriction P
is included.

Theorem 3. Let F be the set of faults in the model M ,
P ⊆ X the set of possible sensor locations, and MS the
equations corresponding to adding a set of sensors S. Then
maximum detectability of faults F in M ∪MS is obtained
if and only if S has a non-empty intersection with D(f)
for all f ∈ F with D(f) 6= ∅.

Proof. Faults f with D(f) = ∅ can not be made de-
tectable and maximal detectability is achieved if all faults
with non-empty detectability set are made detectable by
adding sensors S. It follows from Lemma 1 that this is
achieved if and only if S ∩ D(f) 6= ∅ for all non-empty
detectability sets D(f). �

The above result can be summarized in an algorithm that
given a model M , faults F , and a set of possible sensor
locations P , computes the family of detectability sets D.

1 function D = Detectability(M ,F ,P )
2 D = {D(fi)|fi ∈ F ∧ D(fi) 6= ∅};

Our objective was not to compute the set of detectability
sets D, but rather minimal sensor sets. A hitting set for
a family of sets is a set that has non-empty intersection
with each set in the family. Thus, a minimal hitting set
algorithm [12,4] applied to the family of sets D can be
used to find all minimal sensor sets.

Example 2. Consider again the example from Section 2.
The example model is, without any additional sensors,
an exactly determined model with 5 equations and 5
unknown signals where no fault is detectable. Utilizing the
results in Lemma 1 and Theorem 3, solving the equations
H(s)Xi(s) = Fi(s) for Xi(s) give solutions with the
following structure

[

X1(s) X2(s) X3(s) X4(s)
]

=









⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ 0 ⋆
0 0 ⋆ ⋆
0 0 0 ⋆









where a ⋆ indicates a non-zero element. Since, in this
example, P = X it holds according to equation (11) that
the detectability sets are

D(f1) = D(f2) = {x1, x2, x3}

D(f3) = {x1, x2, x4}

D(f4) = {x1, x2, x3, x4, x5}

To obtain the minimal sensor sets that achieve detectabil-
ity of all faults, a minimal hitting set algorithm is applied
to the detectability sets which result in the family of sets

{x1}, {x2}, {x3, x4}
which is consistent with the description in Section 2. ⋄



The critical step in the computation of the detectability
sets is to solve the equation H(s)X(s) = Fi(s) and check
for zero entries. If a computer algebraic tool, like Maple
or Mathematica is used, this is easy but if a numerical
tool is used to solve the equation, care has to be taken
to avoid problems due to limited precision. The step
can be directly reformulated as a null-space computation.
For descriptor and state-space models, i.e. at most first
order derivatives in the model, the computations can be
found to be numerically sound. Detailed discussions about
underlying algorithms can be found in e.g. [7].

4.2 Sensor placement for isolability of detectable faults

This section describes the basic ideas of how to find
the minimal sensor sets such that maximum single fault
isolability is obtained under the assumption that all faults
are detectable. In the next section this assumption will be
removed.

The problem of achieving maximum isolability of the set
of single faults F can be divided into |F| sub-problems,
one for each fault, as follows. For each fault fj ∈ F ,
find all measurements that make the maximum possible
number of faults isolable from fj . The solution to the
isolability problem will then be obtained by combining the
results from all sub-problems. The following example will
illustrate the main principle.

Example 3. In Section 4.1 it was shown that {x1} is
a minimal sensor set that achieves detectability of all
faults in the example from Section 2. Thus, by adding the
equation

e6 : y1 = x1

to the model, all faults become detectable. However,
with only this sensor, none of the faults are isolable
from each other. As stated above, the sensor placement
analysis can be divided into |F| sub-problems and now
the procedure will be illustrated for the first sub-problem;
to find sensors that achieve maximum fault isolability from
fault f1. Based on Theorem 2, this is done by achieving
detectability of the maximum number of faults when
matrix H(s) is redefined as [H(s) F1(s)]. Thus, for the
first sub-problem we have

H(s) =











s + 1 −1 0 0 −1 0
0 s + 2 −1 −1 0 0
0 0 s + 3 0 −1 −1
0 0 0 s + 4 −1 0
0 0 0 0 s + 5 0
1 0 0 0 0 0











(12)

For the remaining faults, the detectability sets are
D(f2) = ∅, D(f3) = {x3, x4}, D(f4) = {x2, x3, x4, x5}

The detectability set for f2 is empty because no addition
of sensors will make f2 isolable from f1 which is due to
that both faults influence the model in the same way.
This also implies that the second sub-problem, i.e. finding
sensors that achieve maximum fault isolability from fault
f2, gives identical detectability sets for f3 and f4. Note
that, due to the symmetry result in Corollary 1, there is
no need to compute the detectability sets for faults covered
in previously handled sub-problems.

Thus, in the third sub-problem where f3 is considered to
be an unknown signal, only the detectability set for f4 is
needed

D(f4) = {x2, x3, x4, x5}
Also due to Corollary 1, there is no need to iterate the
procedure for the last fault f4 and we are now finished.

The minimal hitting sets for the family of all non-empty
detectability sets obtained in all sub-problem are {x3} and

{x4} and since we started the example by adding a sensor
measuring x1 to make all faults detectable, two minimal
sensor sets that gives maximum isolability are {x1, x3} and
{x1, x4}.

Since, as shown in Section 4.1, measuring {x1} was not the
only possibility to achieve detectability we have to iterate
the above procedure also for {x2} and {x3, x4} to ensure
that all minimal sensor sets are found and these sets where
given in Section 2. ⋄

Now follows a formalization of the above procedure. For
this, let M(fj) denote the model that is obtained by
decoupling fault fj , i.e. column Fj is moved from matrix
F (s) to H(s) as was done in (12) in the example.
Theorem 4. Assume that all faults in F are detectable
in the model M . Let P ⊆ X be the set of possible
sensor locations and MS the equations corresponding
to adding the set of sensors S. For an arbitrary fault
fj , the maximum possible number of faults fi ∈ F \
{fj} are isolable from fj in M ∪ MS if and only if
S has a non-empty intersection with all sets in D =
Detectability(M(fj),F \ {fj},P).

Proof. Assume that D(fi) ∈ D and S ∩ D(fi) = ∅. This
means that fault fi is not isolable from fault fj . But since
D(fi) 6= ∅, S can be extended so that S ∩ D(fi) 6= ∅.
Hence, maximal fault isolability from fj implies that S
has non-empty intersection with all sets in D.

Conversely, if S has a non-empty intersection with all
elements in D, then according to Theorem 3 maximum
number of faults are detectable in M(fj)∪MS which means
that maximum number of faults are isolable from fj in
M ∪ MS . �

The above result gives the solution for one sub-problem,
i.e. how to place sensors such that faults are isolated from
a specified fault fj . How to combine the results from all
sub-problems into a solution for the complete problem
is summarized in the pseudo-code function below that
returns the set of minimal sensor sets.

1 function S = SensPlaceInDetectable(M,F ,P)
2 D = ∅;
3 for fj ∈ F
4 Fd(fj) := {fi|i > j};
5 Dj = Detectability(M(fj),Fd(fj),P);
6 D := D ∪Dj

7 end

8 S = MinimalHittingSets(D);

Remember that here it is assumed that all faults in F are
detectable and this assumption will be lifted in the next
section.

4.3 Sensor placement for both detectability and isolability

Section 4.1 described how to place sensors to achieve
detectability and Section 4.2 how to achieve isolability
in models where faults are detectable. The algorithms
in these two sections will now be combined to achieve
maximum isolability in a general model.

Below is an algorithm that, given a model M that fulfills
the assumptions in Section 3.1, the faults F , and the
possible sensor locations P, computes the set S of all
minimal sensor sets that achieve maximum isolability.

1 function S = SensorPlacement(M,F ,P)
2 D = Detectability(M,F ,P);



3 if D = ∅
4 Fd = detectable faults in M ;
5 D = SensPlaceInDetectable(M,Fd,P);
6 S = MinimalHittingSets(D);
7 else
8 S = ∅;
9 Sdet = MinimalHittingSets(D);

10 for sdet ∈ Sdet

11 Create the extended model Me = M ∪ Msdet
;

12 Fe = the detectable faults included in Me;
13 D = SensPlaceInDetectable(Me,Fe,P);
14 Sisol = MinimalHittingSets(D);
15 S := S ∪ {sdet ∪ sisol|sisol ∈ Sisol};
16 end
17 Delete non−minimal sensor sets in S;
18 end

4.4 Adding sensors with faults

Until now, we have assumed that new sensors cannot fail
but this is of course not true for many applications. How
to cope with new sensors that may become faulty will be
treated next.

Example 4. Consider the example from Section 2. If new
sensors are fault free, it has been shown in Section 4.1 that
a minimal sensor set achieving maximum fault isolability
is {x1, x3}. However, if the sensors measuring x1 and x3

have faults f5 and f6 respectively, the maximum fault
isolability is not achieved when considering both the faults
f1, . . . f4 in the original model and the faults f5 and
f6 introduced by new sensors. For example f3 is not
isolable from f5. By adding another sensor measuring x1

and thereby introducing a new sensor fault f7, maximum
fault isolability is achieved when considering all faults
f1, · · · , f7. The sensor set {x1, x1, x3} is a minimal sensor
set achieving maximum isolability when new sensors may
become faulty. ⋄

The following two theorems concerning detectability and
isolability properties of faults in new sensors will be
sufficient results for extending the algorithm to include
these faults.
Theorem 5. Let X be the set of unknown variables in the
model M and xi ∈ X measured with a sensor described by
an equation e /∈ M . Then, a fault in the new sensor will
be detectable in M ∪ {e}.

Proof. Let He(s) correspond to the H(s) matrix for M ∪
{e} and Fe the column vector corresponding to the new
sensor fault. According to Theorem 1 the fault in equation
e is detectable if and only if Fe 6∈ Im He(s), i.e. the
equation

H(s)ξ(s) = 0

ξi(s) = 1

has no solution. The result follows immediately since H(s)
has full column rank. �

A consequence of this result is that we need not consider
sensor faults related to sensors sdet in the detectability
step when we extend the algorithm to include faults in
new sensors.
Theorem 6. Let X be the set of unknown variables and F
a set of detectable faults in the model M . Furthermore,
let MS be a set of equations describing additional sensors
and FS the associated set of sensor faults. Then for any
sensor fault fi ∈ FS and for any fault fj ∈ (F ∪FS)\{fi},
it holds that fi is isolable from fj in M ∪ MS .

Proof. Let xi be a variable measured by a new sensor
described by equation e and with a fault fi. Furthermore,
let fj be an arbitrary fault in M∪MS such that fj 6= fi and
H(s) and Fj(s) matrices corresponding to the equations
M ∪MS \ {e}. Then Theorem 2 gives that a fault fi ∈ FS

in new sensor is isolable from fj ∈ F ∪ FS \ {fi} if and
only if the set of equations

H(s)ξ(s) + Fj(s)fj(s) = 0 (13)

ξi(s) = 1 (14)

has no solution. Fault fj is detectable since by assumption,
all faults in F are detectable and by Theorem 5 all faults
in FS are detectable in M ∪MS \ {e}. It then follows that
Fj(s) 6∈ Im H(s), which together with (13) yields that
ξ(s) = 0. This contradicts (14) which ends the proof. �

For the function SensorPlacement, this theorem implies
that full isolability is achieved for all sensor faults intro-
duced by the new sensors sisol in the isolability step for
free.

In conclusion, first the detectability step is performed
as before, then new faults introduced by sensors in the
detectability step are included in the model, and finally
the isolability step is performed as before. The new faults
introduced by sensors in the detectability step are included
in the creation of the extended model Me on line 10 in
SensorPlacement.

4.5 Fault isolability performance specification

We have discussed sensor placement for achieving de-
tectability and maximum isolability. Since fault isolability
performance is gained at the expense of adding more
sensors, it is important that the algorithm can handle more
precise fault isolability specifications. In Section 2 it was
stated that a detectability requirement is a set Fdet ⊆ F
and an isolability requirement is a set I of ordered pairs
(fi, fj) ∈ F ×F , meaning that fi is required to be isolable
from fj . As stated in Section 2 it is assumed that all faults
in I are also included in Fdet.

It is straightforward to modify the proposed algorithm
with a detectability and isolability specification. Two mod-
ifications have to be made, one for each specification. First,
on line 2 in function SensorPlacement, change F to Fdet.
Second, on line 4 in function SensPlaceInDetectable,
change

Fd(fj) := {fi|i > j, (fi, fj) ∈ I ∨ (fj , fi) ∈ I}; (15)

Using Fdet and I as above it is possible to give a de-
tailed specification. However, it is often more natural and
convenient to use other representations of the isolability
specification. A simpler, but less general, specification is
illustrated in the following example

Example 5. For the example given in Section 2, assume
that we want to compute sensor placements such that
faults in {f1, f2} are isolable from faults in {f3, f4} and
vice verse, but for example fault f3 need not be isolable
from f4. The family {{f1, f2}, {f3, f4}} can then be used
to represent the isolability specification.

It is straightforward to verify that this specification is
equivalent to the isolability requirement

I = {(f1, f3), (f1, f4), (f2, f3), (f2, f4)}
⋄

5. EXAMPLE

In this section, the sensor placement algorithm will be
demonstrated by applying it to the electrical circuit shown



in Figure 1. The circuit has 5 components, a voltage source
z(t), two resistors R1 and R2, an inductor L, and a capac-
itor C and they can fail independently of each other. The
input signal z(t) is assumed to be known. The branches
are enumerated k = 1, 2, . . . 5 and f1, . . . , f5 denote faults
in the corresponding components. The current through
branch k is ik and the voltage across is uk. The behavior
of the fault free system is given by

u1 = z u2 = R1i2 u3 = R2i3
u1 = u5 u5 = u2 + u3 u3 = u4

i1 = i2 + i5 i1 = i3 + i4 + i5

u4 = L
d

dt
i4 i5 = C

d

dt
u5

C
R2

1

R1L

24

53

z

Fig. 1. An electrical circuit.

Assume that all added sensors can fail. For this case
there are 7 minimal sensor sets achieving full isolability
where 4 sensor sets has cardinality 3 and 3 sensor sets
has cardinality 4. One of the minimal cardinality sensor
sets is {i1, i1, i4}, i.e. current i1 is measured twice. For the
case where new sensors can not fail, {i1, i4} is a minimal
sensor set but this does not give maximum isolability
when sensor faults are considered. When only measuring
i1 once, the fault in the sensor measuring i1 is not isolable
from the capacitor fault. Interestingly, all minimal sensor
sets include only current measurements meaning that any
voltage measurement will be superfluous.

In the second run all inputs are the same as in the first
run with the exception that only voltages can be measured
because voltage measurements can be performed without
disconnecting wires in the circuit. With this restriction full
isolability cannot be achieved. The maximum isolability
is that the voltage source fault can be isolated from all
other faults, faults in the resistors and in the inductor are
not isolable from each other, and the capacitor fault can
even not be detected, i.e. {{f1}, {f2, f3, f4}}. There are 10
minimal sensor sets achieving this isolability and {u2, u3}
and {u2, u4} are the ones with minimal cardinality.

In the third and final run, we input the isolability specifi-
cation {{f1}, {f2, f3, f4}, {f5}}, assumes that all voltages
and currents can be measured, and sensors do not fail. This
time there are 13 minimal sensor sets, all with cardinality
2. In this case the isolability achieved by different minimal
sensor sets are not the same. For example, the set {i1, i4},
returned also in the first run, achieves full isolability, but
for instance the minimal sensor set {i2, i5} achieves exactly
the specified isolability. Hence, some minimal sensor sets
might achieve better isolability than specified but the
retraction of any sensor in any minimal sensor set will
take the isolability performance below the specified.

This example has been used in [8] to illustrate problems
with structural approaches for determining the index of a
DAE. Using the structural approach for sensor placement
in [6], a non-trivial reformulation of the model equations
are needed to obtain a characterization of all sensor sets.

6. CONCLUSIONS

An algorithm has been developed that computes a charac-
terization of all sensor additions that makes a fault isola-
bility specification attainable for a given linear differential-
algebraic model. It may be the case that the fault isola-
tion specification is not attainable, for example due to a
restriction on possible sensor locations. In such a case, the
algorithm then provides solutions that are as close to the
specification with the available sensors. The new sensors
added to make fault isolation possible may also become
faulty. These additional sensor faults need to be considered
in the analysis and it has been shown that it might be
necessary to add more than one sensor measuring the same
variable. Since the approach is analytical, the method can
handle models where structural approaches fail.
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