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Abstract

A smooth patchy control Lyapunov function for a nonlinear system consists of an ordered family of smooth local control
Lyapunov functions, whose open domains form a locally finite cover of the state space of the system, and which satisfy
certain further increase or decrease conditions. We prove that such a control Lyapunov function exists for any asymptotically
controllable nonlinear system. We also show a construction, based on such a control Lyapunov function, of a stabilizing hybrid
feedback that is robust to measurement noise.
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1 Introduction

When a nonlinear control system has a compact set
that is robustly asymptotically stabilizable by locally
bounded state feedback, the control system admits a
smooth “control Lyapunov function” (CLF). See Clarke
et al. (1998) or Ledyaev and Sontag (1999). Given a con-
tinuously differentiable CLF for a nonlinear control sys-
tem that is affine in its controls, formulas exist for con-
tinuous (and thus robust) feedback stabilizers. See, e.g.,
Sontag (1989). Similar results are available for systems
with restricted controls Lin and Sontag (1991), Lin and
Sontag (1995). The first results on stabilization using a
CLF, which involve relaxed controls for nonaffine sys-
tems, can be found in Artstein (1983).

While every asymptotically controllable nonlinear con-
trol system admits a locally Lipschitz, semiconcave CLF
(Sontag (1983), Rifford (2002)), not every such system
admits a continuously differentiable CLF, even when the
system is affine in the control variable. Systems that do
not admit a continuously differentiable CLF include sys-
tems that fail Brockett’s condition, see Ryan (1994).

In the absence of a continuously differentiable CLF, dis-

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author R. Goebel.

Email addresses: rgoebel1@luc.edu (Rafal Goebel),
christophe.prieur@laas.fr (Christophe Prieur),
teel@ece.ucsb.edu (Andrew R. Teel).

continuous feedback stabilizers have been developed. For
example, see Clarke et al. (1997) and Ancona and Bres-
san (1999). Typically, these feedbacks produce asymp-
totic stability with some robustness to additive distur-
bances but no robustness to measurement noise. To guar-
antee the latter robustness, the feedback of Clarke et al.
(1997) can be implemented using sample and hold, and
then the robustness margins decrease to zero as the sam-
pling period decreases to zero; see Sontag (1999), Clarke
et al. (2000). As shown in Ancona and Bressan (2003),
the patchy feedbacks of Ancona and Bressan (1999) have
some robustness, for the purposes of semiglobal practi-
cal stabilization, to measurement noise with small total
variation, but not to just small, locally bounded noise.

Sample and hold implementation of state feedback is a
special type of hybrid feedback: at certain time instants,
components of the state (a timer and the control value)
change discontinuously (jump). In Prieur (2003), Prieur
(2005), and Prieur et al. (2007) a different line of “hy-
bridization” was followed, with the goal of robustness
to measurement noise and additive disturbances. The
patchy feedbacks of Ancona and Bressan (1999) were
implemented there using hysteresis, an alternative kind
of hybrid feedback control, the power of which has been
already recognized for example in Hespanha and Morse
(1999). The closed-loop system resulting from the feed-
back of Prieur et al. (2007) essentially fits the form of the
general class of hybrid systems studied in Goebel and
Teel (2006). For the latter, general converse Lyapunov
results were obtained by Cai et al. (2007), Cai et al.
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(2008). These converse results suggest that the closed-
loop system in Prieur et al. (2007) admits a smooth
“patchy” Lyapunov function. This is the point of depar-
ture for the present paper which has a fourfold purpose:

(1) to introduce the notion of a smooth patchy con-
trol Lyapunov function (“smooth patchy CLF”,
“smooth PCLF”, or just “PCLF” for short);

(2) to show that every asymptotically controllable non-
linear control system admits a smooth PCLF;

(3) to show how, given a smooth PCLF, a stabilizing
hybrid feedback can be constructed (that is patch-
wise continuous if the nonlinear system meets some
mild assumptions on the admissible controls);

(4) to highlight that the Artstein’s circles and the
Brockett’s integrator examples admit a smooth
patchy CLF with a finite number of patches, while
they do not admit a smooth CLF.

We achieve (2) with the help of a stabilizing patchy feed-
back, a kind of discontinuous (and not robust to mea-
surement noise) state feedback, guaranteed to exist for
asymptotically controllable nonlinear control systems
thanks to results of Ancona and Bressan (1999). We add
that our hybrid feedback mentioned in (3) is robust to
measurement error, by the results in Prieur et al. (2007).

2 Key idea – an example

The main idea behind a patchy control Lyapunov func-
tion is to cover the state space of a nonlinear system by
a family of “local” control Lyapunov functions.

Example 2.1 (Artstein’s circles) Consider the nonlin-
ear control system on R2, known as Artstein’s cicles:

ẋ1 = (x2
1 − x2

2)u, ẋ2 = 2x1x2u. (1)

(See Artstein (1983).) Depending on the initial point and
the chosen control, solutions to (1) move along circles
centered on the x2-axis and tangent to the x1-axis, or
along the x1-axis, or stay at the origin. For initial points
on the circles just mentioned that are above the x1-axis,
choosing u > 0 results in counterclockwise motion, u < 0
results in clockwise motion. (The motion below the x1-
axis is symmetric with respect to that axis.)

For (1), the origin cannot be stabilized by continuous
feedback (see Artstein (1983)) nor robustly stabilized
by locally bounded feedback (see Ledyaev and Sontag
(1999)). In Example 4.7 we will show that it can be ro-
bustly stabilized via hybrid feedback (and will explic-
itly show such a feedback). Note that there is no smooth
control Lyapunov function for (1). This is easy to see by
noting that any smooth function, positive away from the
origin and 0 there, has a maximum relative to each circle
centered on the x2-axis and tangent to the x1-axis.

However, R2 \ {0} can be covered by two open sets and
on each of them, there exists a smooth (local) control
Lyapunov function. This captures the key idea of the
concept of a smooth PCLF. To see a particular example,
consider the open set (written in polar coordinates):

O1 = {x = (r, θ) : r > 0, −3π/4 < θ < 3π/4}

and let V1 : O1 → (0,∞) be such that V1(x) is the
distance from x to 0, measured along the part of cir-
cle centered on the x2-axis and tangent to the x1-axis
that is contained in O1 (for points on the x1-axis, this
reduces to V1(x) = |x1|). Such a function is a (smooth)
control Lyapunov function on O1, this can be seen by
choosing u = −1. Let O2 = −O1, i.e., x ∈ O2 if and
only if −x ∈ O1, and V2 : O2 → (0,∞) be given by
V2(x) = V1(−x)/3. This V2 is a (smooth) control Lya-
punov function on O2, as verified by u = 1. Finally, for
x ∈ O1 ∩ O2, we have V2(x) < V1(x).

In the example above, it was possible to cover R2 \ {0}
with finitely many, in fact two, open sets (patches) and
furthermore, to pick the local Lyapunov functions so
that the resulting PCLF is strict: V2(x) < V1(x) for all
x ∈ O1 ∩ O2. We make the following observations:

• For a general asymptotically controllable nonlinear
control system, the existence of a smooth PCLF can
be shown only if an infinite number of patches is al-
lowed. (See Section 5.1, in particular Theorem 5.2.)

• For some asymptotically controllable nonlinear con-
trol systems, finding a PCLF with a finite number of
patches may be far easier that finding such a PCLF
that is also strict. This is the case, for example, for
the Brockett integrator, see Section 6.

• Strictness is not necessary in order to construct a ro-
bustly stabilizing hybrid feedback from a PCLF with
a finite number of patches. (See Section 4.2 and, in
particular, Theorem 4.4.) In the more technical case
of a PCLF with infinitely many patches, strictness or
some other condition on the allignment of patches and
the corresponding local Lyapunov functions appears
necessary to obtain a stabilizing hybrid feedback.

While Example 2.1 captures the main idea, several de-
tails will need to be included in the formal definition of
a PCLF. First, we introduce some background material.

3 Preliminaries

Throughout the paper, Õ ⊂ Rn is an open set andA ⊂ Õ
is compact. We will be interested in hybrid feedback
stabilization for the nonlinear system

ẋ(t) = f(x(t), u(t)), u(t) ∈ U, for all t ≥ 0, (2)

where U ⊂ Rk is a set and f : Õ ×U → Rn is a (nonlin-
ear in general) continuous mapping. The state space for
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the continuous variable of the hybrid feedback will not

necessarily cover Õ, but will be an open set O such that

O ⊂ O ⊂ Õ, where O = Õ \ A.

Definition 3.1 A hybrid feedback consists of

• a totally ordered countable set Q
• for each q ∈ Q,

· sets Cq ⊂ O and Dq ⊂ O,
· a function kq : Cq → U ,
· a set-valued mapping Gq : Dq ⇒ Q. 1

In closed loop with the nonlinear system (2), a hybrid
feedback as in Definition 3.1 leads to a hybrid system

ẋ = f(x, kq(x)) x ∈ Cq,

q+ ∈ Gq(x) x ∈ Dq.
(3)

During flow, x evolves according to the differential equa-
tion ẋ = f(x, kq(x)), q remains constant, and the con-
straint x ∈ Cq is satisfied. During jumps, q evolves ac-
cording to the difference inclusion q+ ∈ Gq(x), x remains
constant, and before a jump, the constraint x ∈ Dq is
satisfied. The state space for (3) will then be O × Q.

We now formally define solutions to (3), following Goebel
and Teel (2006). A subset S ⊂ R≥0 ×N is a hybrid time
domain if S is a union of a finite or infinite sequence of
intervals [tj , tj+1]×{j}, with the last interval, if it exists,
possibly of the form [tj , T ) with T finite or T = +∞. A
solution to the hybrid system (3) is a function x : S → O,
where S is a nonempty hybrid time domain, with x(t, j)
locally absolutely continuous in t for a fixed j and a
function q : S → Q meeting the following conditions:
x(0, 0) ∈ Cq(0,0) ∪ Dq(0,0) and

(S1) For all j ∈ N and almost all t such that (t, j) ∈ S,

ẋ(t, j) = f(x(t, j), kq(t,j)(x(t, j)), x(t, j) ∈ Cq(t,j).

(S2) For all (t, j) ∈ S such that (t, j + 1) ∈ S,

q(t, j + 1) ∈ Gq(t,j)(x(t, j)), x(t, j) ∈ Dq(t,j).

Given a solution (x, q) to (3) we refer to its domain by
dom(x, q). A solution (x, q) to (3) is maximal if it can
not be extended, that is, if there does not exist another
solution (x′, q′) such that dom(x, q) $ dom(x′, q′) and
(x, q)(t, j) = (x′, q′)(t, j) for all (t, j) ∈ dom(x, q). In
what follows, we will write supt(S) for the supremum of
all t such that (t, j) ∈ S for some j, and distA(x) for the
distance of the point x from the set A.

1 The double arrow notation is used to distinguish a set-
valued mapping from a function.

Definition 3.2 The set A is stable for the hybrid
system (3) if for any ε > 0 there exists δ > 0 such
that any solution (x, q) with distA(x(0, 0)) ≤ δ satis-
fies distA(x(t, j)) ≤ ε for all (t, j) ∈ dom(x, q). The
set A is globally attractive for (3) if for any maximal
solution (x, q) to (3) we have distA(x(t, j)) → 0 as
t → supt(dom(x, q)). The setA is globally asymptotically
stable for (3) if it is both stable and globally attractive.

This concept of asymptotic stability refers only to the
behavior of the “continuous” part of solutions. We are
allowing for solutions approaching A in finite (hybrid)
time. Below, an admissible perturbation radius is a con-

tinuous function ρ : Õ → [0,∞) such that ρ(x) = 0 if
and only if x ∈ A and x + ρ(x)B ⊂ O for all x ∈ O. 2

Definition 3.3 A hybrid feedback renders A asymptot-
ically stable, robustly with respect to measurement noise
and external disturbances, if there exists an admissible
perturbation radius ρ such that the set A is asymptoti-
cally stable, with the basin of attraction equal to O, for
the system Hρ:

ẋ ∈ F ρ
q (x) x ∈ Cρ

q ,

q+ ∈ Gρ
q(x) x ∈ Dρ

q ,
(4)

with the data

F ρ
q (x) := con f(x, kq ((x + ρ(x)B) ∩ Cq) + ρ(x)B,

Gρ
q(x) := Gq((x + ρ(x)B) ∩ Dq),

Cρ
q := {x ∈ O | (x + ρ(x)B) ∩ Cq 6= ∅},

Dρ
q := {x ∈ O | (x + ρ(x)B) ∩ Dq 6= ∅}.

(5)

In (5), con f (x, kq ((x + ρ(x)B) ∩ Cq)) is the closed con-
vex hull of the set

⋃
ξ∈(x+ρ(x)B)∩Cq

f (x, kq (ξ)). Solutions

to (4) are understood similarly to those to (3).

4 Finite number of patches and a sufficient con-
dition for robust feedback stabilization

4.1 PCLF with finite number of patches

Below, given a set Ω, its boundary is denoted by ∂Ω.

By a proper indicator of A with respect to Õ we will

understand a function ω : Õ → R≥0 that is continuous,
positive definite with respect to A, and that approaches

∞ if its argument approaches the boundary of Õ or the
norm of its argument approaches ∞.

2 Here and in what follows, B is the closed unit ball in R
n.

3



Definition 4.1 A smooth patchy control Lyapunov
function, PCLF, (with a finite number of patches) for (2)
with the attractor A consists of a set Q and a collection
of functions Vq and sets Ωq, Ω′

q for each q ∈ Q, such that

(i) Q ⊂ Z is a finite set;
(ii) {Ωq}q∈Q and {Ω′

q}q∈Q are families of nonempty open

subsets of Õ such that

O ⊂ O ⊂ Õ, where O :=
⋃

q∈Q

Ωq =
⋃

q∈Q

Ω′
q,

and for all q ∈ Q, the unit (outward) normal vector to

∂Ωq is continuous on
(
∂Ωq \

⋃
r>q Ω′

r

)
∩ O, and

Ω′
q ∩ O ⊂ Ωq;

(iii) for each q, Vq is a smooth function defined on a (relative

to O) neighborhood of Ωq \
⋃

r>q Ω′
r;

and the following conditions are met: there exist a contin-
uous function α : (0,∞) → (0,∞), class-K∞ functions
γ, γ, and a function ω which is a proper indicator of A
with respect to Õ such that:

(iv) for all q ∈ Q, all x ∈ Ωq \
⋃

r>q Ω′
r,

γ(ω(x)) ≤ Vq(x) ≤ γ(ω(x)) ;

(v) for all q ∈ Q, all x ∈ Ωq \
⋃

r>q Ω′
r, there exists uq,x ∈

U such that

∇Vq(x) · f(x, uq,x) ≤ −α(ω(x));

(vi) for all q ∈ Q, all x ∈
(
∂Ωq \

⋃
r>q Ω′

r

)
∩ O, the uq,x

of (v) can be chosen such that

nq(x) · f(x, uq,x) ≤ −α(ω(x)),

where nq(x) is the unit (outward) normal vector to Ωq

at x.

Next we add an extra condition to the definition of a
smooth PCLF, arriving at “strict” and “almost strict”
PCLFs. It is important to note that neither strict nor
almost strict PCLFs will be needed or used to construct
stabilizing feedbacks in the case of a finite number of
patches. Their definitions are provided here for the pur-
poses of comparison and because these concept will play
a role later in the case of necessity of PCLFs and in the
case of an infinite number of patches.

Definition 4.2 A smooth patchy control Lyapunov
function is almost strict if the following condition holds:

(vii) for all q, r ∈ Q, r > q, all x ∈ Ωq∩∂Ω′
r, Vr(x) ≤ Vq(x).

If this inequality is strict, the smooth patchy control Lya-
punov function is strict.

Example 4.3 (Artstein’s circles, revisited) We now re-
turn to the system (1) and display a strict smooth PCLF
for it. Let Oq, Vq, q = 1, 2 be as in Example 2.1. Pick
any two angles β′ < β in (π/2, 3π/4) and let

Ω′
1 = {x = (r, θ) : r > 0, −β′ < θ < β′} ,

Ω1 = {x = (r, θ) : r > 0, −β < θ < β} ,

while Ω′
2 = −Ω′

1, Ω2 = −Ω1. The sets O1, Ω1 and Ω′
1

are sketched in Figure 1. These sets and functions form

1Ω 1Ω ’1O2O2Ω2Ω ’

β’

1

2

3π/4 β

x

x

Fig. 1. Sketch of the sets O1, Ω1, and Ω′

1

a smooth PCLF. The set Q = {1, 2} is ordered by 2 > 1.
The families {Ω1,Ω2}, {Ω′

1,Ω
′
2} consist of nonempty and

open sets and form a locally finite cover ofO = Ω1∪Ω2 =
Ω′

1 ∪ Ω′
2 = R2 \ {0}. We have

(
∂Ω1 \

⋃
r>1 Ω′

r

)
∩ O =

(∂Ω1 \ Ω′
2) ∩ O = ∅. Furthermore,

(
∂Ω2 \

⋃
r>2 Ω′

r

)
∩

O = ∂Ω2∩O consists of two half lines that do not contain
their endpoints, and the (outward) unit normal vector
to ∂Ω2 is constant (so continuous) relative to each of
these lines. Obviously, Ω′

q ∩ O ⊂ Ωq, q = 1, 2. Each Vq

is smooth on Oq, a neighborhood of Ωq relative to O.
Verifying (iv) of Definition 4.1 is possible via ω(x) = ‖x‖
(Euclidean norm) and noting that, for q = 1 and x ∈ O1

and for q = 2 and x ∈ O2

‖x‖ ≤ Vq(x) ≤ 3π

2
√

2
‖x‖.

Setting u1,x = −1, u2,x = 1, one gets

∇V1(x) · f(x, u1,x) = −‖f(x, u1,x)‖ = −‖x‖2

and similarly, ∇V2(x) · f(x, u2,x) = −‖x‖2/3. This ver-
ifies (v). Regarding (vi), there is nothing to check for
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q = 1. For q = 2, we have for each x ∈ ∂Ω2 ∩ O that
nq(x) and f(x, 1) have opposite directions, and

n2(x) · f(x, 1) = −‖f(x, 1)‖ = −‖x‖2.

Finally, for x ∈ O1 ∩ O2, and so for x ∈ Ω1 ∩ ∂Ω′
2,

V2(x) < V1(x). This verifies (vii). Note that if V2 was
defined in Example 2.1 by V2(x) = V1(−x), the resulting
object would be a smooth PCLF, but not a strict one.

4.2 Robust stabilizing feedback

With a patchy control Lyapunov function, and under a
convexity assumption on the nonlinear system, we can
design a hybrid feedback on O for (2) that renders A
robustly globally asymptotically stable.

Theorem 4.4 Suppose that

• there exists a smooth patchy control Lyapunov function
(with finitely many patches) for (2) with attractor A;

• for any v ∈ Rn, c ∈ R, the set {u ∈ U | v · f(x, u) ≤ c}
is convex.

Then, there exists a hybrid feedback on O for (2) such
that, for each q ∈ Q, the mapping kq is continuous and
Cq ∪ Dq = O, which renders A globally asymptotically
stable, robustly with respect to measurement noise and
external disturbances.

The convexity assumption is satisfied if the system (2) is
affine with respect to the control variable and the set U is
convex. It is included to ensure that, for each q ∈ Q, the
local feedback kq, constructed from the local Lyapunov
function Vq on a particular subset of Ωq, is continuous.
This continuity, and the property that Cq ∪ Dq = O
implies in particular that for each initial point in O×Q
there exists a nontrivial solution to (3) and furthermore,
that each maximal solution is either complete or leaves
any compact subset of O×Q in finite (hybrid) time; see
Proposition 2.4 in Goebel and Teel (2006).

For systems failing the convexity assumption, the work
in Ledyaev and Sontag (1999) has established the exis-
tence of a robust, stabilizing, but possibly discontinuous
feedback when a smooth, classical CLF exists. See also
Artstein (1983). For PCLF-based feedback synthesis in
the absence of the convexity assumption, the ideas in
Ledyaev and Sontag (1999) can be applied to each patch
of a PCLF to construct a hybrid feedback with possibly
discontinuous kq’s. We do not pursue this here.

The proof of Theorem 4.4 has three steps. First, for each
q ∈ Q, we construct a “local” continuous feedback on
each patch. (The proof of Lemma 4.5 is in the appendix.)

Lemma 4.5 Under the assumptions of Theorem 4.4, for
each q ∈ Q there exists a continuous mapping

kq : Ωq \
⋃

r>q

Ω′
r ∩ O → U

such that

(a) for all x ∈ Ωq \
⋃

r>q Ω′
r ∩ O,

∇Vq(x) · f(x, kq(x)) ≤ −α(ω(x))/2;

(b) for all x ∈
(
∂Ωq \

⋃
r>q Ω′

r

)
∩ O,

nq(x) · f(x, kq(x)) ≤ −α(ω(x))/2.

Second, we explicitly define the remaining data that is
needed to turn the collection of (continuous time) feed-
backs kq into a hybrid feedback:

Cq = Ωq \
⋃

r>q Ω′
r ∩ O

Dq =
⋃

r>q

(
Ω′

r ∩ O
)
∪ (O \ Ωq)

Gq(x) =





{r ∈ Q |x ∈ Ω′
r ∩ O, r > q}

if x ∈
(
⋃

r>q

Ω′
r

)
∩ Ωq

{r ∈ Q |x ∈ Ω′
r ∩ O}

if x ∈ O \ Ωq

(6)

The “switching logic” for the hybrid system de-
scribed by such data and by the differential equations
ẋ = f(x, kq(x)) is essentially as follows. When a solu-
tion (x, q) is flowing with x ∈ Cq, a jump from q to r can

only occur if r > q and x ∈ Ω′
r ∩ O. Such jumps leads

to Vq(x) nonincreasing in the case of an almost strict
PCLF, and decreasing in the strict case. A different
kind of a jump, to any r with x ∈ Ω′

r ∩ O, may also be
needed before any flow occurs, in the case of initializa-
tion of the stabilization process with a “wrong” value of
q, i.e., q such that x ∈ O \ Ωq. See also Example 4.7.

In the third step, we use the collection of local control
Lyapunov functions Vq to show that the constructed
feedback is stabilizing. The key property behind stabil-
ity is that the constructed feedback guarantees each so-
lution experiences a finite number of jumps. This sim-
plifies the analysis considerably compared to the case
where an infinite number of jumps may occur. (Tools
for stability analysis in this latter situation exist in the
literature, even for the case where the variable q takes
values in a compact, not necessarily finite, set. For ex-
ample, see the work on “multiple Lyapunov functions”
Branicky (1998); DeCarlo et al. (2000).) For the case of
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a PCLF with an infinite number of patches, which is dis-
cussed later, solutions can experience an infinite number
of jumps, although there is monotonicity in the evolution
of the variable q. As Remark 4.6 will show, if the PCLF
is strict, the functions Vq are used much like what is done
with a standard control Lyapunov function. Robustness
of stability is finally deduced from a generic robustness
result of Prieur et al. (2007). The details are as follows.

Proof. (of Theorem 4.4) Given a PCLF, consider the
hybrid feedback on O × Q given by (6), and let uq be
any functions as in Lemma 4.5.

First, we note that the hybrid system (3) with the feed-
back (6) has favorable semicontinuity and closedness
properties: for each q ∈ Q, sets Cq, Dq are relatively
closed in O, the function x 7→ f(x, uq(x)) is continuous
(and hence it is outer semicontinuous, locally bounded,
and has convex and nonempty values) on Cq, while the
set-valued mapping Gq is outer semicontinuous, locally
bounded, and has nonempty values that are subsets of
Q; see (Prieur et al., 2007, Lemma 3.5). These properties
guarantee that various results obtained in Goebel and
Teel (2006) and Prieur et al. (2007) regarding sequential
compactness of solutions to (3) and their “upper semi-
continuous” dependence on initial conditions are appli-
cable. We will rely on some of those below.

For a solution (x, q) to (3), let j0 := max{j | (0, j) ∈
dom(x, q)}. (Such j0 is finite by the definition of Gq

and local finiteness of the covering {Ω′
q}q∈Q.) Then

for all (t, j) ∈ dom(x, q) with j ≥ j0, the function
Vq(t,j)(x(t, j)) is well defined, as then x(t, j) ∈ Ωq(t,j).
Moreover, if (t, j), (t′, j) ∈ dom(x, q), j ≥ j0, t < t′,
then q(t, j) = q(t′, j), x(t, j), x(t′, j) ∈ Cq(t,j) and finally

Vq(t′,j)(x(t′, j)) < Vq(t,j)(x(t, j)) (7)

by (a) of Lemma 4.5. If (t, j + 1) ∈ dom(x, q) for
some (t, j) ∈ dom(x, q) such that j ≥ j0, then
x(t, j) ∈ Cq(t,j) ∩Dq(t,j) (since “before (t, j), x(·, j) was
flowing”) and so, by (b) of Lemma 4.5,

x(t, j) ∈
(
⋃

r>q

∂Ω′
r

)
∩ Ωq ⊂

(
⋃

r>q

Ω′
r

)
∩ Ωq.

Thus q(t, j + 1) > q(t, j), i.e., “q is increasing during
jumps”, by the definition of Gq. By (iv) of Definition 4.1,

Vq(t,j+1)(x(t, j)) ≤ (γ ◦ γ−1)(Vq(t,j)(x(t, j))) (8)

Thus, for all (t, j) ∈ dom(x, q), j ≥ j0, we have

Vq(t,j)(x(t, j)) ≤ (γ ◦ γ−1)j−j0(Vq(0,j0)(x(0, j0))) . (9)

Let N be the number of elements in Q. Then Vq(t,j)(x(t, j))

is bounded above by (γ ◦ γ−1)N (Vq(0,j0)(x(0, j0))) for

any solution (x, q) and any (t, j) ∈ dom(x, q). Hence

ω(x(t, j)) ≤ γ−1(γ ◦ γ−1)Nγ(ω(x(0, 0)). (10)

Thus A is stable for (3) and ω(x(t, j)) is bounded above
for all solutions (x, q), all (t, j) ∈ dom(x, q).

Now suppose that (x, q) is a maximal solution to
(3). As such, it is either complete, or eventually
leaves any compact subset of O × Q. Either way, let
J := max{j | (t, j) ∈ dom(x, q) for some t}. If (x, q) is
complete, then supt(dom(x, q)) = ∞ (no solution can
jump infinitely many times) and then

∇Vq(t,J) · f
(
x(t, J), uq(t,J)(x(t, J))

)
≤ −α(ω(x(t, J)))

(11)
for all t such that (t, J) ∈ dom(x, q). Standard argu-
ments show that ω(x(t, J)) → 0 as t → ∞. If (x, q) is
not complete, then x(t, J) must leave any compact sub-
set of O as t → supt(dom(x, q)), which by stability is
only possible if ω(x(t, j)) → 0.

The two paragraphs above showed that for (3), the set
A is asymptotically stable with the basin of attraction
equal to O. According to (Prieur et al., 2007, Theorem
4.1), this asymptotic stability is robust, in the sense of
Definition 3.3 with the change that F ρ

q be defined by

con
⋃

ξ∈(x+ρ(x)B)∩Cq

f(ξ, kq(ξ)) + ρ(x)B.

It is straightforward, from continuity of f and kq’s (it
is enough for the kq’s to be locally bounded) and from
local finiteness of the covering of O by Cq’s, that for each
compact K ⊂ O, each ε > 0, there exists δ > 0 such
that, for each x ∈ K, each q ∈ Q,

f(x, kq ((x + δB) ∩ Cq)) ⊂
⋃

ξ∈(x+εB)∩Cq

f(ξ, kq(ξ)) + εB.

This in turn can be used to conclude that robustness as in
(Prieur et al., 2007, Theorem 4.1) implies the robustness
in the sense of Definition 3.3. This finishes the proof.

Remark 4.6 The proof of Theorem 4.4 simplifies some-
what if the PCLF is almost strict. Indeed, the arguments
can be repeated up to the estimate (8). That estimate,
by (vii) of Definition 4.2, can be replaced by

Vq(t,j+1)(x(t, j)) ≤ Vq(t,j)(x(t, j)) (12)

This shows that Vq(t,j)(x(t, j)) is nondecreasing
along dom(x, q), and consequently, Vq(t,j)(x(t, j)) ≤
Vq(0,j0)(x(0, j0)) for all (t, j) ∈ dom(x, q), j ≥ j0. Since
x(0, 0) = x(0, j0), item (iv) of Definition 4.1 yields that
γ(ω(x(t, j))) ≤ γ(ω(x(0, 0))) for all (t, j) ∈ dom(x, q).
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This shows stability of A for (3). The remaining argu-
ments can be repeated without change.

Example 4.7 (Artstein’s circles, re-revisited) For the
system (1), Example 4.3 exhibited a smooth PCLF. The-
orem 4.4 implies the existence of a robust stabilizing hy-
brid feedback for (1), and recovers the result of Prieur
(2000) from a more general context. (Note that (1) is
affine, in fact linear, in u.) An example of such a hybrid
feedback is as follows. The formula (6) leads to

C1 = {x = (r, θ) : r > 0,−δ′ ≤ θ ≤ δ′} ,

D1 = {x = (r, θ) : r > 0, δ′ ≤ θ ≤ 2π − δ′} ,

C2 = {x = (r, θ) : r > 0, δ ≤ θ ≤ 2π − δ} ,

D2 = {x = (r, θ) : r > 0,−δ ≤ θ ≤ δ} ,

G1(x) = {2} , ∀x ∈ D1 , G2(x) = {1} , ∀x ∈ D2 ,

where δ′ = π − β′, δ = π − β (so that δ < δ′, and
δ, δ′ ∈ (π/4, π/2)). We can set k1(x) = −1 for all x ∈ C1,
k2(x) = 1 for all x ∈ C2. The behavior of the resulting
closed loop hybrid system is as follows. Given an initial
condition q = 1, x ∈ C1, the continuous variable may
flow clockwise (has to flow if x 6∈ C1 ∩D1) to 0. If q = 1,
x ∈ D1 \ C1, the discrete variable switches to q = 2.
After a switch from q = 1 to q = 2, only flow of the
continuous variable is possible, counterclockwise, to 0.
Behavior from initial conditions with q = 2 is similar,
and in general, only one switch is possible. From this, one
can deduce asymptotic stability. Regarding robustness,
we only note that the presence of the discrete variable
makes chattering impossible: small measurement noise
does not affect q being either 1 or 2, and hence, it does not
lead to repeated fast switching between control values.

We add that considering β = β′, and so Ω′
1 = Ω1, Ω′

2 =
Ω2, leads to C1 = D2, C2 = D1, and the resulting hybrid
feedback does not render 0 attractive. Indeed, in such a
case, given any x0 ∈ C1 ∩ D1 = D1 ∩ D2 and any q0 ∈
{1, 2}, there exists a solution (x, q) with dom(x, q) =
{0} × N 3 such that x(0, j) = x0 for all j ∈ N while
q(0, j) = q0 for even j and q(0, j) = 3 − q0 for odd j.
Such a solution is maximal and x does not approach 0.

5 Infinite number of patches and a necessary
and sufficient condition

5.1 Necessity

We will say that a family {Ωq}q∈Q is locally finite on O
if for any compact K ⊂ O, there are finitely many q’s
such that K ∩ Ωq 6= ∅.

3 Such solutions to hybrid systems are sometimes called in-
stantaneously Zeno.

Definition 5.1 An almost strict patchy control Lya-
punov function for (2) with the attractor A consists of a
set Q and a collection of functions Vq and sets Ωq, Ω′

q for
each q ∈ Q, such that Q ⊂ Z, conditions (ii)-(vii) of Def-
initions 4.1, 4.2 hold, and the family {Ωq}q∈Q is locally
finite on O. A strict patchy control Lyapunov function
is strict if the inequality in condition (vii) is strict.

We now show that a smooth patchy Lyapunov function
exists for most asymptotically controllable to a compact
set nonlinear systems. For completeness, we first recall

that (2) is asymptotically controllable on Õ to A if:

• for each x0 ∈ Õ there exists a measurable ux0 :
[0,∞) → U such that the maximal trajectory x to
(2) with u replaced by ux0 is complete and such that
limt→∞ distA(x(t)) = 0;

• for any ε > 0 there exists δ > 0 such that for any x0 ∈
Õ with distA(x) < δ one can find ux0 as in (a) so that
the resulting trajectory x is such that distA(x(t)) < ε
for all t ≥ 0.

Theorem 5.2 Suppose f is smooth, U is compact, and

(2) is asymptotically controllable on Õ to A. Then there
exists a strict patchy control Lyapunov function for (2).

The proof will be based on the existence, for asymptot-
ically controllable systems, of a stabilizing patchy feed-
back, as shown by Ancona and Bressan (1999).

Definition 5.3 (Ancona and Bressan (1999)) A map-
ping µ : O → U is a patchy feedback for (2) on O if there
exist a set Q, and for each q ∈ Q, a set Ωq ⊂ O and a
control value uq ∈ U such that

(a) for each q ∈ Q, the pair Ωq, f(·, uq) forms a patch,
that is:

(a1) Ωq is open, Ωq ⊂ O, and the boundary of Ωq is
smooth;

(a2) f(·, uq) is smooth on some neighborhood of Ωq;
(a3) for any point x ∈ ∂Ωq

nq(x) · f(x, uq) < 0, (13)

where nq(x) is the unit (outward) normal vector to

Ωq at x;
(b) Q is a totally ordered set;
(c) the sets {Ωq}q∈Q

form a locally finite covering of O;

and µ can be written as µ(x) = uq if x ∈ Ωq \
⋃

r>q Ωr,
where > is the ordering of Q.

A patchy feedback, in closed loop with (2), leads to a dis-
continuous vector field. Solutions to it are understood in
the Caratheodory sense, and they have several desirable
properties; see Ancona and Bressan (1999). The follow-
ing result can be immediately deduced from (Ancona
and Bressan, 1999, Theorem 1) and its proof.
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Theorem 5.4 Suppose that f is smooth, U is compact,

and (2) is asymptotically controllable on Õ to A. Then
there exists a patchy feedback on O such that:

(i) Q ⊂ Z is ordered by the standard inequality;
(ii) each Ωq is bounded;

(iii) for each q, each complete solution x(·), x(0) ∈ Ωq, to

ẋ(t) = f(x(t), uq) (14)

satisfies x(t) ∈ ⋃r>q Ωr for some t ≥ 0;

(iv) for any proper indicator ω of A with respect to Õ and
δ > 0 there exist qδ, q

δ ∈ Q such that q > qδ implies
supω(Ωq) ≤ δ and qδ > q implies inf ω(Ωq) ≥ δ.

We need to comment that the patchy feedbacks of An-
cona and Bressan (1999) had the index set as a subset of
Z×N, ordered by the lexicographical ordering, and such
that for each z ∈ Z, {n ∈ N | (z, n) ∈ Q} was nonempty
and finite. Any such set can be identified with a subset
of integers, with the lexicographical order in the former
corresponding to the standard order in the latter. We
add that the last property above essentially means that
patches close to A have large indices while patches away
from A have small ones. Finally, in Ancona and Bres-
san (1999), the attractor A was the origin, and O = Rn.
The extension to the more general setting we have here
is immediate, as one just relies on a proper indicator of
A with respect to O rather than on the norm.

The four properties of the patchy feedback listed in The-
orem 5.4 are enough to show that, in an appropriate
sense,A is asymptotically stable on O for the closed-loop
system. We will not need that here, and rather, after us-
ing the patchy feedback to build a hybrid feedback, we
will show the stabilization property of the latter directly.

Lemma 5.5 Under the assumptions of Theorem 5.4, for
each q ∈ Q there exists a compact set Kq ⊂ Ωq∩

⋃
r>q Ωr

and a nonnegative function Wq that is smooth on a neigh-

borhood of Ωq and such that

∇Wq(x) · f(x, uq) < 0 for all x ∈ Ωq \ Kq, (15)

and in particular, for all x ∈ Ωq \
⋃

r>q Ωq.

The proof of this lemma is in the Appendix.

Proof.(of Theorem 5.2) Let Kq be as in Lemma 5.5.
For each q ∈ Q, one can find an open set Ω′

q such that

Ω′
q ⊂ Ωq, Kq ⊂ Ω′

q, Kp ⊂ Ω′
q if p ∈ Q is such that

Kp ⊂ Ωq, {Ω′
q}q∈Q is a covering of O (necessarily locally

finite), and finally such that

∇Wq(x) · f(x, uq) < 0 for all x ∈ Ωq \
⋃

r>q

Ω′
q. (16)

For each q ∈ Q, pick any cq > supx∈Ωq
Wq(x) so that

Wq(x) ∈ [0, cq] when x ∈ Ωq, and for each q ∈ Q let
bq = 2−q and aq = 2−q/cq. Then the functions Vq(x) :=
aqWq(x)+bq are positive and such that infx∈Ωq

Vq(x) >
supx∈Ωr

Vr(x) whenever r > q, this verifies condition
(vii) of Definition 4.2.

We now check the remaining conditions to show that
Vq’s above yield a strict PCLF as in Definition 5.1. By
(i) in Theorem 5.4, Q is totally ordered. For each q ∈ Q,
Ω′

q ⊂ Ωq by construction, while Ωq’s form a locally finite
covering of O by condition (c) in Definition 5.3. Also, for
each q ∈ Q, Vq is smooth on a neighborhood of Ωq by

Lemma 5.5. Let ω be any proper indicator of A on Õ.
For (iv) of Definition 4.1, we can consider

β(r) = inf{Vq(x) |ω(x) ≥ r, x ∈ Ωq},

β(r) = sup{Vq(x) |ω(x) ≤ r, x ∈ Ωq},
so that β(ω(x)) ≤ Vq(x) ≤ β(ω(x)) if x ∈ Ωq. By the
very definitions, both functions are nondecreasing, and
by local finiteness of {Ωq}q∈Q, positive (and finite) for
r > 0. (They need not be continuous though.) By (i) and
(iv) of Theorem 5.4, and by the choice of aq, bq’s above,
both functions tend to 0 as r → 0 and to ∞ if r → ∞.
Finally, one can pick K∞ functions γ ≤ β and γ ≥ γ;
these satisfy (iv) of Definition 4.1.

For conditions (v) and (vi) of Definition 4.1, we have

∇Vq(x) · f(x, uq) < 0 for all x ∈ Ωq \
⋃

r>q

Ω′
r (17)

by Lemma 5.5 and since aq > 0. Continuity of ∇Vq and

x 7→ f(x, uq) on Ωq, implies that there exists a constant
αq

1 > 0 such that

∇Vq(x) · f(x, uq) < −αq
1 for all x ∈ Ωq \

⋃

r>q

Ω′
r. (18)

Similarly, for each q ∈ Q we have, by (a3) of Definition
5.3, continuity of nq(·) and f(·, uq), and compactness of
∂Ωq, that there exists a constant αq

2 > 0 so that

nq(x) · f(x, uq) ≤ −αq
2 for all x ∈ ∂Ωq. (19)

Now, by local finiteness of the covering of O by Ωq’s, we
can find a continuous function α : (0,∞) → (0,∞) such
that α(ω(x)) ≤ min{αq

1, α
q
2} if x ∈ Ωq. This verifies (v)

and (vi) of Definition 4.1.

We note that Theorem 5.2 was proved directly, by taking
a stabilizing patchy feedback as a starting point, but it
did involve one use of a converse Lyapunov result of Cai
et al. (2007) (used to construct Wq, a smooth Lyapunov
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function for a differential equation where all solutions
reach a certain set in finite time, but then possibly leave
it). An alternative approach to Theorem 5.2 is to apply
the converse Lyapunov theorems in Cai et al. (2007) to
the hybrid closed-loop system developed in Prieur et al.
(2007) (again, based on a patchy feedback of Ancona and
Bressan (1999)) with a scaling, like that used in Artstein
(1983), to guarantee forward completeness.

5.2 Sufficiency

We now state the most general definition of a patchy
control Lyapunov function. It allows for infinite number
of patches and does not insist on strictness or almost
strictness, i.e., it allows for Vq(x) to increase at jumps.
Briefly, the meaning behind PCLF according to the defi-
nition below is that it is a collection of patches and func-
tions that leads to asymptotic stability of (3), subject to
picking control functions kq in the hybrid feedback (6)
to satisfy Lemma 4.5. For this to hold, some conditions
on the arrangement of patches need to be met; we give
an example of such conditions in Proposition 5.7 below.

Definition 5.6 A patchy control Lyapunov function for
(2) with the attractor A consists of a set Q and a collec-
tion of functions Vq and sets Ωq, Ω′

q for each q ∈ Q, such
that Q ⊂ Z, conditions (ii)-(vi) of Definition 4.1 hold,
and the hybrid feedback given by (6) and by any func-
tions kq satisfying the conditions of Lemma 4.5 renders
A asymptotically stable.

Note that the definition does not require the kq’s to be
constructed as in the proof of Lemma 4.5; they can be
any functions having the right properties.

Theorem 4.4 and its proof showed that a PCLF with
finitely many patches is a patchy control Lyapunov func-
tion (as in Definition 5.6) subject to a convexity assump-
tion. Below, we state that an almost strict smooth PCLF
is indeed a PCLF in the sense of the definition above.
The proof is postponed until the Appendix.

Proposition 5.7 Suppose that a set Q and a collection
of functions Vq and sets Ωq, Ω′

q for each q ∈ Q is such
that Q ⊂ Z, conditions (ii)-(vi) of Definition 4.1 hold
and, for each N ∈ N ∪ {∞},

(pa1) for each ε > 0 there exists δ > 0 such that, for
any increasing sequence {qn}0≤n≤N in Q, and for
any sequence {xn}0≤n≤N in O satisfying x0 ∈ Ωq0

,
Vq0

(x0) ≤ δ and, for all 0 ≤ n ≤ N ,

xn+1 ∈ Ωqn
∩ ∂Ω′

qn+1
, Vqn

(xn+1) ≤ Vqn
(xn) ,

we have Vqn
(xn) ≤ ε, for all 0 ≤ n ≤ N ;

(pa2) for any increasing sequence {qn}0≤n≤N in Q, and for
any sequence {xn}0≤n≤N in O satisfying x0 ∈ Ωq0

and, for all 0 ≤ n ≤ N ,

xn+1 ∈ Ωqn
∩ ∂Ω′

qn+1
, Vqn

(xn+1) ≤ Vqn
(xn) ,

there exists M > 0 such that Vqn
(xn) ≤ M , for all

0 ≤ n ≤ N .

Then this collection is a PCLF for (2).

Corollary 5.8 An almost strict smooth patchy control
Lyapunov function for (2) in the sense of Definition 5.1
is a smooth patchy control Lyapunov function for (2) in
the sense of Definition 5.6.

Proof. If Q is finite there is nothing to show. In the op-
posite case, we will show that (pa1) and (pa2) of Propo-
sition 5.7 are met. Let ε > 0, N ∈ N∪ {∞}, {qn}0≤n≤N

be an increasing sequence in Q and {xn}0≤n≤N be
a sequence in O satisfying x0 ∈ Ωq0

, Vq0
(x0) ≤ ε,

and, for all 0 ≤ n ≤ N , xn+1 ∈ Ωqn
∩ Ωqn+1

and
Vqn

(xn+1) ≤ Vqn
(xn) With Vqn+1

(xn+1) < Vqn
(xn+1),

we get Vqn
(xn) ≤ ε, for all 0 ≤ n ≤ N . Let {qn}0≤n≤N

be an increasing sequence in Q, and {xn}0≤n≤N a se-
quence in O satisfying x0 ∈ Ωq0

, and, for all 0 ≤ n ≤ N ,
xn+1 ∈ Ωqn

∩ Ωqn+1
and Vqn

(xn+1) ≤ Vqn
(xn). With

Vqn+1
(xn+1) < Vqn

(xn+1), by denoting M = Vq0
(x0),

we have Vqn
(xn) ≤ M , for all 0 ≤ n ≤ N .

6 Illustration

Throughout the paper, we used Artstein’s circles to il-
lustrate the definitions and the results. Here we consider
another classical example, the Brockett integrator:

ẋ1 = u1 , ẋ2 = u2 , ẋ3 = x1u2 − x2u1 . (20)

The necessary condition (Brockett (1983)) for the sta-
bilization, of the origin, by means of a continuous feed-
back or robust stabilization by locally bounded feedback
(Ryan (1994)) fail for this system. We will show the exis-
tence of a hybrid stabilizing feedback by applying Theo-
rem 4.4. (This partially recovers the result of Prieur and
Trélat (2005), see also Prieur and Trélat (2006), where
an optimization criterion was also considered.) To do
that, we will display a PCLF with two patches, based on
a simplified version of the hybrid controller of Hespanha
and Morse (1999) (see also Goebel et al. (2004)).

Let f(x, u) be the right-hand side of the system
(20), where x = (x1, x2, x3) and u = (u1, u2). Set

r =
√

x2
1 + x2

2, and pick ρ > 1 and 0 < ε < 1 such that√
ρρ + ε

√
ρ < 2. With O = R3 and A being the origin,

let Q = {1, 2} (so (i) of Definition 4.1 is verified); let
Ω′

1 = Ω1 = R3 and V1 : R3 → R be given by

V1(x) = (ρ + ε)
√

|x3| − x1;
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also, let

Ω′
2 =

{
x 6= 0 : r2 > ρ|x3|

}
, Ω2 =

{
x 6= 0 : r2 > |x3|

}
,

and V2 : R3 → R be given by

V2(x) =
1

2

(
x2

1 + x2
2 + x2

3

)
=

1

2

(
r2 + x2

3

)
.

The families {Ω1,Ω2}, {Ω′
1,Ω

′
2} consist of nonempty and

open sets, they cover O = R3 \ {0}, and the remain-
ing conditions of (ii) of Definition 4.1 are easy to check.
The function V1 is smooth on a (relative to R3 \ {0})
neighborhood of Ω1 \ Ω′

2, and so (iii) of Definition 4.1 is
verified. For all x ∈ Ω1 \ Ω′

2, we have

ε
√
|x3|
2

+
εr

2
√

ρ
≤ V1(x) ≤ (

√
ρ + ε)

√
|x3| + r .

This verifies (iv) of Definition 4.1. Now take u1,x = (1, 0)
for all x ∈ R3. Observe that 4 , for all x ∈ Ω1 \ Ω′

2,

∇V1(x) · f(x, u1,x) ≤
√

ρρ + ε
√

ρ

2
− 1 .

The choice of ρ and ε verifies (v) of Definition 4.1 for

q = 1. Take u2,x =
(
−x1 + 4

x2x3

r2
,−x2 − 4

x1x3

r2

)
, for

all x ∈ Ω2. Then, for all x ∈ Ω2, ∇V2(x) · f(x, u2,x) =
−r2 − 4x2

3, what verifies (v) of Definition 4.1 for q = 2.
As ∂Ω1 \Ω′

2 is empty, (vi) of Definition 4.1 is verified for
q = 1. The unit normal vector n2(x) to Ω2 \ {0} at x ∈
∂Ω2∩O is n2(x) =

1√
4r2 + 1

(−2x1,−2x2, sgn(x3)). As

|x3| = r2 and |x|2 = |x3| + |x3|2 for all x ∈ ∂Ω2,

n2(x) · f(x, u2,x) =
2r2 − 4|x3|√

4r2 + 1
≤ 1 −

√
1 + 4|x|2 .

This verifies (vi) of Definition 4.1 for q = 2.

Thus, the set Q, the open sets {Ωq}q∈Q and {Ω′
q}q∈Q,

and the family of functions {Vq}q∈Q constitutes a PCLF,
with finite number of patches, for (20). Since (20) is
affine with respect to u, the convexity assumption in
Theorem 4.4 holds. Thus, with uq : Cq → R2 given by
uq(x) = uq,x for all x ∈ Cq, the hybrid controller (6)
renders A = {0} asymptotically stable on R3 \ A.

It is also possible to scale V1 to obtain a strict PCLF.
Indeed, finding a continuously differentiable class-K∞

function γ with γ′(s) > 0 for s > 0 such that, for all

x ∈ Ω1 \ ∂Ω′
2, V1(x) ≥ γ

(
|x|2

2

)
, and replacing V1 by

4 Here and in what follows, sgn(x3) is the sign of x3 6= 0.

W1(x) = γ−1(V1(x)) leads to a strict PCLF. This highly
technical step is not necessary to guarantee the existence
of a robustly stabilizing hybrid feedback.

7 Conclusion

This work introduces and studies the concept of a
smooth patchy control Lyapunov function (PCLF). The
first main result states that, under a mild convexity
assumption, the existence of such PCLF implies the
existence of a stabilizing hybrid feedback. Moreover,
via Prieur et al. (2007), this hybrid controller is robust
with respect to measurement noise and external distur-
bances. The second main result states that a smooth
PCLF exists for any asymptotically controllable system.
This result relies on the existence, for such system, of
a stabilizing patchy feedback, as shown in Ancona and
Bressan (1999). This second result is also related to the
converse Lyapunov theorems of Cai et al. (2007, 2008).

8 Appendix

Proof.(of Lemma 4.5) Fix q ∈ Q. Let S be the set(
∂Ωq \

⋃
r>q Ω′

r

)
∩O. Note that S is relatively closed in

O, and let N : O → Rn be a continuous extension of nq

from S (so N is continuous and N(x) = nq(x) for x ∈ S).
For each x̄ ∈ S we have nq(x̄) · f(x̄, uq,x̄) ≤ −α(ω(x̄)),
and by continuity of N , f , α, and ω, there exists an open
neighborhood Ox̄ ⊂ O such that

N(x) · f(x, uq,x̄) ≤ −α(ω(x))/2 (21)

for all x ∈ Ox̄. Let OS =
⋃

x̄∈S Ox̄.

Let PS = O \ OS , note that PS is closed. By Urysohn’s
Lemma, there exists a continuous φ : O → [0, 1] such
that φ(x) = 1 if x ∈ S, φ(x) = 0 if x ∈ PS . Consider the
function Φ : O × U → R given by

Φ(x, u) = φ(x)N(x) · f(x, u) + φ(x) − 1.

Note that Φ is continuous, and for x ∈ S, Φ(x, u) =
nq(x) · f(x, u). For all x ∈ O there exists u ∈ U so that

Φ(x, u) ≤ −φ(x)α(ω(x))/2. (22)

Indeed, if x ∈ OS , and hence x ∈ Ox̄ for some x̄ ∈ S, then
u can be chosen as uq,x̄ thanks to (21) and the fact that
φ(x) ∈ [0, 1]. If x 6∈ OS , that is x ∈ PS , then φ(x) = 0
and thus Φ(x, u) = −1 while −φ(x)α(ω(x))/2 = 0, and
any choice of u ∈ U satisfies (22). Also note that by
assumption, the set of all u ∈ U for which (22) holds is
convex for all x ∈ O.

Now consider the inequality

∇Vq(x) · f(x, u) ≤ −α(ω(x))/2. (23)
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By assumption, and by continuity of ∇Vq, f , α, and ω,

for each x ∈
(
Ωq \

⋃
r>q Ω′

r

)
∩ O there exists u ∈ U

such that (23) holds. Also by assumption, the set of all
u ∈ U for which (23) holds is convex. Consider a set-

valued mapping Ψ defined on
(
Ωq \

⋃
r>q Ω′

r

)
∩O to U

with values in U given by

Ψ(x) = {u ∈ U | (22), (23) hold}. (24)

For each x ∈
(
Ωq \

⋃
r>q Ω′

r

)
∩ O, Ψ(x) is nonempty

and convex. Furthermore, Ψ is continuous (see Example
5.10 in Rockafellar and Wets (1998)), and, in particular,
closed-valued. Thus, there exists a continuous selection

uq :
(
Ωq \

⋃
r>q Ω′

r

)
∩ O → U from Ψ (that is, a con-

tinuous function with uq(x) ∈ Ψ(x)); see Theorem 5.58
in Rockafellar and Wets (1998). Such a selection can be
realized by choosing u ∈ Ψ(x) of minimal norm; see Ex-
ample 5.57 in Rockafellar and Wets (1998) or Theorem
3.11 in Freeman and Kokotović (1996). This selection
meets the requested conditions.

Proof.(of Lemma 5.5) Fix q ∈ Q. By (iii) of Theorem
5.4, any maximal solution x(·) to (14) with x(0) ∈ Ωq

is such that for some t ≥ 0, x(t) ∈ ⋃
r>q Ωr. In fact,

there exists a compact set Kq ⊂ Ωq ∩ ⋃r>q Ωr, a time

Tq > 0 such that any maximal solution x(·) to (14) with

x(0) ∈ Ωq is such that for some t ∈ [0, Tq], x(t) ∈ Kq.
Otherwise, there is an increasing sequence of compact
sets Kn

q ⊂ Kn+1
q ⊂ Ωq ∩

⋃
r>q Ωr so that

⋃∞
n=1 Kn+1 =

Ωq ∩ ⋃r>q Ωr, an increasing sequence of times Tn
q >

Tn+1
q + 1, and a sequence of maximal solutions xn(·)

to (14) with xn(0) ∈ Ωq such that xn(t) 6∈ Kn
q for all

t ∈ [0, Tn
q ]. There exists a subsequence of xn(·)’s that

converges uniformly on compact intervals to a solution,
say x(·), of (14), that is complete, x(0) ∈ Ωq, and x(t) 6∈
Ωq ∩

⋃
r>q Ωr for all t ∈ [0,∞). This contradicts (iii).

Let Oq be any neighborhood of Ωq on which f(·, uq) is
smooth with the property that any maximal solution x(·)
to (14) with x(0) ∈ Oq is such that x(t) ∈ Ωq for t > 1.

(Such Oq exists by compactness of Ωq and the inward
pointing condition (13).) In the terminology of Cai et al.
(2008), the set Kq is pre-asymptotically stable for the
“hybrid” system with state z, state space Oq, continuous
dynamics ż(t, j) = f(z(t, j), uq) if z(t, j) ∈ Oq \

⋃
r>q Ωr

and no discrete dynamics. Hence (Cai et al., 2008, Corol-
lary 3.4, Theorem 3.14) yield the existence of a smooth
Lyapunov function verifying the pre-asymptotic stabil-
ity of Kq. In particular, such Lyapunov function has the
properties requested of Wq in the lemma.

Proof.(of Proposition 5.7) Given a PCLF, consider the
hybrid feedback (6). Let uq be any functions as in Lemma

4.5. As in the proof of Theorem 4.4, one can argue that
the hybrid system (3) with the feedback given by (6)
has the desired semicontinuity and closedness properties.
Also, the arguments leading to (7) and (9) are still valid.

We now show stability. If Q is finite, and N is the num-
ber of its elements, (10) yields stability. Suppose Q is
infinite, and pick ε > 0. Let δ be as in assumption
(pa1). Let (x0, q0) in Rn × Q be such that ω(x0) ≤
γ−1(δ) and let (x, q) be a solution to (3) with the ini-
tial condition (x0, q0). From (iv) of Definition 4.1, we
have Vq(0,j0)(x(0, j0)) ≤ δ. Let j0 = max{j | (0, j) ∈
dom(x, q)}, and let {tn} be the (finite or infinite) non-
decreasing sequence of jump times after the j0-th one,
i.e., let tn be such that (tn, j0 + n) ∈ dom(x, q) as
well as (tn, j0 + n + 1) ∈ dom(x, q). The sequence {qn}
defined by q′n = q(tn, j0 + n) is increasing, while the
sequence {xn} defined by xn = x(tn, j0 + n) satisfies
x0 ∈ Ωq0

, Vq0
(x0) ≤ δ, xn+1 ∈ Ωqn

∩ ∂Ω′
qn+1

, and

Vqn
(xn+1) ≤ Vqn

(xn). This and Assumption (pa1) im-
plies that Vqn

(xn) ≤ ε for all n, and thus, with (7), we
get Vq(t,j)(x(t, j)) ≤ ε, for all (t, j) ∈ dom(x, q).

Now suppose that (x, q) is a maximal solution to (3). As
such, it is either complete, or eventually leaves any com-
pact subset of O×Q. If the solution jumps finitely many
times, i.e. J := max{j | (t, j) ∈ dom(x, q) for some t}
is finite, and is not complete, then x(t, J) must leave
any compact subset of O as t → sup{t | (t, j) ∈
dom(x, q)for some j}. Thus ω(x(t, j)) → 0. If J is finite
and the solution is complete, then (11) and standard ar-
guments show that ω(x(t, J)) → 0 as t → ∞. Finally, if
(x, q) jumps infinitely many times (which implies com-
pleteness), then by local finiteness of {Ω′

q}q∈Q, and the
fact that q(t, j) is increasing after the first jump (and so
x(t, j) does not return to a set Ω′

q after leaving it), we
must have x(t, j) eventually leaving any compact subset
of O. By assumption (pa2), Vq(tn,j0+n)(x(tn, j0 +n)) are
bounded (with the sequence of tn’s as in the previous
paragraph and by taking xn in (pa2) to be x(tn, j0 +n)).
Thus ω(x(t, j)) remains bounded over (t, j) ∈ dom(x, q)
and thus it must be the case that ω(x(t, j)) → 0.

Thus, for (3), the set A is (globally) asymptotically sta-
ble. Robustness of the said asymptotic stability follows
from (Prieur et al., 2007, Theorem 4.3), thanks to the
already mentioned closedness and semicontinuity prop-
erties of the data, the local finiteness of {Cq}q∈Q, the lo-
cal boundedness of mappings Gq in x that is uniform in
q, and finally, the fact that Cq ∪Dq = O for all q ∈ Q.
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