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Abstract

We consider a switched-capacitor DC/DC power converter with variable switching instants. The determination of optimal
switching instants giving low output ripple and strong load regulation is posed as a non-smooth dynamic optimization problem.
By introducing a set of auxiliary differential equations and applying a time-scaling transformation, we formulate an equivalent
optimization problem with semi-infinite constraints. Existing algorithms can be applied to solve this smooth semi-infinite
optimization problem. Existence of an optimal solution is also established. For illustration, the optimal switching instants for
a practical switched-capacitor DC/DC power converter are determined using this approach.
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1 Introduction

DC/DC power converters are used in mobile electronic
systems such as laptop computers and cellular phones
to generate different DC voltages from a single bat-
tery source. Over the past two decades, many modern
DC/DC power converters have been developed that can
be realized primarily using capacitors and switches (see,
for example, Chung & Mok (1999) or Chung, Chow, Hui,
& Lee (2000) and the references cited therein). Such
power converters are called switched-capacitor DC/DC
power converters. Free of bulky inductive elements, they
are ideal for small-size applications requiring low elec-
tromagnetic interference and high power density.

The capacitors in a switched-capacitor DC/DC power
converter are used to store and supply energy. The circuit
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topology and, in particular, the function of each capac-
itor changes according to the switch configuration. For
each switch configuration, some of the capacitors act as
the power supply and deliver energy to the load; the re-
mainder are charged by the input source. The converter
operates by switching between the different topologies
so that the role of each capacitor is changed regularly.
More specifically, when a topology switch occurs, those
capacitors that were previously discharging energy to
the load begin to charge up, while those that were previ-
ously charging start to release energy as output voltage.
For more detailed information, the reader can consult
Ioinovici (2001) and the references cited therein.

Ideally, any DC/DC power converter should supply
a steady voltage to the attached appliance. However,
the switching mechanism inherent in the operation of
a switched-mode power converter induces a ripple in
the output voltage. Hence, although the ripple may
be reduced by increasing the switching frequency, it
is impossible to eliminate it entirely. On the other
hand, topology switches are accompanied by an energy
loss, and so excessive switching should be avoided (see
Arntzen & Maksimović (1998)). Furthermore, the input
voltage and load resistance influence the converter out-
put through the circuit dynamics. This influence should
be minor so that uncertainties in the input and changes
to the load do not cause large variations in the output
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voltage.

A switched-capacitor DC/DC power converter can be
controlled by varying the duty cycle — that is, the time
spent in each topology — using a pulse-width modula-
tion technique. In view of the previous discussion, an
ideal control scheme would achieve the following two
objectives: (i) minimize the output voltage ripple; and
(ii) ensure output voltage regulation in the presence of
uncertainties. Many different feedback control method-
ologies for achieving one, or both, of these objectives
have been proposed in the literature. See, for example,
Leung, Tam, & Li (1993), Khayatian & Taylor (1994),
Garofalo, Marino, Scala, & Vasca (1994), or Choi, Lim,
& Choi (2001), and the references cited therein. The
majority of these methods are based on a linear time
invariant approximate model of the switched-capacitor
DC/DC power converter. However, since its governing
dynamics change at the switching instants, a switched-
mode power converter actually constitutes a highly non-
linear and time-varying dynamical system. Hence, the
performance of these existing control schemes can only
be guaranteed under a small signal assumption.

In contrast, the problem of determining optimal switch-
ing instants a priori has received little attention in the
literature. In Ho, Ling, Liu, Tam, & Teo (2008), a novel
method for the offline computation of these switching
instants was proposed. Specifically, the problem was for-
mulated as a dynamic optimization problem, where the
switching instants are chosen to minimize a cost func-
tion subject to a dynamic model of the power converter.
This problem can be solved using existing optimization
software such as MISER (see Jennings, Fisher, Teo, &
Goh (2004)). The switching instants obtained can then
be used to operate the power converter.

Unlike previous control schemes, this approach avoids
the use of averaging and linearization; instead, a more
accurate switched system dynamic model of the power
converter is used. The time-varying and non-linear na-
ture of a switched-mode power converter is therefore ex-
plicitly taken into account in the offline formulation of
an optimal switching regime. Incidently, the optimiza-
tion and control of switched systems has been an active
research area over the past decade, and we direct the
interested reader to Xu & Antsaklis (2004), Bengea &
DeCarlo (2005), and Seatzu, Cornoa, Giua, & Bempo-
rad (2006) for information on some recent developments.

Note also that the cost function used by Ho et al. (2008)
contains terms to penalize both the output voltage ripple
and the output sensitivity. Hence, objectives (i) and (ii)
above are simultaneously considered in the determina-
tion of an optimal switching scheme. Calculating these
output sensitivity terms, however, is a complicated task
involving matrix inversion, eigenvalue computation, and
a formula consisting of five nested summations. There-
fore, computing the cost function and, in particular, its

gradient, is highly involved. Nevertheless, this computa-
tion is necessary to solve the optimization problem effec-
tively. Furthermore, the eigenvalues of the system coef-
ficient matrices need to be derived analytically as func-
tions of the load resistance. Such analytical expressions
are only possible if the system coefficient matrices have
dimension less than or equal to four. Thus, the method
proposed in Ho et al. (2008) is only applicable to prob-
lems with small dimension. This is a serious restriction,
and hence there is an urgent need to develop a more
efficient method that can be applied to the large-scale
problems encountered in practice.

With this motivation, in this paper we formulate the
determination of optimal switching instants as a dif-
ferent optimization problem to that discussed in Ho et
al. (2008). We penalize output voltage ripple over the en-
tire time horizon, and not separately over each topology.
Hence, the switching loss penalty terms introduced by
Ho et al. (2008) become redundant. Furthermore, a novel
method is developed to calculate the output sensitivity
terms via an auxiliary system of differential equations.
This auxiliary system can be solved simultaneously with
the state system using any standard differential equation
solver. Thus, the computation of the sensitivity terms is
a simple and straightforward exercise, in contrast with
the arduous task required in Ho et al. (2008). We also es-
tablish the existence of an optimal solution in Section 5
before applying our method to a practical example in
Section 6.

2 Problem formulation

Consider a switched-capacitor DC/DC power converter
containing m capacitors. Suppose that during the time
horizon [0, T ], the converter switches topology n times.
In other words, it cycles through n + 1 different circuit
topologies in each switching period. Since physical con-
siderations limit the maximum rate of switching, there
is a minimum time duration ρ > 0 that must be spent
in each topology. On this basis, define

Γ := { τ ∈ R
n : τi + ρ ≤ τi+1, i = 0, . . . , n } ,

where τ0 = 0 and τn+1 = T . The power converter can
be operated using the components of a given τ ∈ Γ as
the topology switching instants. Accordingly, any τ ∈ Γ
is referred to as a feasible vector of switching instants.

Now, for each i = 1, . . . , m, let xi(t) ∈ R denote the
voltage across the ith capacitor at time t. Furthermore,

let τ = [τ1, . . . , τn]
T
∈ Γ. Topology switches are accom-

panied by a voltage loss from the capacitors in the con-
verter. We assume that this voltage leak can be expressed
as a given function of the voltage across the capacitors
immediately before the switch. Accordingly, the state

voltage x(t) = [x1(t), . . . , xm(t)]
T

∈ R
m experiences a
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jump at each switching instant:

x(τ+
i ) = x(τ−

i ) + φi(x(τ−
i )), i = 1, . . . , n, (1)

where the negative and positive superscripts denote
the limit from the left and right, respectively, and
φi : R

m → R
m, i = 1, . . . , n, are given continuously

differentiable functions.

During the ith topology, i = 1, . . . , n + 1, the state volt-
age is governed by a linear time invariant dynamical sys-
tem as follows:

ẋ(t) = Aix(t) + Biσ, t ∈ (τi−1, τi) , (2)

where σ = [σ1, . . . , σr]
T

∈ R
r is the DC input volt-

age, RL ∈ R is the given load resistance and, for each
i = 1, . . . , n + 1, Ai := Ai(RL) : R → R

m×m and
Bi := Bi(RL) : R → R

m×r are given matrix-valued
functions of the load resistance. We assume that each of
these functions is continuously differentiable.

The initial condition for the dynamics (2) is:

x(0) = x(0+) = x0, (3)

where x0 ∈ R
m is the initial voltage across the capaci-

tors.

The output voltage delivered by the converter during
the ith topology, i = 1, . . . , n + 1, is given by

y(t) = Cix(t) + Diσ, t ∈ [τi−1, τi) , (4)

where, for each i = 1, . . . , n + 1, Ci := Ci(RL) : R →
R

1×m and Di := Di(RL) : R → R
1×r are given matrix-

valued functions of the load resistance. As before, each
of these functions is assumed to be continuously differen-
tiable. Also, at the terminal time, we set y(T ) := y(T−).

If the switching instants are chosen a priori — that is,
the components of a given τ ∈ Γ are used for the topol-
ogy switching instants — then the state voltage of the
power converter will evolve according to the switched
dynamical system (1)-(3). Let x(·|τ ) := x(·|τ ,σ, RL)
denote this state voltage. The corresponding output
voltage from (4) is denoted by y (·|τ ) := y (·|τ ,σ, RL).
Clearly, different choices of switching instants will result
in different output voltage profiles.

Recall that the DC/DC power converter should (ide-
ally) deliver a steady voltage to the attached appliance.
Hence, the switching instants should be chosen so that
the resulting output voltage ripple,

sup
t∈[0,T ]

y(t|τ ) − inf
t∈[0,T ]

y(t|τ ),

is small. Moreover, for each τ ∈ Γ, the sensitivity of the
output voltage with respect to the load resistance and
input voltage is given, respectively, by

sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|τ )

∂RL

∣

∣

∣

∣

and sup
t∈[0,T ]

∥

∥

∥

∥

∂y(t|τ )

∂σ

∥

∥

∥

∥

∞

,

where ‖ · ‖∞ denotes the maximum norm in R
r. The

switching instants should also be selected to minimize
these sensitivity terms, so that changes in the input and
load do not induce a large change in the output voltage.

On the basis of the above discussion, we define the fol-
lowing optimization problem for the computation of op-
timal switching instants.

Problem (P1). Given the system (1)-(4), choose τ ∈ Γ
such that the cost function

J(τ ) :=α

(

sup
t∈[0,T ]

y(t|τ ) − inf
t∈[0,T ]

y(t|τ )

)

+ β sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|τ )

∂RL

∣

∣

∣

∣

+ γ sup
t∈[0,T ]

∥

∥

∥

∥

∂y(t|τ )

∂σ

∥

∥

∥

∥

∞

is minimized over Γ, where α, β, and γ are non-negative
weighting factors.

Remark. In Problem (P1), the switching sequence is as-
sumed known and only the switching times are decision
variables to be determined optimally. A more general
problem — which, potentially, could yield an improved
control scheme — would involve optimally choosing both
the switching sequence and switching times. This gen-
eralized problem is a mixed discrete/continuous opti-
mization problem and is therefore much harder to solve
numerically than Problem (P1). Since, in practice, the
switching sequence for a switched-mode power converter
is normally known, we restrict our attention to Prob-
lem (P1) in this paper.

3 Problem transformation

The solution of Problem (P1) furnishes a switching
regime which, when used to operate the switched-
capacitor DC/DC power converter, results in a steady
and robust output voltage profile. Note, however, that
Problem (P1) is a non-smooth optimization problem
and, as yet, we have no way of computing the output
sensitivity terms appearing in the cost function J(·).
Thus, we cannot use conventional optimization tech-
niques to solve it. To proceed, we introduce the follow-
ing auxiliary system of m jump differential equations
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corresponding to each τ ∈ Γ:

ψ̇(t) =
∂Ai

∂RL

x(t|τ ) + Aiψ(t)+
∂Bi

∂RL

σ, t ∈ (τi−1, τi) ,

i = 1, . . . , n + 1, (5)

with
ψ(0) = ψ(0+) = 0 (6)

and, for each i = 1, . . . , n,

ψ(τ+
i ) = ψ(τ−

i ) +
∂φi(x(τ−

i |τ ))

∂x
ψ(τ−

i ). (7)

Similarly, for each j = 1, . . . , r, consider another system
of m auxiliary jump differential equations:

ϕ̇j(t) = Aiϕj(t) + Bi
j , t ∈ (τi−1, τi) ,

i = 1, . . . , n + 1, (8)

where, for any matrix M , Mj denotes its jth column;
with

ϕj(0) = ϕj(0+) = 0 (9)

and, for each i = 1, . . . , n,

ϕj(τ+
i ) = ϕj(τ−

i ) +
∂φi(x(τ−

i |τ ))

∂x
ϕj(τ−

i ). (10)

Theorem 1. For each τ ∈ Γ, the state sensitivity func-

tions ∂x(·|τ)
∂RL

and ∂x(·|τ)
∂σj

, j = 1, . . . , r, are the unique so-

lutions of (5)-(7) and (8)-(10), respectively.

Proof. It follows from the theory of differential equa-
tions that any solution to the system defined by (5)-(7)
is unique. Now, for each i = 1, . . . , n + 1, the solution of
the system (1)-(3) on t ∈ (τi−1, τi) satisfies the following
integral equation:

x(t|τ ) = x(τ+
i−1|τ ) +

∫ t

τi−1

(

Aix(η|τ ) + Biσ
)

dη.

Differentiating this equation with respect to RL using
Leibniz’s Rule yields

∂x(t|τ )

∂RL

=
∂x(τ+

i−1|τ )

∂RL

+

∫ t

τi−1

∂Ai

∂RL

x(η|τ )dη

+

∫ t

τi−1

(

Ai ∂x(η|τ )

∂RL

+
∂Bi

∂RL

σ

)

dη.

By differentiating the above equation with respect to t,

it is evident that ∂x(·|τ)
∂RL

satisfies (5). Moreover, it follows

from (3) that

∂x(0|τ )

∂RL

=
∂

∂RL

{

x0

}

= 0.

Hence, (6) is satisfied. Finally, differentiating (1) with re-
spect to RL shows that the jump conditions (7) are also

satisfied. The proof for the sensitivity functions ∂x(·|τ)
∂σj

,

j = 1, . . . , r, is similar. �

Let ψ(·|τ ) and ϕj(·|τ ), j = 1, . . . , r, denote the respec-
tive solutions of (5)-(7) and (8)-(10) corresponding to
τ ∈ Γ. Define the following function:

w(t|τ ) := Ciψ(t|τ ) +
∂Ci

∂RL

x(t|τ ) +
∂Di

∂RL

σ,

t ∈ [τi−1, τi) , i = 1, . . . , n + 1. (11)

Similarly, for each j = 1, . . . , r, let

zj(t|τ ) := Ciϕj(t|τ ) + Di
j ,

t ∈ [τi−1, τi) , i = 1, . . . , n + 1. (12)

In addition, we set w(T |τ ) := w(T−|τ ) and zj(T |τ ) :=
zj(T−|τ ), j = 1, . . . , r. By virtue of Theorem 1, w(·) and

zj(·), j = 1, . . . , r, are, respectively, ∂y(·|τ)
∂RL

and ∂y(·|τ)
∂σj

.

Note also that (5)-(7) and (8)-(10) depend on the solu-
tion of the state system, and are in the same form as
(1)-(3). It follows that we can solve the state system
and the auxiliary system simultaneously as an expanded
system of jump differential equations. This provides us
with a much simpler and straightforward procedure for
computing the sensitivity terms compared with that re-
ported in Ho et al. (2008). On this basis, we can now in-
troduce a new optimization problem equivalent to Prob-
lem (P1). In this new problem, the non-smoothness in-
herent in Problem (P1) is also removed via the addi-
tion of a set of continuous constraints. We define Prob-
lem (P2) as follows.

Problem (P2). Given the system (1)-(4), (5)-(10) and
(11)-(12), choose τ ∈ Γ and ζ = [ζ1, ζ2, ζ3, ζ4]

T ∈ R
4

such that the cost function

H(τ , ζ) := αζ1 + αζ2 + βζ3 + γζ4

is minimized over Γ × R
4 subject to:

y(t|τ ) ≤ ζ1, t ∈ [0, T ], (13)

−y(t|τ ) ≤ ζ2, t ∈ [0, T ], (14)

−ζ3 ≤ w(t|τ ) ≤ ζ3, t ∈ [0, T ], (15)

−ζ4 ≤ zj(t|τ ) ≤ ζ4, t ∈ [0, T ], j = 1, . . . , r. (16)

Note that the difficulties inherent in Problem (P1) are
not present in Problem (P2). However, the constraints
(13)-(16) are semi-infinite. Nevertheless, reliable meth-
ods are available for handling these types of constraints
(see, for example, Teo, Rehbock, & Jennings (1993)).

We have the following result establishing the equivalence
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of Problems (P1) and (P2).

Theorem 2. Let τ ∗ ∈ Γ and ζ∗ = [ζ∗1 , ζ∗2 , ζ∗3 , ζ∗4 ]
T
∈ R

4.
Then (τ ∗, ζ∗) is optimal for Problem (P2) if and only if
τ ∗ is optimal for Problem (P1) and

ζ∗1 = sup
t∈[0,T ]

y(t|τ ∗), (17)

ζ∗2 = − inf
t∈[0,T ]

y(t|τ ∗), (18)

ζ∗3 = sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|τ ∗)

∂RL

∣

∣

∣

∣

, (19)

ζ∗4 = sup
t∈[0,T ]

∥

∥

∥

∥

∂y(t|τ ∗)

∂σ

∥

∥

∥

∥

∞

. (20)

Proof. Suppose that Problem (P1) has an opti-
mal solution τ ∗. Then τ ∗ ∈ Γ and we can define
ζ∗ = [ζ∗1 , ζ∗2 , ζ∗3 , ζ∗4 ]

T
according to (17)-(20). Note that

y(t|τ ∗) ≤ ζ∗1 and −y(t|τ ∗) ≤ ζ∗2 for all t ∈ [0, T ]. In
addition, by Theorem 1,

−ζ∗3 ≤ w(t|τ ∗) =
∂y(t|τ ∗)

∂RL

≤ ζ∗3

and

−ζ∗4 ≤ zj(t|τ ∗) =
∂y(t|τ ∗)

∂σj

≤ ζ∗4 , j = 1, . . . , r,

for all t ∈ [0, T ]. Thus, (τ ∗, ζ∗) is feasible for Problem
(P2). It follows from the definition of ζ∗ that

H(τ ∗, ζ∗) = J(τ ∗). (21)

Suppose that τ ∈ Γ and ζ = [ζ1, ζ2, ζ3, ζ4]
T

∈ R
4 also

satisfy the constraints (13)-(16). Then by noting that τ ∗

is optimal for Problem (P1), it follows from (21) that

H(τ ∗, ζ∗) ≤ J(τ ) = α

(

sup
t∈[0,T ]

y(t|τ ) − inf
t∈[0,T ]

y(t|τ )

)

+ β sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|τ )

∂RL

∣

∣

∣

∣

+ γ sup
t∈[0,T ]

∥

∥

∥

∥

∂y(t|τ )

∂σ

∥

∥

∥

∥

∞

. (22)

It is clear from the constraints (13)-(16) that ζ1 is an up-
per bound for y(t|τ ), −ζ2 is a lower bound for y(t|τ ), and

ζ3 and ζ4 are upper bounds for |w(t|τ )| =
∣

∣

∣

∂y(t|τ)
∂RL

∣

∣

∣
and

|zj(t|τ )| =
∣

∣

∣

∂y(t|τ)
∂σj

∣

∣

∣
, j = 1, . . . , r, respectively. Thus, by

virtue of (22), we have

H(τ ∗, ζ∗) ≤ α (ζ1 + ζ2) + βζ3 + γζ4 = H(τ , ζ)

and so (τ ∗, ζ∗) is optimal for Problem (P2).

Conversely, suppose that Problem (P2) has an optimal
solution (τ ∗, ζ∗). Then τ ∗ is obviously feasible for Prob-
lem (P1). Equations (17)-(20) must hold, since assum-
ing otherwise would allow us to replace ζ∗ with the
values on the right hand sides of (17)-(20), retaining
feasibility whilst lowering the value of H(·, ·). Suppose
now, that τ ∗ is not optimal for Problem (P1). Then
there exists a τ̂ ∈ Γ such that J(τ̂ ) < J(τ ∗). Define

ζ̂ = [ζ̂1, ζ̂2, ζ̂3, ζ̂4]
T according to equations (17)-(20) with

the left hand sides replaced by the components of ζ̂,
and τ ∗ on the right hand side replaced by τ̂ . Then the
same arguments from the first part of the theorem can

be used to show that (τ̂ , ζ̂) is feasible for Problem (P2)

and H(τ̂ , ζ̂) = J(τ̂ ). Also, we have H(τ ∗, ζ∗) = J(τ ∗).
Since J(τ̂ ) < J(τ ∗), it is clear that the optimality of
(τ ∗, ζ∗) for Problem (P2) has been violated. Hence, τ ∗

must be optimal for Problem (P1). �

As it stands, Problem (P2) cannot be solved directly us-
ing existing numerical techniques. The main difficulty
is the dependence of the system state on the variable
switching instants. We follow the advice suggested in Wu
& Teo (2006) and employ a time-scaling transformation
to map these switching instants into a fixed set of time
points in a new time horizon.

Firstly, define

Θ :=

{

θ ∈ R
n+1 : θi ≥ ρ, i = 1, . . . , n + 1;

n+1
∑

i=1

θi = T

}

.

Let s ∈ [0, n + 1] be a new time variable with switch-
ing instants occurring at the fixed locations s = i,
i = 1, . . . , n. For each θ ∈ Θ, define µ(·|θ) : [0, n + 1] →
R by

µ(s|θ) :=















⌊s⌋
∑

j=1

θj + θ⌊s⌋+1(s − ⌊s⌋), if s ∈ [0, n + 1),

T, if s = n + 1,

where ⌊·⌋ denotes the floor function. It can be readily
verified that µ(·|θ) is continuous and strictly increasing
on [0, n+1]. Consequently, µ(·|θ) : [0, n+1] → [0, T ] is a
bijection. Under this mapping, the new uniform switch-
ing instants are mapped to the following values in the
original time scale:

µ(i|θ) =

i
∑

j=1

θj , i = 0, . . . , n + 1. (23)

Let x̃(s) = x(µ(s|θ)), ψ̃(s) = ψ(µ(s|θ)) and ϕ̃j(s) =
ϕj(µ(s|θ)), j = 1, . . . , r. Then, from (2), (5), (8) and the
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definition of µ(·|θ), we have

˙̃x(s) = θiA
ix̃(s) + θiB

iσ, (24)

˙̃
ψ(s) = θi

∂Ai

∂RL

x̃(s) + θiA
iψ̃(s) + θi

∂Bi

∂RL

σ, (25)

˙̃ϕj(s) = θiA
iϕ̃j(s) + θiB

i
j, j = 1, . . . , r, (26)

for s ∈ (i − 1, i), i = 1, . . . , n + 1. For each i = 1, . . . , n,
we have the jump conditions:

x̃(i+) = x̃(i−) + φi(x̃(i−)), (27)

ψ̃(i+) = ψ̃(i−) +
∂φi(x̃(i−))

∂x
ψ̃(i−), (28)

ϕ̃j(i+) = ϕ̃j(i−) +
∂φi(x̃(i−))

∂x
ϕ̃j(i−),

j = 1, . . . , r. (29)

From (3), (6), (9), and (23), the initial conditions for the
transformed expanded system are

x̃(0) = x0, (30)

ψ̃(0) = 0, (31)

ϕ̃j(0) = 0, j = 1, . . . , r. (32)

Let x̃(·|θ) := x̃(·|θ,σ, RL), ψ̃(·|θ) := ψ̃(·|θ,σ, RL) and
ϕ̃j(·|θ) := ϕ̃j(·|θ,σ, RL), j = 1, . . . , r, denote the solu-
tions of (24)-(32) corresponding to θ ∈ Θ. We define

ỹ(s|θ) := Cix̃(s|θ) + Diσ, (33)

w̃(s|θ) := Ciψ̃(s|θ) +
∂Ci

∂RL

x̃(s|θ) +
∂Di

∂RL

σ, (34)

z̃j(s|θ) := Ciϕ̃j(s|θ) + Di
j , (35)

for s ∈ [i − 1, i), i = 1, . . . , n + 1. Moreover, ỹ(n + 1|θ),
w̃(n + 1|θ) and z̃j(n + 1|θ), j = 1, . . . , r, are defined in
an obvious manner.

The constraints (13)-(16) become

ỹ(s|θ) ≤ ζ1, s ∈ [0, n + 1], (36)

−ỹ(s|θ) ≤ ζ2, s ∈ [0, n + 1], (37)

−ζ3 ≤ w̃(s|θ) ≤ ζ3, s ∈ [0, n + 1], (38)

−ζ4 ≤ z̃j(s|θ) ≤ ζ4, s ∈ [0, n + 1], j = 1, . . . , r. (39)

It is clear from (23) that [µ(1|θ), . . . , µ(n|θ)]
T

∈ Γ.
Moreover, for each τ ∈ Γ, we can choose a θ ∈ Θ such
that τi = µ(i|θ), i = 1, . . . , n. On this basis, Prob-
lem (P2) is equivalent to the following Problem (P3).

Problem (P3). Given the system (24)-(35), choose
θ ∈ Θ and ζ = [ζ1, ζ2, ζ3, ζ4]

T ∈ R
4 such that the cost

function

H̃(θ, ζ) := αζ1 + αζ2 + βζ3 + γζ4

is minimized over Θ × R
4 subject to (36)-(39).

Problem (P3) is a smooth dynamic optimization prob-
lem with fixed switching times and continuous inequal-
ity constraints. In the next section, we will demonstrate
how it can be solved using existing optimization tech-
niques. Note that the optimal switching instants for
Problem (P1) can be easily recovered from equation
(23) once Problem (P3) has been solved.

4 Solving Problem (P3)

Problem (P3) is essentially a semi-infinite programming
problem that can be solved using the algorithm devel-
oped in Teo et al. (1993). To apply this algorithm, we
first express the continuous constraints (36)-(39) as

gi(s|θ, ζ) ≤ 0, s ∈ [0, n+1], i = 1, . . . , 2r+4, (40)

where

g1(s|θ, ζ) = ỹ(s|θ) − ζ1,

g2(s|θ, ζ) = −ỹ(s|θ) − ζ2,

g3(s|θ, ζ) = w̃(s|θ) − ζ3,

g4(s|θ, ζ) = −w̃(s|θ) − ζ3,

g2j+3(s|θ, ζ) = z̃j(s|θ) − ζ4, j = 1, . . . , r,

g2j+4(s|θ, ζ) = −z̃j(s|θ) − ζ4, j = 1, . . . , r.

Now, for a given ǫ > 0 and ϑ > 0, consider the following
auxiliary optimization problem.

Problem (P̃ǫ,ϑ). Given the system (24)-(35), choose
θ ∈ Θ and ζ = [ζ1, ζ2, ζ3, ζ4]

T ∈ R
4 such that the cost

function

H̃ǫ,ϑ(θ, ζ) := H̃(θ, ζ) + ϑ

2r+4
∑

i=1

∫ n+1

0

χǫ(gi(s|θ, ζ))ds

is minimized over Θ × R
4, where

χǫ(η) =















0, if η < −ǫ,

(η + ǫ)
2
/4ǫ, if −ǫ ≤ η ≤ ǫ,

η, if η > ǫ.

Note that Problem (P̃ǫ,ϑ) is a smooth optimization
problem governed by an impulsive dynamical system.
Hence, the gradient of the objective function H̃ǫ,ϑ(·, ·)
with respect to the decision variables can be calcu-
lated according to formulae reported in Liu, Teo, Jen-
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nings, & Wang (1998), Jennings et al. (2004), and
Wu & Teo (2006). On this basis, any of the gradient-
based optimization algorithms discussed in Nocedal
& Wright (1999) and Luenberger (2005) can be em-

ployed to solve Problem (P̃ǫ,ϑ). Furthermore, in Teo et
al. (1993), it is shown that for any ǫ > 0, there exists a
corresponding ϑ(ǫ) > 0 such that an optimal solution of

Problem (P̃ǫ,ϑ) with ϑ > ϑ(ǫ) satisfies the continuous
constraints of Problem (P3). By virtue of this result, a
solution to the semi-infinite optimization Problem (P3)
can be obtained by solving a sequence of approximate
Problems (P̃ǫ,ϑ). A detailed algorithm for updating ǫ
and ϑ during this sequence, as well as several important
convergence results, are given in Teo et al. (1993).

5 Existence of an optimal solution

Note that Problem (P1) is essentially a non-linear opti-
mization problem involving the minimization of a cost
function over a compact set. However, because of the un-
conventional form of the cost function, it is not obvious
that an optimal solution exists. On the other hand, the
feasible region for the equivalent Problems (P2) and (P3)
is not compact. If an optimal solution to Problem (P1)
does not exist, then its suitability as a mathematical for-
mulation of a practical electronic design scenario must
be reconsidered. In this section, we will show that Prob-
lem (P1) does indeed admit an optimal solution.

Firstly, we present the following two preliminary lem-
mas, whose proofs are similar to those of Lemma 6.4.2
and Lemma 6.4.3 in Teo, Goh, & Wong (1991), respec-
tively.

Lemma 1. There exists a positive real number Λ > 0
such that, for all s ∈ [0, n + 1] and θ ∈ Θ,

|ỹ(s|θ)| ≤ Λ,

|w̃(s|θ)| ≤ Λ,

|z̃j(s|θ)| ≤ Λ, j = 1, . . . , r.

Lemma 2. Suppose that
{

θk
}∞

k=1
⊂ Θ is a sequence

converging to θ ∈ Θ. Then for each s ∈ [0, n + 1],

lim
k→∞

ỹ(s|θk) = ỹ(s|θ),

lim
k→∞

w̃(s|θk) = w̃(s|θ),

lim
k→∞

z̃j(s|θk) = z̃j(s|θ), j = 1, . . . , r.

We now state and prove the main result of this section.

Theorem 3. Problem (P1) admits an optimal solution.

Proof. Note that Problem (P1) is equivalent to Prob-
lem (P3). Hence, it suffices to consider the existence of

an optimal element for Problem (P3). For each θ ∈ Θ,

define ζ̄(θ) =
[

ζ̄1(θ), ζ̄2(θ), ζ̄3(θ), ζ̄4(θ)
]T

by

ζ̄1(θ) := sup
s∈[0,n+1]

ỹ(s|θ),

ζ̄2(θ) := − inf
s∈[0,n+1]

ỹ(s|θ),

ζ̄3(θ) := sup
s∈[0,n+1]

|w̃(s|θ)| ,

ζ̄4(θ) := sup
s∈[0,n+1]

max
1≤j≤r

|z̃j(s|θ)|,

where Lemma 1 ensures that the above expressions are
well-defined. Now, select an arbitrary κ̂ ∈ {1, . . . , r} and
ŝ ∈ [0, n + 1]. For any θ ∈ Θ, we have

H̃(θ, ζ̄(θ)) = αζ̄1(θ) + αζ̄2(θ) + βζ̄3(θ) + γζ̄4(θ)

≥ αỹ(ŝ|θ) − αỹ(ŝ|θ) + β |w̃(ŝ|θ)|

+ γ
∣

∣z̃κ̂(ŝ|θ)
∣

∣

≥ 0.

Hence, we can find a non-negative ω ∈ R such that

ω = inf
{

H̃(θ, ζ̄(θ)) : θ ∈ Θ
}

.

That is, for each k ∈ N, there exists some θk ∈ Θ such
that

H̃(θk, ζ̄(θk)) < ω +
1

k
.

Clearly, H̃(θk, ζ̄(θk)) → ω as k → ∞. In addition, it
follows from Lemma 1 that for each k ≥ 1,

−Λ ≤ ζ̄p(θ
k) ≤ Λ, p = 1, 2, 3, 4.

Hence, since Θ is a compact set,
{

(θk, ζ̄(θk))
}∞

k=1
is a

bounded sequence. By the Bolzano-Weierstrass Theo-
rem, there exists a subsequence

{

(θki , ζ̄(θki))
}∞

i=1
con-

verging to an element (θ∗, ζ∗). Applying Lemma 2 to
the constraints (36)-(39), we see that (θ∗, ζ∗) is feasible
for Problem (P3).

Furthermore,

ω = lim
i→∞

H̃(θki , ζ̄(θki))

= αζ∗1 + αζ∗2 + βζ∗3 + γζ∗4 = H̃(θ∗, ζ∗).

Thus, (θ∗, ζ∗) is optimal for Problem (P3). �

6 Numerical simulation

Based on the procedure outlined in Section 4, a For-
tran 90 program was written to solve Problem (P3)
corresponding to the switched-capacitor DC/DC power
converter reported in Umeno, Takahashi, Oota, Ueno,
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Fig. 1. Circuit topologies 1-4.

& Inoue (1990). This power converter contains three ca-
pacitors and cycles through four circuit topologies in
each period. Circuit schematics for the different topolo-
gies are shown in Figure 1. The state space matrices Ai,
Bi, Ci, and Di, i = 1, 2, 3, 4, can be readily obtained by
applying Kirchhoff’s laws. To solve the state system, our
Fortran program utilized the ordinary differential equa-
tion solver LSODA (see Hindmarsh (1982)). The opti-
mization process was handled by the routine NLPQLP
(see Schittkowski (2007)).

The cycle length and minimum topology duration were
chosen as T = 2.0 × 10−5 and ρ = 1.0 × 10−6, respec-
tively. The other circuit parameters were C1 = C2 =
C3 = 30.0 × 10−6F, R1 = R2 = R3 = 0.02Ω, RS =
0.01Ω and RL = 75.0Ω. We also assumed that topology
changes are accompanied by a 5% voltage leak from the
capacitors in the circuit. Hence,

φi(x(τ−
i )) = −0.05x(τ−

i ), i = 1, 2, 3.

We initially used our program to determine the opti-
mal switching instants for the first period after start-
up (that is, the initial voltage across the capacitors is
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Fig. 2. Output voltage profile under the optimal switching
regime.
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Fig. 3. Voltage across capacitor 1.

zero). We then repeated this process for subsequent pe-
riods until it was evident that the converter had reached
steady state. The output voltage profile of the power
converter under the optimal switching regime is plotted
in Figure 2. Figures 3-5 show the corresponding voltage
across each of the capacitors. Note that, as expected,
this switched-capacitor DC/DC power converter acts as
a voltage halver at the steady state.

The optimal steady state switching instants are τ∗
1 =

6.8853 × 10−6, τ∗
2 = 7.8853 × 10−6 and τ∗

3 = 8.8853 ×
10−6. Furthermore, the sensitivities of the output volt-
age with respect to the load resistance and input are
1.7927×10−4 and 6.6595×10−1, respectively. Since these
values — in particular the sensitivity with respect to the
load resistance — are quite small, the optimal switching
regime is rather insensitive to changes in the load and
small perturbations in the input voltage. Note also that
the steady state output voltage ripple is 1.1260×10−1V .
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Fig. 4. Voltage across capacitor 2.
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Fig. 5. Voltage across capacitor 3.

7 Conclusion

We have discussed a numerical optimization approach
to determining the optimal switching instants for a
switched-capacitor DC/DC power converter. Note that
the analysis performed in this paper is not restricted to
switched-capacitor DC/DC power converters and can
be applied to any switched linear system where Prob-
lem (P1) is practically relevant. Compared to the work
in Ho et al. (2008), our new formulation avoids tedious
and at times difficult hand/computer algebra compu-
tations and can be readily implemented using existing
optimization software such as MISER. We have also es-
tablished the existence of an optimal solution and used
our method to solve an example problem. Interestingly,
the results from this example indicate that a uniform
switching scheme is not optimal. Future research should
involve formulating realistic state jump functions that
can accurately reflect the energy losses involved in
switching. More advanced optimal parameter selection
models, where design parameters such as device ca-
pacitances and switching frequency are included in the
optimal decision making process, can also be considered.
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