
HAL Id: hal-00411523
https://hal.science/hal-00411523

Submitted on 27 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

H-infinity functional filtering for stochastic bilinear
systems with multiplicative noises

Souheil Halabi, Harouna Souley Ali, Hugues Rafaralahy, Michel Zasadzinski

To cite this version:
Souheil Halabi, Harouna Souley Ali, Hugues Rafaralahy, Michel Zasadzinski. H-infinity functional
filtering for stochastic bilinear systems with multiplicative noises. Automatica, 2009, 45 (4), pp.1038-
1045. �10.1016/j.automatica.2008.11.027�. �hal-00411523�

https://hal.science/hal-00411523
https://hal.archives-ouvertes.fr


H∞ functional filtering for stochastic bilinear systems with

multiplicative noises

S. Halabi‡, H. Souley Ali†, H. Rafaralahy† and M. Zasadzinski†

† Centre de Recherche en Automatique de Nancy (CRAN), Nancy-Université, CNRS,
186 rue de Lorraine, 54400 Longwy, FRANCE

E-mails : souley@iut-longwy.uhp-nancy.fr, mzasad@iut-longwy.uhp-nancy.fr, hrafa@iut-longwy.uhp-nancy.fr
‡ Centre de Recherche Public Henri Tudor, 29 avenue John F. Kennedy, L-1855 Luxembourg - Kirchberg

E-mail : souheil.halabi@tudor.lu

Abstract

This paper deals with the design of a reduced-order H∞ filter for a stochastic bilinear system with a
prescribed H∞ norm criterion. The considered system is bilinear in control and with multiplicative
noises in the dynamics and in the measurement equations. The problem is transformed into the search
of a unique gain matrix by using Sylvester-like constraints. The approach is based on the resolution
of LMI and is then easily implementable.

Keywords : Reduced-order H∞ filter; Stochastic differential equation; Multiplicative noise; Wiener
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1 Introduction

This paper is devoted to the synthesis of functional filter for continuous-time systems bilinear in the con-
trol inputs and corrupted by multiplicative noises both in the state and in the measurement equations.
Bilinear systems can represent an efficient tool to describe physical processes when linear models are not
sufficiently efficient (see (Mohler, 1991) and references therein). For example, an activated sludge process
can be modelled by a bilinear differential equations as shown in (Ekman, 2005); a semi-active suspen-
sion can be also described by mean of a bilinear model (Hać, 1992; Saif, 1994). Stochastic differential
equations may be used to represent physical systems when their models are not exactly known or are
corrupted by noises. In such situation, deterministic models are not suitable. Stochastic systems have
been used in various areas of application, for example, systems with human operators, mathematical
models of finance which represent some kind of uncertainties as stochastically varying lags, mechanical
systems subject to random vibrations (e.g. earthquakes), ... (see J.L. Willems and J.C. Willems (1976)
and B. Øksendal (2003)).
One of the motivations to study continuous-time systems bilinear in the control inputs with multi-
plicative noises is the robustness point of view. Ugrinovskii et al. (Ugrinovskii, 1998; Ugrinovskii and
Petersen, 1999) show that parameter uncertainties can be efficiently modelled by Wiener processes. This
leads to a stochastic differential equation with multiplicative noises. In these two papers, an example of
mechanical system with an uncertainty on the spring stiffness is given. This case can be extended to the
bilinear model of a semi-active suspension (see (Hać, 1992; Saif, 1994)) with uncertainties both in the
tire and suspension stiffnesses, where, in addition, the road elevation at the point of contact with the tire
can be considered as a brownian motion.
Stability and control of stochastic systems have been studied in numerous references (Willems and
Willems, 1976; Kozin, 1969; Has’minskii, 1980; Mao, 1997; Hinrichsen and Pritchard, 1998). The fil-
tering of stochastic systems with multiplicative noises has been treated in many papers (Carravetta and
Germani, 1998; Carravetta et al., 2000; Germani et al., 2002). In (Carravetta et al., 2000), a suboptimal
filter is proposed using polynomial approximations. In (Germani et al., 2002), the filtering problem with
unknown inputs is solved using a linear filter based on suitable decomposition of the state. The full and



the reduced-order H∞ filtering for stochastic systems with multiplicative noises has been studied in (Xu
and Chen, 2003; Gershon et al., 2001; Xu and Chen, 2002; Stoica, 2002; Halabi et al., 2006a; Halabi
et al., 2006b). Notice that a stochastic system in which the measurement equation is corrupted by a
multiplicative noise is considered in (Carravetta and Germani, 1998; Carravetta et al., 2000; Gershon et
al., 2001; Halabi et al., 2006a; Halabi et al., 2006b).
In this paper, the problem of reduced-order H∞ filtering for a larger class of stochastic systems than
those cited above is considered since the studied systems are with multiplicative noises in the state and
measurement equations and with multiplicative control inputs. The stochastic differential equations con-
sidered in this paper will be of Itô type (Has’minskii, 1980).
The filtering approach proposed in this paper leads to Sylvester-like constraints on the drift of the estima-
tion error and a change of variable on the control inputs. All solutions of the Sylvester-like constraints are
parametrized by a unique gain matrix which is computed through a LMI ensuring both the mean-square
stability and a given H∞ norm criterion. Then the problem is reduced to the search of this unique gain
matrix and the reduced-order stochastic filter matrices are computed using this gain. The H∞ optimiza-
tion method is used to attenuate the effect of additional exogenous disturbances with finite energy.
The paper is organized as follows. Section 2 states the reduced-order filtering problem for a stochastic
bilinear system with multiplicative noises both in the state and in the measurement equations. The
synthesis of the reduced-order filter is treated in section 3. First the filter matrices are parametrized
through a unique gain matrix, second the mean-square stability of the estimation error is established
using an augmented system, and third the H∞ performance is guaranteed by computing the gain matrix.
In section 4, a numerical example is given to illustrate the proposed approach.
Notations Throughout the paper, E represents expectation operator with respect to some probability
measure P. L2

(
Ω, IRk

)
is the space of square-integrable IRk-valued functions on the probability space

(Ω,F ,P) where Ω is the sample space, F is a σ-algebra of subsets of the sample space called events and P
is the probability measure on F . (Ft)t>0 denote an increasing family of σ-algebras (Ft) ∈ F . We denote

by L̂2

(
[0,∞) ; IRk

)
the space of non-anticipatory square-integrable stochastic process f(.) = (f(t))t∈[0,∞)

in IRk with respect to (Ft)t∈[0,∞) satisfying

‖f‖2
bL2

= E

{∫ ∞

0
‖f(t)‖2 d t

}
< ∞

where ‖.‖ is the well-known Euclidean norm. λmin and λmax are the smallest and the largest eigenvalues
of a symmetric square matrix, respectively. 〈�, �〉 denotes the usual inner product associated with IRk.

2 Problem statement

Consider the following stochastic bilinear system




dx(t) = (At0 +
∑m

i=1 ui(t)Ati)x(t) d t+Bv(t) d t+Aw0x(t) dw0(t)
d y(t) = Cx(t) d t+Jx(t) dw1(t)

z(t) = Lx(t)
(1)

where x(t) ∈ IRn is the state vector, y(t) ∈ IRp is the output, u(t) ∈ IRm is the control input vector (with
ui(t) the ith component of u(t)), z(t) ∈ IRr is a functional to be estimated with r < n and v(t) ∈ IRq is
the perturbation signal with bounded energy. Without loss of generality L is assumed to be a full row
rank matrix. wi(t) is a Wiener process verifying (Has’minskii, 1980)

E {dwj(t)} = 0, E
{
dwj(t)

2
}

= d t, for j = 0, 1, (2a)

E {dw0(t) dw1(t)} = E {dw1(t) dw0(t)} = ϕ d t, with |ϕ| < 1. (2b)

As in the most cases for physical processes, we assume that the stochastic bilinear system (1) has known
bounded control inputs, i.e. u(t) ∈ Γ ⊂ IRm, where

Γ = {u(t) ∈ IRm | ui min 6 ui(t) 6 ui max, for i = 1, . . . ,m} . (3)

First of all, let us give the following definition and assumption.

2



Definition 1. (Kozin, 1969; Has’minskii, 1980) The stochastic bilinear system (1) with v(t) ≡ 0 is said
to be mean-square stable if all initial states x(0) yield

lim
t→∞

E

{
‖x(t)‖2

}
= 0, ∀u(t) ∈ Γ. (4)

Assumption 1. The stochastic bilinear system (1) is assumed to be mean-square stable.

In this paper, we consider a reduced-order filter in the following form

d ẑ(t) =

(
M0 +

m∑

i=1

ui(t)Mi

)
ẑ(t) d t +

(
N0 +

m∑

i=1

ui(t)Ni

)
d y(t) (5)

where ẑ(t) ∈ IRr is the filter state with r < n and the matrices Mi and Ni (for i = 0, . . . ,m) are to be
determined. Let e(t) = z(t)− ẑ(t) be the filtering error, then the design of a H∞ reduced-order filter for
system (1) can be formulated as follows.

Problem 1. The goal of this paper is to design a reduced-order H∞ filter (5) such that the filtering error
e(t) is mean-square stable and the following H∞ performance

‖e‖2
bL2

6 γ2‖v‖2
bL2

(6)

is achieved from the disturbance v(t) to the filtering error e(t), where the positive scalar γ denotes the
H∞ performance of the filter.

3 Reduced-order filter synthesis

In this section, the filter matrices are parametrized through a unique gain matrix, then we show the
mean-square stability for an augmented system (composed of the state and the error) and finally we give
a theorem to ensure the H∞ performance and to compute this gain matrix and thus the filter matrices
are easily derived.

3.1 Parametrization of the filter matrices through a unique gain matrix Z

Let e(t) = z(t) − ẑ(t) = Lx(t) − ẑ(t) be the estimation error, then its dynamics is given by the following
stochastic differential equation

d e(t) =

(
M0 +

m∑

i=1

ui(t)Mi

)
e(t) d t + LBv(t) d t

+

(
(LAt0 − M0L − N0C) +

m∑

i=1

ui(t)(LAti − MiL − NiC)

)
x(t) d t

+ LAw0x(t) dw0(t) −

(
N0 +

m∑

i=1

ui(t)Ni

)
Jx(t) dw1(t). (7)

Consider the following Sylvester-like constraints

LAti − MiL − NiC = 0, for i = 0, . . . ,m. (8)

The solution of these constraints is based on the approach proposed in (Darouach, 2000; Souley Ali et
al., 2006) such that the filter matrices can be expressed through a unique gain matrix.
In fact, since L is a full row rank matrix, relations (8) are equivalent to

(LAti − MiL − NiC)
[
L† (In − L†L)

]
= 0, for i = 0, . . . ,m. (9)
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where L† is a generalized inverse of matrix L satisfying L = LL†L (since rankL = r, we have LL† = Ir).
Using the approach given in (Darouach, 2000; Souley Ali et al., 2006), relation (9) can be equivalently
rewritten as an expression of filter matrices Mi

Mi = Ai − NiC, for i = 0, . . . ,m, (10)

coupled with an algebraic constraint
NΣ = LA, (11)

where

N =
[
N0 N1 . . . Nm

]
, A =

[
A0 A1 . . . Am

]
, Σ =




C 0 . . . 0

0 C
. . .

...
...

. . .
. . . 0

0 . . . 0 C




,

Ai = Ati(In − L†L), Ai = LAtiL
†, for i = 0, . . . ,m,

C = C(In − L†L), C = CL†,

(with Σ ∈ IR(m+1)p×(m+1)n) and a general solution to equation (11), if it exists, is given by

N = LA Σ† + Z(I(m+1)p − Σ Σ†), (12)

where
Z =

[
Z0 Z1 . . . Zm

]
, (13)

is an arbitrary matrix of appropriate dimensions. Z can be seen as the “observer gain matrix”.
The solution of the constraint (11) exists if and only if the following condition is verified

rank




LAt0 LAt1 . . . LAtm

C 0 . . . 0

0 C
. . .

...
...

. . .
. . . 0

0 . . . 0 C

L 0 . . . 0

0 L
. . .

...
...

. . .
. . . 0

0 . . . 0 L




= rank




C 0 . . . 0

0 C
. . .

...
...

. . .
. . . 0

0 . . . 0 C

L 0 . . . 0

0 L
. . .

...
...

. . .
. . . 0

0 . . . 0 L




. (14)

To reduce the conservatism in the study of the stability conditions inherent to the definition of the set Γ
in relation (3), let us introduce the following change of variable on the control inputs ui(t)

ui(t) = αi + σiεi(t), for i = 1, . . . ,m, (15)

where αi ∈ IR and σi ∈ IR are given by

αi =
1

2
(uimin + uimax), σi =

1

2
(uimax − uimin), for i = 1, . . . ,m, (16)

and α0 = 1 and σ0 = 0. The new variable ε(t) belongs to the polytope Γ defined by

Γ = {ε(t) ∈ IRm | εimin = −1 6 εi(t) 6 εimax = 1, for i = 1, . . . ,m} . (17)

Using (15), the state equation (1) becomes

dx(t) = (Aα + Aσ∆x(ε(t))Hx) x(t) d t + Bv(t) d t + Aw0x(t) dw0(t) (18)

4



where

Aα =

m∑

i=0

αiAti, Aσ =
[
σ1At1 . . . σmAtm

]

Hx =




In

...
In


 ∈ IRmn×n, ∆x(ε(t)) =




ε1(t)In 0 . . . 0

0 ε2(t)In
. . .

...
...

. . .
. . . 0

0 . . . 0 εm(t)In




,

and then, under the algebraic constraint (11), the error dynamics (7) can be rewritten as

d e(t)=
(
At−ZCt+(Ãt−ZC̃t)∆e(ε(t))He

)
e(t)d t + Bv(t)d t + Aw0x(t)dw0(t)

+
(
Aw1−ZCw1+(Ãw1−ZC̃w1)∆x(ε(t))Hx

)
x(t) dw1(t) (19)

where

At =

m∑

i=0

αiAi − LA Σ†Υα, Ct = (I(m+1)p − Σ Σ†)Υα, B = LB,

Ãt =
[
σ1A1 . . . σmAm

]
− LA Σ†Υσ, C̃t = (I(m+1)p − Σ Σ†)Υσ, Aw1 = LA Σ†Ψα,

Cw1 = (I(m+1)p − Σ Σ†)Ψα, Ãw1 = LA Σ†Ψσ, Aw0 = LAw0,

C̃w1 = (I(m+1)p − Σ Σ†)Ψσ,

and

Υα =




CL†

α1CL†

...
αmCL†


 , Ψα =




J

α1J
...

αmJ


 ,

Υσ =




0 0 . . . 0
σ1CL† 0 . . . 0

0 σ2CL† . . .
...

...
. . .

. . . 0
0 . . . 0 σmCL†




, Ψσ =




0 0 . . . 0
σ1J 0 . . . 0

0 σ2J
. . .

...
...

. . .
. . . 0

0 . . . 0 σmJ




,

∆e(ε(t)) =




ε1(t)Ir 0 . . . 0

0 ε2(t)Ir
. . .

...
...

. . .
. . . 0

0 . . . 0 εm(t)Ir




, He =




Ir

...
Ir


 ∈ IRmr×r.

Let us consider the following augmented state vector

ξ(t) =
[
xT (t) eT (t)

]T
. (20)

Then under the constraint (11), the dynamics of the augmented system is given by
{

d ξ(t) =
(
Ât + ∆Ât(t)

)
ξ(t) d t + B̂v(t) d t + Âw0ξ(t) dw0(t) +

(
Âw1 + ∆Âw1(t)

)
ξ(t) dw1(t)

e(t) = Ĉξ(t)
(21)

where Ĉ = [ 0 Ir ],

Ât =

[
Aα 0
0 At − ZCt

]
, ∆Ât(t) = H1∆ξ(ε(t))H, B̂ =

[
B

B

]
,
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Âw1 =

[
0 0n×r

Aw1 − ZCw1 0

]
, ∆Âw1(t) = H2∆ξ(ε(t))H, Âw0 =

[
Aw0 0
Aw0 0r×r

]
,

and

H1 =

[
Aσ 0

0 Ãt−ZC̃t

]
, H2 =

[
0 0n×rm

Ãw1−ZC̃w1 0

]
,

H =

[
Hx 0
0 He

]
, ∆ξ(ε(t)) =

[
∆x(ε(t)) 0

0 ∆e(ε(t))

]
.

Notice that from (17), ∆ξ(ε(t)) satisfies

‖∆ξ(ε(t))‖ 6 1. (22)

3.2 Mean-square stability of the estimation error

In this section, the mean-square stability conditions of the augmented system (21) are established. We
first give the following lemma which will be used in the proof of the mean-square stability conditions.

Lemma 1. (Wang et al., 1992) Let A, D, S, W and F be real matrices of appropriate dimensions such
that W > 0 and F T F 6 I. Then the following inequalities hold :

(i) For any scalar η > 0 and vectors x and y ∈ IRn,

2xTDFSy 6 η−1xTDDT x + ηyTSTSy.

(ii) For any scalar η > 0 such that W − ǫDDT > 0,

(A + DFS)T W−1 (A + DFS) 6 AT
(
W − ηDDT

)−1
A + η−1STS.

Then the following theorem ensures the mean-square stability of the augmented system (21).

Theorem 1. The system (21), with v(t) ≡ 0, is mean-square stable if there exist a matrix P = PT > 0
and some given positive reals µ1, µ2 and µ3, such that the following inequality holds




(1, 1) PH1 ÂT
w0P ϕ

1

2 ÂT
w0PH2 ÂT

w1P 0
HT

1 P −µ1I(n+r)m 0 0 0 0

PÂw0 0 −P 0 0 0

ϕ
1

2 HT
2 PÂw0 0 0 −µ3I(n+r)m 0 0

PÂw1 0 0 0 −P PH2

0 0 0 0 HT
2 P −µ2I(n+r)m




< 0 (23)

where
(1, 1) = PÂt + ÂT

t P + (µ1 + µ2 + ϕµ3)H
T H + ϕ

(
ÂT

w0PÂw1 + ÂT
w1PÂw0

)
. (24)

Proof. Consider the system (21) with v(t) ≡ 0 and the following Lyapunov function candidate

V (ξ(t)) = ξT (t)Pξ(t) with P = PT > 0. (25)

Applying Itô formula (Has’minskii, 1980; Mao, 1997) to the system (21), we get

dV (ξ(t)) = LV (ξ(t)) d t + 2ξT (t)PΦ(t)ξ(t) (26)

where
Φ(t) = Âw0 dw0(t) +

(
Âw1 + ∆Âw1(t)

)
dw1(t) (27)

and
LV (ξ(t)) d t = 2ξT (t)

(
Ât + ∆Ât(t)

)
ξ(t) d t + 〈Φ(t)ξ(t),PΦ(t)ξ(t)〉. (28)
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With the above notations, relation (26) can be written as

dV (ξ(t)) = 2ξT (t)P
(
Ât + ∆Ât(t)

)
ξ(t) d t + ξT (t)ÂT

w0PÂw0ξ(t) d t

+ξT (t)
(
Âw1 + ∆Âw1(t)

)T

P
(
Âw1 + ∆Âw1(t)

)
ξ(t) d t+2ξT (t)ÂT

w0P
(
Âw1 + ∆Âw1(t)

)
ξ(t)ϕ d t+Ψ(t)

(29)

where
Ψ(t) = 2ξT (t)PÂw0ξ(t) dw0(t) + 2ξT (t)P

(
Âw1 + ∆Âw1(t)

)
ξ(t) dw1(t). (30)

Using the majoration lemma 1, it can be shown that, there exist µ1 > 0, µ2 > 0 and µ3 > 0 such that
the following inequalities hold

2ξT (t)P∆Ât(t)ξ(t) 6 ξT (t)
(
µ−1

1 PH1H
T
1 P + µ1H

T H
)
ξ(t), (31)

(
Âw1 + ∆Âw1(t)

)T

P
(
Âw1 + ∆Âw1(t)

)
6 ÂT

w1

(
P−1 − µ−1

2 H2H
T
2

)−1
Âw1 + µ2H

T H, (32)

where µ2 verifies P−1 − µ−1
2 H2H

T
2 > 0, and

2ξT (t)ÂT
w0P∆Âw1(t)ξ(t)6ξT (t)

(
µ−1

3 ÂT
w0PH2H

T
2 PÂw0+µ3H

T H
)
ξ(t). (33)

Using the Schur lemma, inequality (23) becomes

PÂt + ÂT
t P + µ−1

1 PH1H
T
1 P + µ1H

T H + ÂT
w0PÂw0 + ÂT

w1

(
P−1 − µ−1

2 H2H
T
2

)−1
Âw1 + µ2H

T H

+ ϕ
(
ÂT

w0PÂw1 + ÂT
w1PÂw0

)
+ ϕ

(
µ−1

3 ÂT
w0PH2H

T
2 PÂw0 + µ3H

T H
)

= −Θ < 0. (34)

Now, taking the expectation of (29) (see (Mao, 1997)) and using relations (2) and inequalities (31)−(34),

E{dV (ξ(t))} can be bounded as

E {dV (ξ(t))} 6 E
{
ξT (t)(−Θ)ξ(t) d t

}
+ E {Ψ(t)}︸ ︷︷ ︸

=0

. (35)

Then the inequality (35) yields to

E {dV (ξ(t))} 6 −λmin(Θ)E
{
‖ξ(t)‖2 d t

}
(36)

with λmin(Θ) > 0 if inequality (23) is verified.
Now let c1 > 0 and c2 > 0 be given by

c1 =
λmin(Θ)

λmax(P)
and c2 = E

{
ξT (0)Pξ(0)

}
(37)

and with some elementary developments the following inequality is obtained

E

{
‖ξ(t)‖2

}
6

c2

λmin(P)
e−c1t (38)

and we have
lim
t→∞

E

{
‖ξ(t)‖2

}
= 0. (39)

So the mean-square stability of the augmented system (21) is proved. �
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3.3 Filter gain computation for H∞ performance

In this section, the synthesis of the reduced-order H∞ filter stated in problem 1 is given.

Theorem 2. If the rank condition (14) is verified, the reduced-order H∞ filtering problem 1 is solved for
the system (1) with the filter (5) if, for some reals µ1 > 0, µ2 > 0, µ3 > 0 and β > 0, there exist matrices
P1 = P T

1 > 0 ∈ IRn×n, P2 = P T
2 > 0 ∈ IRr×r and Y ∈ IRr×(m+1)p such that γ > 0 is minimized and the

following LMI holds




(1, 1) AT
αLT P2 + LT P2At − LT Y Ct P1B + LT P2B P1Aσ

P2LAα + A
T
t P2L − C

T
t Y T L (2, 2) P2B + βP2B P2LAσ

BT P1 + B
T P2L BT LT P2 + βB

T P2 −γ2Iq 0
AT

σ P1 AT
σ LT P2 0 −µ1Imn

Ã
T
t P2L − C̃

T
t Y T L β

(
Ã

T
t P2 − C̃

T
t Y T

)
0 0

(1, 6)T 0 0 0
(1, 7)T 0 0 0
(1, 8)T 0 0 0
(1, 9)T 0 0 0
(1, 10)T 0 0 0

0 0 0 0

LT P2Ãt − LT Y C̃t (1, 6) (1, 7) (1, 8) (1, 9) (1, 10) 0

β
(
P2Ãt − Y C̃t

)
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

−µ1Imr 0 0 0 0 0 0
0 −P1 −LT P2 0 0 0 0
0 −P2L −βP2 0 0 0 0
0 0 0 −µ3Imn 0 0 0
0 0 0 0 −P1 −LT P2 (9, 11)
0 0 0 0 −P2L −βP2 (10, 11)
0 0 0 0 (9, 11)T (10, 11)T −µ2Imn




< 0 (40)

where

(1, 1) = P1Aα + AT
αP1 + ϕ

(
A

T
w0 (P2Aw1 − Y Cw1) +

(
A

T
w1P2 − C

T
w1Y

T
)

Aw0

)
+ 2(µ1 + µ2 + ϕµ3)In,

(2, 2) = β
(
P2At + A

T
t P2 − Y Ct − C

T
t Y T

)
+ 2(µ1 + µ2 + ϕµ3)Ir,

(1, 6) = AT
w0P1 + A

T
w0P2L,

(1, 7) = (1 + β)AT
w0P2,

(1, 8) = ϕ
1

2 (1 + β)AT
w0

(
P2Ãw1 − Y C̃w1

)
,

(1, 9) = A
T
w1P2L − C

T
w1Y

T L,

(1, 10) = β
(
A

T
w1P2 − C

T
w1Y

T
)
,

(9, 11) = LT
(
P2Ãw1 − Y C̃w1

)
,

(10, 11) = β
(
P2Ãw1 − Y C̃w1

)
.

Then the gain matrix Z is given by
Z = P−1

2 Y. (41)

Proof. Consider the following performance index with ξ(0) = 0

Jξv =

∫ ∞

0
E
{
eT (t)e(t) − γ2vT (t)v(t)

}
d t
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=

∫ ∞

0

(
E

{(
ξT (t)ĈT Ĉξ(t) − γ2vT (t)v(t)

)
d t + dV (ξ(t))

})
+ E {V (ξ(t))}t=0 − E {V (ξ(t))}t=∞ .

(42)

where V (ξ) is the Lyapunov function defined in (25).
Using the facts that E {V (ξ(t))}t=∞ > 0 and E {V (ξ(t))}t=0 = 0, we obtain

Jξv 6

∫ ∞

0
E

{(
ξT (t)ĈT Ĉξ(t) − γ2vT (t)v(t)

)
d t + dV (ξ(t))

}
. (43)

Now if the LMI (40) holds, then applying Schur lemma on the previous inequality yields

[
−Θ PB̂

B̂TP 0

]

︸ ︷︷ ︸
Π

+

[
ĈT Ĉ 0

0 −γ2Iq

]
< 0 (44)

with matrix Θ given in (34). If the matrix P is taken with the general form P =

[
P1 P3

P T
3 P2

]
, so inequality

(44) is not convex. To overcome this non convexity and to be able to use LMI method to obtain the
gain Z, we choose the following structure of the Lyapunov matrix P with two matrices P1 and P2 to be
determined

P =

[
P1 LT P2

P2L βP2

]
, (45)

where β > 0 is a tuning parameter, and matrices P1 ∈ IRn×n and P2 ∈ IRr×r verify the following constraint

P1 − β−1LT P2L > 0. (46)

The inequality (44) implies −Θ < 0. Applying the Schur lemma to Θ (see (34)), we obtain the inequality
(23) of theorem 1. Inserting (44) in (43) yieds

Jξv 6

∫ ∞

0
E

{[
ξ(t)T v(t)T

]
Π

[
ξ(t)
v(t)

]
d t +

[
ξ(t)T v(t)T

] [ĈT Ĉ 0
0 −γ2Iq

] [
ξ(t)
v(t)

]
d t

}
< 0. (47)

Then the mean-square stability and the H∞ performance of the augmented system (21) are satisfied if
the LMI (40) holds. �

4 Numerical example

Consider the stochastic bilinear system (1) with one control input and two disturbance signals. The
numerical values of the system matrices are

At0 =



−1.5 1 −1
0.5 −2.5 1
0 −0.6 −3.5


 , B =



−0.1 0.3
0.5 −0.2
−0.6 −0.5


 ,

At1 =



−0.01 0.1 0

0 −0.05 0
0.15 0 −0.02


 , Aw0 =




−1 0 0.2
0.5 −0.3 −0.1
−0.2 0 0.2


 ,

J =

[
−0.03 0 −0.03

0 −0.01 0

]
, C =

[
1 0 0
0 1 0

]
, L =

[
−1 0 −1
0 1 −1

]
.

The control input is u1(t) = 5.5 sin(3t) + 0.5 and is bounded as follows

u1min = −5 6 u1(t) 6 u1max = 6.
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The covariance factor between the Wiener processes w1(t) and w2(t), defined in equation (2b), is ϕ = 0.7.
For the simulation, the initial conditions are

x(0) =
[
−1.5 −0.5 1

]T
and ẑ(0) =

[
0 0

]T
.

The LMI (40) is verified for µ1 = 3, µ2 = 0.095, µ3 = 1 and a tuning parameter β = 100. The solutions
γ, P and Y are given by γ = 1.6 and

P =

[
P1 LT P2

P2L βP2

]
=




5.3355 4.2131 0.2826 −0.0090 0.0089

4.2131 8.2636 3.7260 −0.0089 0.0202

0.2826 3.7260 4.6140 −0.0001 −0.0113

−0.0090 −0.0089 −0.0001 0.9002 −0.8886

0.0089 0.0202 −0.0113 −0.8886 2.0197




, Y =

[
6636 −6636 13.2 −13.2

3079.2 −3079.2 5.9 −5.9

]
.

Using (41), the gain matrix Z is

Z =
[
Z0 Z1

]
= 106 ×

[
1.5691 −1.5691 0.0031 −0.0031

0.8428 −0.8428 0.0017 −0.0017

]
.

Finally, (10) and (12) give the matrices of the reduced-order filter (5)

M0 =

[
−4.8618 0.8618
−1.8775 −2.1225

]
, M1 =

[
0.1368 −0.1568
0.2237 −0.2037

]
,

N0 =

[
−3.3618 −1.2618
−1.3775 0.2225

]
, N1 =

[
−0.0032 0.0568
0.1137 0.1137

]
.

The estimation error e(t) is plotted in figure 1. The disturbance signals v1(t) and v2(t) are depicted in
figure 2. The efficiency of the approach is then shown by numerical simulation.

5 Conclusion

In this paper, the problem of reduced-order filtering for stochastic bilinear systems with multiplicative
noises both in the state and in the measurement equations and subject to finite energy perturbations,
has been studied. The mean-square stability of the observation error and the H∞ performance from the
disturbances to the filtering error are proved using a quadratic Lyapunov function. A particular choice of
the Lyapunov matrix allows to convert the filter design into a convex problem. The use of Sylvester-like
constraints allows to parametrize the filter matrices through a unique gain matrix. Finally, a LMI method
which ensures the mean-square stability and the H∞ performance is used to compute the gain matrix.
A numerical example is given to illustrate the effectiveness of the proposed approach.
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Figure 1: Filtering error e(t).
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Figure 2: Disturbance signals v1(t) and v2(t).
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