
Event-driven Optimization-based Control of

Hybrid Systems with Integral Continuous-time Dynamics

S. Di Cairano a,c, A. Bemporad a,⋆, J. Júlvez b

aDepartment of Information Engineering, University of Siena, Via Roma 56, Siena, Italy

bDepartment of Software, Technical University of Catalonia, Jordi Girona 1-3, Barcelona, Spain

cPowertrain Control Department, Ford Motor Company Research and Advanced Engineering, Dearborn, MI, USA

Abstract

In this paper we introduce a class of continuous-time hybrid dynamical systems called integral continuous-time hybrid au-
tomata (icHA) for which we propose an event-driven optimization-based control strategy. Events include both external actions
applied to the system and changes of continuous dynamics (mode switches). The icHA formalism subsumes a number of hybrid
dynamical systems with practical interest, e.g., linear hybrid automata. Different cost functions, including minimum-time and
minimum-effort criteria, and constraints are examined in the event-driven optimal control formulation. This is translated into
a finite-dimensional mixed-integer optimization problem, in which the event instants and the corresponding values of the
control input are the optimization variables. As a consequence, the proposed approach has the advantage of automatically
adjusting the attention of the controller to the frequency of event occurrence in the hybrid process. A receding horizon control
scheme exploiting the event-based optimal control formulation is proposed as a feedback control strategy and proved to ensure
either finite-time or asymptotic convergence of the closed-loop.

Key words: Hybrid systems, discrete-event systems, optimal control, model predictive control, mixed-integer programming.

1 Introduction

Hybrid systems are capable of modelling complex processes characterized by the coexistence and interaction of
discrete and continuous dynamics [1]. The hybrid dynamics are usually described either in discrete-time through
difference equations, or in continuous-time through differential equations. The trajectory of a continuous-time hybrid
system can be represented as a sequence of continuous evolutions interleaved by discrete events [2, 3], which cause
changes in the set of differential equations defining the continuous flow, also called the “modes” of the hybrid system.
Such a behavior is exhibited, for instance, by piecewise affine systems, where the coefficients of the linear differential
or difference equations defining the continuous dynamics depend on linear inequality conditions over the continuous
state and input vectors [4].

As mode switches introduce discontinuities in the vector fields defining the system dynamics, this may lead to weaker
solution concepts for the differential equations, such as the Filippov [5] or Utkin [6] solutions, and also to pathological
effects, such as Zeno behaviors [3]. The presence of possible resets of the state values after mode switches further
complicates the trajectory, as in this case the trajectory itself can become discontinuous. The continuous flow and
the instants at which the discrete events occur can be further influenced by exogenous discrete and continuous input

⋆ Corresponding author. This paper was not presented at any IFAC meeting. This work was partially supported by the Eu-
ropean Community through the HYCON Network of Excellence, contract number FP6-IST-51136, by the Italian Ministry for
Education, University and Research (MIUR) under project “Advanced control methodologies for hybrid dynamical systems”
(PRIN’2005), and by the Spanish Ministry of Education and Science (Juan de la Cierva fellowship).

Email addresses: dicairano@dii.unisi.it (S. Di Cairano), bemporad@dii.unisi.it (A. Bemporad),
julvez@lsi.upc.edu (J. Júlvez).

Preprint submitted to Automatica 27 June 2008

signals. From a controller design perspective, when optimal control is applied to continuous-time hybrid systems,
the resulting computational problem is hard to solve, since it usually involves nonconvex problems (see [7] and the
references therein).

In the discrete-time setting not only most of the aforementioned subtleties in the characterization of trajectories
disappears, but also optimal control problems can be solved very efficiently through mixed-integer programming
(MIP) solvers [8]. In comparison with the continuous-time case, here the simplification is mainly due to the fact
that events (such as mode switches) can only occur at sampling instants. However, mode switches that occurs in the
intersampling, and hence are not unrecognized or delayed, may lead to non-negligible modelling errors [9, Ch. 5] that
we call mode-mismatch. In the discrete-time case, modelling precision can be improved by reducing the sampling
period. However, this increases the computational load of the controller. In particular, in a model predictive control
(MPC) context [10], the obvious disadvantage is that, for a given time-horizon of prediction, a larger number of
control variables is involved in the optimization problem.

To avoid mode-mismatch errors one should change command values exactly when the mode changes, or in other
words adopt an event-driven control approach. Event-driven approaches have been originally used for control in the
framework of discrete-event systems, e.g., finite state machines and Petri nets. Receding horizon control approaches
have been successfully applied to some classes of discrete-event systems, max-plus-linear discrete event systems [11],
discrete-event systems with real-time constraints [12], and scheduling systems [13].

This paper introduces integral continuous-time hybrid automata (icHA), a model paradigm for a special class of
continuous-time hybrid dynamical systems for which no a priori information about the timing and order of the events
is assumed. It will be shown that the dynamics of an icHA can be expressed with an event-driven formulation, as
will be detailed in Section 2. A similar formulation has been used in plant [14]. In Section 3 we formulate different
continuous-time optimal control problems of icHA that can be solved via mixed integer programming techniques
despite the event-driven formulation. A similar approach was proposed in [15], although the system model and the
optimization approach are different: in [15] mode switches are directly controlled and the system dynamics have no
other exogenous input signals, that also induces a solution algorithm based on linear programming and enumeration
of feasible mode sequences. Finally, the optimal control methods are used in Section 4 to develop an event-driven
closed-loop control approach that exploits a model predictive control philosophy, for which conditions for convergence
are given together with an illustrative example.

1.1 Notation

Small letters denote variables or vectors (e.g., v, ξ), superscripts (e.g., vj) vector components. Subscripts are used
for system modes (e.g., Ai, bi, fi) and for time instants in a sequence of time instants (ti). Bold symbols denote

finite sequences of variables, e.g., a , {a(ti)}
N
i=0. The sets R and Z indicate the set of real numbers and integer

numbers, respectively, Z0+, R0+, Z0+, R+ indicate the sets of nonnegative integer, nonnegative real, positive integer,
and positive real numbers, respectively. We use Z[a,b] where a, b ∈ Z, b ≥ a to indicate the set {x ∈ Z : a ≤ x ≤ b}.
We indicate the origin of a space by O, the interior of a set X by Int(X) and its closure by Cl(X). The binary
operator \ indicates the difference between sets.

Relational operators (such as ≤) over vectors are intended componentwise. For matrices, Q ≥ 0 indicates positive

semidefiniteness, ‖z‖Q
∞ , maxi |(Qz)

i|, ‖z‖Q
1 ,

∑

i |(Qz)
i|, and ‖z‖Q

2 , zTQz where Q > 0. The symbol I indicates
the identity matrix of appropriate dimensions, while we use the bold 0 and 1 to indicate matrices and vectors entirely
composed of zeros and ones, respectively. The symbol → denotes logical implication (if) and the symbol ↔ logical
equivalence (iff).

Given a signal a(·) : R0+ → A we indicate its continuous-time trajectory by a(s), s ∈ R0+, and its event-driven
trajectory by a(j), where j ∈ Z0+, a(j) = a(tj) and tj is the time instant at which the jth event occurs. When
considering event-driven predictive control, the predicted trajectory of a signal a(·) from state x(t) at time t along
event steps Z[r,s] are indicated by a(x(t)) = [ax(t)(r), . . . , ax(t)(s)].

2 Integral Continuous-time Hybrid Automaton

We consider a continuous-time version of the discrete hybrid automaton (DHA) proposed in [16], denoted as integral
continuous (-time) hybrid automaton (icHA), where discrete-time affine dynamics are replaced by integral continuous-
time dynamics. Similarly to DHA, the icHA consists of the four components reported in Figure 1: the integral switched

2

aFSM

EGMS

iSAS

ub

uc

ξb

xc

δe

i

[δe = 1] ↔ [fEG(·) ≤ 0]i = fMS(·)

ẋc = Bi uc + fi

i = 1, . . . , s

t

Fig. 1. Integral Continuous-time Hybrid Automaton (icHA).

affine system (iSAS), the event generator (EG), the mode selector (MS) and the asynchronous finite state machine
(aFSM). The iSAS represents a collection of continuous-time integral dynamics for the continuous states

ẋc(t) = Bi(t)uc(t) + fi(t), (1)

where xc ∈ R
nc and uc ∈ R

mc are the continuous components of the state and input vectors, respectively, and
i ∈ I = {1, 2, . . . , s} is the system mode. As will be detailed later, the main reason for restricting the attention on
integral dynamics instead of more general linear dynamics is computational. Nonetheless, the class of continuous-state
dynamics (1) has been widely exploited for modelling and verification of hybrid systems [2, 15, 17], as it is powerful
enough to model many practical problems. In fact, given a nonlinear (possibly discontinuous) dynamical model
ẋc = f(xc(t), uc(t)), model (1) can be interpreted as a piecewise zero-order approximation of the state-transition
function with respect to the state vector xc and a first-order approximation with respect to the input vector uc.
Similarly to the piecewise affine (PWA) approximation ẋc = Aixc +Biuc + fi, the icHA dynamics can be arbitrarily
close to a given nonlinear dynamics by augmenting the number of modes.

The EG defines the endogenous binary inputs δe according to the linear threshold conditions

[δi
ex

(t) = 1] ↔
[

Ex
i

[

xc(t)
t

]

≤ F x
i

]

, i ∈ Z[1,nx
e], (2a)

[δi
eu

(t) = 1] ↔ [Eu
i uc(t) ≤ Fu

i] , i ∈ Z[1,nu
e], (2b)

and we get δe , [δ1ex
. . . δ

nx
e

ex δ
1
eu
. . . δ

nu
e

eu]T ∈ {0, 1}
ne , ne , nx

e +nu
e , as the vector of endogenous binary input variables.

The icHA may be also excited by exogenous binary input signals ub ∈ {0, 1}
mb entering the mode selector and the

asynchronous finite state machine described below.

Definition 2.1 PC(mc,mb) is the set of piecewise constant functions u(t) ,

[

uc(t)
ub(t)

]

, u : R → R
mc × {0, 1}

mb such

that u(t) is constant for all t ∈ [tk, tk+1), k ∈ Z0+, where t0 < t1 < ... is a sequence of time instants. 2

3

Discrete-time samples held constant between sampling instants by a zero-order holder are a special case of piece-
wise constant functions, corresponding to equally spaced time instants. General piecewise constant functions can
approximate arbitrarily well any given piecewise continuous function, provided that the number of intervals can go
to infinity and the interval length can go to 0.

Assumption 2.1 In what follows it is assumed that u : R → R
mc ×{0, 1}mb ∈ PC(mc,mb)

1 , i.e., the input trajectory
is piecewise constant along time. 2

Definition 2.2 An event occurs whenever an endogenous input δe or an exogenous input [uc
ub

] changes value. Given
the initial time t0 ∈ R, the event instants are defined recursively as

tk , min
t>tk−1

{t : (uc(t), ub(t), δe(t)) 6= (uc(tk−1), ub(tk−1), δe(tk−1))}, (3)

where clearly tj < tj+1 for all j ∈ Z0+. We assume that the minimum in (3) always exists. 2

The Boolean state ξb ∈ {0, 1}nb is defined as

ξb(t) , xb(tk) for tk−1 ≤ t < tk, (4)

xb(tk+1) = faFSM(xb(tk), ub(tk), δe(tk)), (5)

and faFSM : {0, 1}
nb+mb+ne → {0, 1}

nb is the Boolean function defining the transitions of the asynchronous finite
state machine. The Boolean state ξb(t) remains constant, ξb(t) = xb(tk), during the whole interval tk−1 ≤ t < tk. At
the event instant tk, the Boolean state switches to the new value faFSM(xb(tk), δe(tk), ub(tk)), and remains at that
value for tk ≤ t < tk+1. While we are assuming that the transitions of the aFSM are instantaneous, delays can be
easily modelled by introducing additional events and states. In (5) discrete-state transitions can occur at any time
instant, not only at multiples of a given sampling period as for DHA.

The different operating modes of the system represented by the variable i(t) are selected by the mode selector (MS)
function through the scalar product

i(t) = [1 2 . . . s] · fMS(ξb(t), ub(t), δe(t)), (6)

where fMS : {0, 1}nb+mb+ne → {0, 1}s is a Boolean function satisfying the mutual exclusivity relation 1T · fMS(ξb(t),

ub(t), δe(t)) = 1, for all (ξb(t), ub(t), δe(t)) ∈ {0, 1}
nb+mb+ne . In (6), when ub and δe remain constant the Boolean

state and the system mode also remain constant.

2.1 Event-Driven Representation of icHA

The icHA model (1)–(6) is next converted to a computationally-oriented event-driven representation.

Let t = {tj}
h−1
j=0 be a finite sequence of ordered time instants t0 < t1 < . . . < th−1. Let uc : R → R

mc be a piecewise

constant function with breakpoints at the instants in t and u = {uc(tk)}h−1
k=0 the corresponding sequence of levels.

For the affine dynamics ẋc(t) = Axc(t) + Bu(t) + f , the state value at tj , j ∈ Z[0,h−1], is a nonlinear function of t

and u. However in the case of integral dynamics (A = 0),

xc(tj) = xc(t0) +

j−1
∑

k=0

(B(tk+1 − tk)uc(tk) + (tk+1 − tk)f(tk)) . (7)

Consider now a system with switched integral dynamics (1), and let the set of mode-switch instants {t : i(t− ε) 6=
i(t+ ε), ε → 0} ⊆ t. Since in any time interval [tk, tk+1) the mode is constant, from (7) we obtain that the system

1 For the simplicity of notation the subscript (mc, mb) will be dropped in the rest of the paper when the value of mc and mb

is clear from the context.

4

dynamics can be rewritten as the first order linear difference equations

xc(k + 1) = xc(k) +Bi(k)vc(k) + fi(k)q(k) (8a)

t(k + 1) = t(k) + q(k) (8b)

where k is the event counter, xc(k) = xc(tk), t(k) = tk, i(k) = i(tk), q(k) is the time interval between event instants
tk and tk+1, vc(k) = q(k)uc(k) is the integral over time period q(k) of the input uc(k) = uc(tk). Note that in (8b) time
t is treated as an additional state variable. The controlled variables are the input integral vc(k) and the input level

duration q(k), from which the actual input uc(k) = vc(k)
q(k) to be applied to the continuous-time system is immediately

recovered.

The event generator becomes

[δi
ex

(k) = 1] ↔
[

Ex
i

[

xc(k)
t(k)

]

≤ F x
i

]

, i ∈ Z[1,nx
e] (9a)

[δi
eu

(k) = 1] ↔ [Eu
i vc(k) ≤ Fu

i q(k)] , i ∈ Z[1,nu
e], (9b)

where δe(k) = δe(tk), and δe(t) = δe(tk), for all t ∈ [tk, tk+1) by the definition of tk in (3). The dependence on time
becomes a dependence on a state variable, because of (8b), and (9b) is obtained from (2b) by multiplying by q(k)
both sides of the right clause. The mode selector equation becomes

i(k) = [1 2 . . . s] · f̃MS(xb(k), ub(k), δe(k)), (10)

where i(t) = i(k), for all t ∈ [tk, tk+1), as a consequence of the event definition, and f̃MS(xb(k), ub(k), δe(k))
= fMS(faFSM(xb(k), ub(k), δe(k)), ub(k), δe(k)) because of (6) and of the definition of ξb(t). Finally, Equation (5) is
already defined with respect to the events instants.

Equations (5), (8), (9), (10) define the behavior of the icHA in an event-driven representation. However, to account
for (3), the following condition must be ensured:

[

(δe(k), uc(k), ub(k)) = (δ̄e, ūc, ūb)
]

→
[

(δe(t), uc(t), ub(t)) = (δ̄e, ūc, ūb), ∀t ∈ [tk, tk+1)
]

. (11)

We consider two different cases: (i) the value uc or ub changes, so that an event is externally forced, for instance by
a controller, (ii) the value of δe changes, i.e., an endogenous event occurs. Since we will focus on an event-driven
control design, in which exogenous events are generated on purpose by the controller, we can assume that uc(t),
ub(t) are constant between event instants and simply restrict condition (11) to

[

δe(k) = δ̄e

]

→
[

δe(t) = δ̄e, ∀t ∈ [tk, tk+1)
]

, (12)

i.e., that the current mode is kept until the next event. Moreover, as δi
eu

variables in (2b) can change only when the
input changes, they can be dealt with as for externally forced events, namely by appropriate selection of the control
inputs. Thus, it is indeed sufficient to enforce (12) for the variables in (2a).

Let the mapping cod(·) : {0, 1}
nx

e → Z0+ associate a nonnegative integer number d to each allowed value of vector

δx
e = [δ1ex

. . . δ
nx

e
ex]T defined in (2a). For example d may be the integer whose binary encoding is δex

. Define the matrix

Ēx(d) and the vector F̄ x(d) by collecting the rows in the inequalities of the EG (9) which are satisfied for ex such

that cod(δex
) = d. Define Êx(d), F̂ x(d) by collecting as rows the inequalities of the EG (9), which are not satisfied

for δex
such that cod(δex

) = d. Hence (12) is equivalently replaced by

[

cod(δex
(k)) = d

]

→
[

Ēx(d) [x
t] ≤ F̄ x(d), Êx(d) [x

t] > F̂ x(d)
]

, ∀t ∈ [tk, tk+1). (13)

As an example, consider two thresholds [δ1ex
= 1] ↔ [x ≤ 0], [δ2ex

= 1] ↔ [x ≤ 1]. The matrices associated to

δx
e = [0 1]T , where cod(δx

e) = 1, are Ēx(1) = 1, F̄ x(1) = 1, collecting the second threshold condition (satisfied), and

Êx(1) = 1, F̂ x(1) = 0.

5

Proposition 2.1 Let cod(δ̃ex
) = d, and let Ēx(d), Êx(d) and F̄ x(d), F̂ x(d) be the associated matrices and vectors,

respectively, obtained by collecting the rows in (9) which are either satisfied (Ēx, F̄ x) or not satisfied (Êx, F̂ x) when
δex

is such that cod(δex
) = d. In case of integral dynamics, if uc(t) is constant for t ∈ [tk, tk+1), (12) is guaranteed

by the mixed-logical constraint

[

cod(δx
e (k)) = d

]

→
[[

Ēx(d)

−Êx(d)

] [

x(k+1)
t(k+1)

]

≤
[

F̄ x(d)

−F̂ x(d)

]

+ ε1
]

, (14)

for ε > 0, ε→ 0+.

Proof. Because of the integral dynamics, the state trajectory for t ∈ [tk, tk+1) is the line x(t) = x(k) + γ(t − t(k)),

where γ = x(k+1)−x(k)
t(k+1)−t(k) . Condition (13) and condition (14) define two polyhedra, P and Pε, respectively. Since ε > 0,

Pε ⊃ P and if ε → 0, Pε → P . Condition (14) ensures that x(k + 1) ∈ Pε and (13) ensures that x(k) ∈ P ⊂ Pε,
hence for all t ∈ [tk, tk+1], x(t) ∈ Pε. Thus, by linearity of the trajectory there exists ̺(ε) such that x(t) ∈ P , for all
t ∈ [tk, tk+1 − ̺(ε)]. Since for ε→ 0, Pε → P , then for ε→ 0 also ̺(ε) → 0. 2

The effect of adding ε in equation (14) is to expand the polyhedron P . This is necessary for allowing δx
e (k + 1) 6= δx

e (k),
otherwise the system would be constrained to remain always in the same mode. The value of ̺(ε) is the time the
trajectory spends in Pε \ P . When Pε → P , ̺(ε) → 0.

Note that, within a given mode i(k), x(k + 1) is an affine function of x(k), q(k), and v(k) ,

[

vc(k)
vb(k)

]

, where vb(k) =

ub(k) , so that (14) can be reformulated as a set of mixed-integer inequalities on x(k), q(k), v(k), δe(k) [18]. Indeed,
equations (5), (8), (9), (10), (14) represent a DHA that can be converted into the event-driven MLD (eMLD) system

x(k + 1) = Ax(k) +B1w(k) +B2δe(k) +B3z(k) +B5, (15a)

t(k + 1) = t(k) + q(k), (15b)

E2δe(k) + E3z(k) ≤ E1w(k) + E4x(k) + E5 + E6t(k), (15c)

where w(k) ,

[

v(k)
q(k)

]

, for instance using the tool Hysdel [16]. Differently from the standard discrete-time MLD

system [8], in the eMLD (15) k is an event counter, while time t is an additional state variable.

Remark 2.1 Discontinuities of the continuous state trajectory in the form of state resets xc(tk+1) = Φixc(tk) + µi

can be included as follows. To model resets one must add reset modes i ∈ {s+1, . . . , sr}, modify (8a) into xc(k+1) =
(Φixc(k) + µi) + Biv(k) + fiq(k), and (8b) into t(k + 1) = t(k) + Γiq(k), where in modes i = {1, . . . , s}, Φi = I,
µi = 0, and Γi = 1, while in reset modes i = {s+ 1, . . . , sr} Bi = 0, fi = 0, and Γi = 0.

When a reset occurs Equation (12) does not apply, as tk+1 = tk. In this case, assuming that two consecutive resets
cannot occur, the continuous-time trajectory xc(t) may be discontinuous in tk, and is defined as follows. Let j,
be the mode immediately before the reset mode i. Then, limt→t

−

k

xc(t) = xc(k − 1) + Bjv(k − 1) + fjq(k − 1),

xc(tk) = Φi(xc(k − 1) + Bjv(k − 1) + fjq(k − 1)) + µi, and limt→t
+
k

xc(t) = xc(tk). In other words, we define the

state trajectory xc(t) as right continuous.

In accordance with the above definition of resets, in eMLD models these are instantaneous, contrary to resets in
discrete-time MLD models that are constrained to last one sampling interval [16]. An equivalent event-driven PWA
system (ePWA) of the eMLD (15) can be obtained [19]. See [9] for further details.

2.2 Modelling Capabilities

Even though the piecewise integral dynamics of the continuous-state of icHA has some limitations, the icHA cover
several popular model classes.

Linear hybrid automata (LHA), known to be useful for both control [20] and verification purposes [17], can be
modeled by icHA, as intuitively shown by the example in Section (3.3). A formal proof of the capabilities of icHA
to model linear hybrid automata can be obtained by resorting to an equivalent piecewise affine representation of the

6

icHA system [9] and by exploiting the results in [21] on the relations between linear hybrid automata and piecewise
affine systems. In [22] an example of formal verification of a LHA performed through its equivalent icHA formulation
was given.

Another class of systems that can be modelled as icHA is the class of continuous Petri nets (CPN) [23], that relaxes
classical Petri nets allowing continuous values for transition firings, to alleviate combinatorial state explosion. The
dynamics of a timed continuous Petri net under finite server semantics is piecewise integral, hence the class of
continuous Petri nets is contained in the class of icHA. The application to continuous Petri net control of the
techniques proposed here has been presented in [24].

Finally as mentioned in Section 2, piecewise integral dynamics can approximate nonlinear dynamics arbitrarily well,
possibly at the price of increasing the number of system modes, similarly to what described in [4] for piecewise affine
systems.

3 Event-Driven Optimal Control

Consider the event-driven optimal control problem for the icHA (1)–(6)

min
x,t,q,v

J(x, t,q,v) (16a)

s.t. icHA dynamics (1)–(6) (16b)

g(x(k), t(k), q(k), v(k)) ≤ 0, k ∈ Z[0,N−1] (16c)

gN(x(N), t(N)) ≤ 0 (16d)

x(0) = x0, t(0) = t0, (16e)

where J(·) is a convex function of (x, t,q,v), t = {t(k)}N
k=0 are the time instants at which events occur, x = {x(k)}N

k=0

are the corresponding state values, q = {q(k)}N−1
k=0 are the durations of the time intervals between two consecutive

events, q(k) = t(k + 1) − t(k), v = {v(k)}N−1
k=0 are the input integrals computed on the corresponding intervals

{[t(k), t(k + 1))}N−1
k=0 , x0 is a given initial state, and t0 a given initial time. Constraints (16c), (16d) represent

possible additional constraints in the optimal control problem and N is the event-based optimal control horizon, i.e.,
the number of events considered in the optimal control formulation.

By formulating the icHA dynamics (16b) as the equivalent eMLD model (15), problem (16) can be solved by
mixed integer programming (MIP) for different objective functions (16a) and constraints (16c), (16d) as detailed in
Section 3.1. The cost function and the constraints determine the type of problem to be solved. As described below, all
such problems are formulated in a way that results in mixed integer linear or quadratic programming (MILP,MIQP)
problems, for which efficient and reliable solvers exist.

3.1 Cost Function

Similar to the discrete-time case, the cost function in (16a) can be defined as

J(x, t,q,v) , F
(

x(N), t(N)
)

+

N−1
∑

k=0

L
(

x(k), t(k), q(k), v(k)
)

. (17)

For instance, one can set

L(x, t, v, q) , ‖x− x̂‖Q1
p + ‖t− t̂‖Q2

p + ‖v − v̂‖R1
p + ‖q − q̂‖R2

p (18a)

F (x, t) , ‖x− x̂‖QN
p + ‖t− t̂‖QT

p , p ∈ {1, 2,∞}, (18b)

where “ˆ” denotes a given reference value for the corresponding vector. From the general formulation (16) we can
derive specific forms of the cost function (16a) and the associated constraints (16c), (16d).

It may be required that the system state reaches a desired target state x̂ after N events, x(N) = x̂, or, in a softened

form, that it gets very close to it by setting F
(

x(N), t(N)
)

= ρ ‖x(N) − x̂‖∞, where ρ ∈ R+ is a large weight. In

7

alternative, one can consider a convex desired target set XN and impose the constraint x(N) ∈ XN . A target time t̂
or set TN can be formulated similarly.

The minimum-time criterion looks for the sequence (x, t,q,v) that minimizes the time needed to bring the system
from x0 to the final state x̂. This can be obtained by setting

L
(

x(k), t(k), q(k), v(k)
)

= |q(k)| = q(k), F
(

x(N), t(N)
)

= 0 (19)

in (17).

The minimum-effort criterion looks for minimizing the intensity of the command input u(t). If the ℓ1-norm of the

input function is used, we obtain J(x, t,q,v) =
∫ tN

0
‖u(t)‖dt =

∑N−1
k=0

∫ t(k+1)

t(k)
‖u(t)‖1dt. Since u is constant in each

period [t(k), t(k + 1)), it is enough to set

L
(

x(k), t(k), q(k), v(k)
)

= ‖v(k)‖1, F
(

x(N), t(N)
)

= 0 (20)

in (17).

The minimum-displacement criterion looks for the trajectory that minimizes the largest deviation from a desired
continuous state trajectory x̂c(·), that we assume piecewise linear and continuous (a special case is x̂c(·) ≡ x̂c):

J(x, t,q,v) = max
t∈[t(0),t(N)]

‖xc(t) − x̂c(t)‖∞. (21)

Proposition 3.1 Let xc(t), ∀t ∈ [t0, tN], be the trajectory of continuous states of an icHA system with no resets,
t0 < t1 < . . . < tN be the event instants, assume that x̂c(t) is linear over each [ti, ti+1), i = 0, . . . , N − 1 and
continuous over [t0, tN]. Then

max
t∈[t0,tN]

‖xc(t) − x̂c(t)‖∞ = max
k=0,...,tN

{‖xc(t(k)) − x̂c(t(k))‖∞}.

Proof. In the absence of resets, state trajectories of icHA are continuous, so ‖xc(·)− x̂c(·)‖∞ is continuous, being the
composition of continuous functions (‖ · ‖∞, xc(·), x̂c(·)), and therefore the maximum over [t0, tN] is well defined.
Moreover, function ‖xc(·) − x̂c(·)‖∞ is a convex function of time t on [t(k), t(k + 1)], being the composition of a
convex function (the infinity norm) with linear functions (the state trajectory of the icHA and x̂c between two
consecutive switches), and thus it attains its maximum either at t(k) or at t(k + 1). Hence,

max
t∈[t(0),t(N)]

‖xc(t) − x̂c(t)‖∞ = max
0≤k≤N−1

{

max
t∈[t(k),t(k+1)]

‖xc(t) − x̂c(t)‖∞

}

= max
0≤k≤N−1

{max{‖xc(t(k)) − x̂c(t(k))‖∞, ‖xc(t(k + 1)) − x̂c(t(k + 1))‖∞}}

= max
0≤k≤N

{‖xc(t(k)) − x̂c(t(k))‖∞}. (22)

2

Note that while (21) is not in the form (17), its equivalent form (22) still leads to a mixed-integer linear formulation
of the optimal control problem.

3.2 Operating Constraints

The constraints in (16c), (16d) can involve quite general mixed-integer linear constraints on states, event instants, and
inputs. By using convexity arguments and continuity of xc(·) similar to the ones used in the proof of Proposition 3.1,
state constraints h ≤ Hx(t) ≤ h, t ∈ [t(0), t(N)] can simply be enforced through constraints on the state at event
instants only

h ≤ Hx(k) ≤ h, k ∈ Z[0,N]. (23)

8

Similarly, input bounds u ≤ uc(t) ≤ u, t ∈ [t(0), t(N)) can be rewritten immediately as the linear constraints

uq(k) ≤ v(k) ≤ uq(k), k ∈ Z[0,N−1]. (24)

Different input bounds for different modes can be enforced by the logical constraint [i(k) = ı̄] → [uı̄q(k) ≤ v(k) ≤
uı̄q(k)], where uı̄ and uı̄ are upper and lower bounds of the input while in mode ı̄. Note that, differently from the
standard discrete-time optimal control problem where constraint satisfaction is guaranteed only pointwise in time,
in the event-driven approach state constraints are enforced continuously on time.

Additional operating constraints may be imposed on time intervals between two consecutive events

q ≤ q(k) ≤ q, k ∈ Z[1,N−1]. (25)

A finite q imposes a maximum time for each control action, in order to prevent the system from running in open
loop for too long until the next event. A minimum duration q ensures a minimum time interval between two events
(and thus between two mode switches), therefore avoiding undesirable effects such as high frequency chattering and
control-induced Zeno behaviors [3]. More in detail, if constraint (25) is enforced, no solution that chatters with period
smaller than q is generated by the control strategy. Constraint softening may be used to avoid infeasibility when
chattering cannot be avoided, thus resulting in the largest possible chattering period. Furthermore, (25) ensures that
the time-length of the optimization problem is at least Nq. Finally, the lower bound q can be used to account for

the computation time of the optimal control problem (16). The minimum dwell time may be used there to guarantee
that there is enough time to update the control input before the next event occurs.

Constraints on event instants tk ≤ t(k) ≤ tk, k ∈ Z[1,N] can also easily be enforced, since time is a state variable
on the optimization problem (16). These may be combined with state constraints to enforce that at a time instant
during a given interval, the state value is within a given range.

3.3 Numerical Example

Consider the well-known “train–gate” benchmark for hybrid systems [17], commonly used for verification purposes,
slightly modified and proposed here as a control problem.

The system is composed of a train and a gate. The control objective is to let the train cross the gate as fast as
possible in a safe condition, i.e., the gate must be closed when the train crosses it. The well known linear hybrid
automaton describing the system model is shown in Figure 2. The discrete state of the system is composed of the
discrete state of the train and of the gate, whose dynamics are described by the automata in Figure 2. The train
can be in an arriving (Ar), crossing (Cr), leaving (L), or far (F) situation, depending on its position, the gate can
be open (O), closing (Cl), closed (C) or idle (I).

The continuous states of the system are the train position x1 and the gate opening percentage x2, where x2 = 0
means completely closed while x2 = 1 means completely open. Instead of by the differential inclusions [17] used

for verification, we define the dynamics by ẋ = u(t) + fi, where fi(t) =
[

f1(t)
0

]

, u(t) =
[

u1(t)

u2(t)

]

and u
j
i ≤ uj ≤ u

j
i ,

j = 1, 2, and i is the system mode. The system modes are the cartesian product of the states of the train and the
gate automata, hence 16 in total. The numerical values can be found in [9, Sec. 5.2.3].

Consider the following problem: from the initial state
[x0c

x0b

]

with x0c =
[

−20
1

]

and x0b
= (Ar,Cl), the train must

safely cross the gate in minimum time. The minimum time criterion (19) where the target state was x̂ =
[

40.3
1

(F,I)

]

was

applied with N = 5, under the safety constraint imposing that the discrete state (Cr,O) is never reached.

For control purposes we have modelled the system as a icHA (1)–(6). Figure 3 shows the regions of the continuous-
state space corresponding to the modes of the train-gate system, and the optimal trajectory generated by the event-
driven approach for the above stated problem plotted as a solid line. The x1 axis is partitioned in four intervals,
representing the train modes Ar, Cr, L, and F , and the x2 axis, relative to the gate, in two intervals representing
Cl (and O), and C.

9

Ar

Cr

L

F

x1 ≥ −10 x1 > 10

x1 > 40

−20

(a) Train Automaton.

I Cl

CO

x2 ≤ 10−2

x1 > 10

x2 = 1

(b) Gate Automaton.

Fig. 2. Automata that describe the Train-Gate system.

-20 -10 0 10 20 30 40

train position (x1)

g
a
te

p
o
si
ti
o
n

(x
2
)

Fig. 3. Train–gate trajectory with minimum time control. The trajectory obtained by event-driven control is shown as a a
solid line, the trajectory obtained by discrete-time control (N = 6) is shown as a dashed line.

The target state x̂ is reached in 93.8 time units, with a trajectory that does not cross the unsafe region ({x ∈ R
2 :

10 ≤ x1 ≤ 10, 10−2 ≤ x2 ≤ 1}). The CPU-time to compute the optimal trajectory is 0.26 seconds 2 .

N Ts (t.u.) Tcpu (s) Tviol (t.u.) T
(sup)
viol

(t.u.)

5 20.00 0.29 3.82 40.00

6 16.66 0.86 21.83 33.33

10 10.00 10.93 9.82 20.00

15 6.66 640.21 6.55 13.33

e.d. — 0.26 0 0

Table 1
Numerical results of the time-discretization approach (e.d. = event-driven (5), t.u.= time units).

Table 1 reports the results of the event-driven control compared to a discrete-time solution of the same problem.
The time horizon of the discrete-time approach is 100 time units. The minimum-time criterion, which cannot be

2 All the simulations presented in this paper have been performed on a Pentium IV-M 2.0 GHz with 1 GByte RAM running
Cplex 9.0 and Matlab 6.5.

10

perfectly enforced in a discrete-time approach, is replaced by minimizing the tracking error between the current
and target states (x̂c, x̂b) = (40.3, (F, I)). In Table 1, N is the number of time steps, Ts is the sampling period,
Tcpu is the computation time. The dashed line in Figure 3 shows the trajectory obtained by discrete time control
with N = 6. The unsafe situation of a train crossing the open gate is effectively attained during the intersampling.
This is not surprising, as in the discrete-time formulation the constraints are only enforced at sampling instants. In
Table 1, Tviol indicates the time period during which the current discrete-time solution violates the safety constraint.

T
(sup)
viol = 2Ts is the upper bound on Tviol, due to the fact that the safety constraints can be violated up to one

sampling period when entering the gate and up to one sampling period when leaving from it. By decreasing Ts, also

T
(sup)
viol decreases, ensuring a better system safety. However, the number of required control steps increases for a fixed

time-horizon, and hence the complexity of the optimization problem increases as shown in Table 1.

4 Event-Driven Model Predictive Control

The event-driven optimal control approach of Section 3 is an open-loop one. In this section we introduce an event-
driven closed-loop strategy based on Model Predictive Control (MPC) concepts [10].

Given an icHA and its eMLD translation obtained as described in Section 2.1, consider again the optimal control
problem (16). The event-driven Model Predictive Control (eMPC) strategy is defined as follows:

1. Let N be the event horizon; at a generic time t set t0 = t, x0 = x(t) in (16).

2. Solve problem (16). Let v∗(x(t)) , [v∗
x(t)(0), . . . , v∗

x(t)(N − 1)] be the sequence of optimal input integral values,

q∗(x(t)) , [q∗
x(t)(0), . . . , q∗

x(t)(N−1)] be the sequence of input action durations, x∗(x(t)) , [x∗
x(t)(1), . . . , x∗

x(t)(N)]

be the predicted state values at event instants, and t∗(x(t)) , [t∗
x(t)(1), . . ., t∗

x(t)(N)] be the corresponding time

instants at which the events occur, computed from initial state x(t) and initial time t.

3. Compute the input value uc(t) =
v∗

x(t),c(0)

q∗

x(t)
(0) , and apply u(t) =

[

uc(t)
v∗

x(t),b(0)

]

during the time interval [t, t+ q∗
x(t)(0)]

to the icHA 3 .
4. Set t0 = t+ q∗x(t)(0), x0 = x(t + q∗x(t)(0)) in (16) and go to Step 2.

The actual state x(t + q∗
x(t)(0)) at the end of each control action may be different from the predicted one x∗

x(t)(1)

because of external disturbances and modelling errors. In fact, also the time instant at which the optimization
problem is repeated may be different from the scheduled instant t+ q∗

x(t)(0). By the closed-loop nature of the eMPC

approach, the current state (and time) are measured or estimated again and a new updated optimal input sequence
is computed.

4.1 An Example of eMPC

Consider a system having two continuous states x1 and x2, and two state thresholds [δ1ex
= 1] ↔ [x1 ≤ 0], [δ2ex

=

1] ↔ [x2 ≤ 0], so that the system has four modes. Each mode corresponds to an orthant of the Cartesian plane,
where i = 1 corresponds to the positive orthant and the other orthants are numbered clockwise. The system has two
inputs −50 ≤ u1 ≤ 50 and −50 ≤ u2 ≤ 50, and the vectors and matrices that define Equation (1) for i = 1, . . . , 4 are
f1 = f4 = [1

0], f2 = f3 =
[

−1
0

]

, B1 = [0 0
0 1.4], B2 = [0 0

0 1.5], B3 = [0 0
0 1.15], B4 = [1 0

0 2.3]. Moreover, there are additional

constraints on the inputs: when in mode i = 1 it must hold that u2 ≥ −2, [i = 2] → [u2 ≤ −0.5], [i = 3] → [u2 ≤ 2],
[i = 4] → [u1 ≤ 2] and [i = 4] → [−0.5 ≤ u2 ≤ 2].

We want to bring the state of the system from x0 = [0.1
2] to x̂ =

[

−1
3

]

while minimizing function (17) with
norm p = ∞, Q1 = [10 0

0 10], Q2 = [0 0
0 0], R1 = [10−3 10−3], R2 = 1, and 0.1 ≤ q ≤ 50. We have set q̂ = 0.1,

v̂ = u∞q̂, where u∞ =
[

−1
0

]

. In order to test the robustness of the eMPC strategy with respect to disturbances,
we assume that the system is perturbed by input-additive disturbances, so that the continuous state dynamics is

3 Different strategies may be proposed here, for example apply uc(t) during the interval [t, t + max{q∗x(t)(0), Ts}], where Ts is

a given minimum time interval (possibly covering more than one optimal event instants) to prevent out-of-time computation
problems due to a small duration q∗x(t)(0).

11

-1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

x1

x
2

initial state

target state

Fig. 4. Event-driven MPC example in the undisturbed (dashed) and disturbed (solid) cases, and comparison with the open-loop
event-driven optimal control for the same disturbance realization (dash-dotted).

ẋ(t) = Bi(t(k))

(

u(t(k)) + ν(k)
)

+ fi(t(k)), for all t ∈ [t(k), t(k + 1)), where ν(k), k ∈ Z0+, is a sequence of time-
uncorrelated stochastic vectors in which each component is independent from the other and uniformly distributed
in [−0.1, 0.1].

Figure 4 reports the continuous-time trajectories generated by the eMPC controller with a prediction horizon of 4
events, and reiterated for 8 consecutive steps. In the undisturbed case (dashed line) the closed-loop eMPC strategy
trajectory coincides with the open-loop optimal one; four control actions, corresponding to four mode switches, are
required to bring the system to the target state. In the presence of disturbances the eMPC (solid line) is able to
counteract them, and to still bring the system close to x̂, even if a larger number of control actions with respect to
the undisturbed case is required. The trajectory obtained by the open-loop optimal policy under the effect of the
same disturbance realization is plotted as a dash-dotted line, showing that the effects of the disturbance are not
negligible, due to the switching nature of the system.

4.2 Conditions for Convergence of Closed-loop eMPC

In the this section we prove closed-loop convergence properties of eMPC by resorting to classical techniques employed
in nonlinear and hybrid MPC analysis [8, 25–27] and specializing them to the present continuous-time and event-
driven context.

In the following analysis we consider the case of terminal equality constraint XN = {x̂} and TN = {t̂} or TN = R0+,
while the case of terminal polyhedral set is discussed in [9, Sec. 5.4.2].

Definition 4.1 A state value x̄ =
[

x̄c
x̄b

]

is an equilibrium point for the icHA in mode ı̄ if and only if there exists a

steady state input value ū∞ =
[

ūc,∞

ūb,∞

]

and δ̄e,∞ such that: (i), Bı̄ ūc,∞ + fı̄ = 0; (ii), δ̄e,∞ = fEG(x̄c, ūc,∞, t), for all

t ≥ 0, where fEG is the event generator (2); (iii), x̄b = faFSM(x̄b, ūb,∞, δ̄e,∞); (iv), ı̄ = [1 . . . s] ·fMS(x̄b, ūb,∞, δ̄e,∞).

Definition 4.1 requires that the input ū∞ maintains the continuous state, the discrete state, and the mode constant.
For instance the target state

[

−1
3

]

in the example of Section 4.1 is an equilibrium point of mode i = 4 with

steady-state input ū∞ =
[

−1
0

]

.

4.2.1 Terminal Equality Constraints

When the terminal constraints x(N) = x̂, t(N) = t̂ are included, the terminal cost F is removed from (17). Let

χ(k) ,

[

x(k)
t(k)

]

denote the full state of the eMLD system at a generic time t(k). Let J∗(χ(k)) be the optimal cost

12

of Problem (16), X∗(χ(k)) = [χ∗
χ(k)(1), . . . , χ∗

χ(k)(N)] and w∗(χ(k)) = [w∗
χ(k)(0), . . . , w∗

χ(k)(N − 1)] be 4 the optimal

state and optimal input trajectories, respectively, where w∗
χ(k)(i) =

[

v∗

χ(k)(i)

q∗

χ(k)(i)

]

. For the sake of notation, denote by

χ(k + 1) = G(χ(k), w(k)) the state update function (15).

Theorem 4.1 Let XN = {x̂}, TN = {t̂}, and let q = 0. Let x̂ be an equilibrium point with corresponding steady-

state input û, let q̂ = 0, v̂ =
[

0
ûb

]

, and assume that (x̂, t̂, q̂, v̂) satisfies constraints (16c) and (16d). Let L be a

function such that L(x̂, t̂, q̂, v̂) = 0 and L(x, t, q, v) ≥ ψ
(
∥

∥

∥

x−x̂

t−t̂

∥

∥

∥

)

, where ψ : R0+ → R0+ is a nondecreasing function,

ψ(0) = 0, ψ(α) ∈ R+, for all α ∈ R+. If Problem (16) is feasible for the initial state x0 = x(0) and t0 = 0, then it is

recursively feasible, i.e., it is feasible for all
[

x(k+1)
t(k+1)

]

= G(χ(k), w∗
χ(k)(0)), k ∈ R+, and moreover limt→t̂ x(t) = x̂.

Proof. We first prove feasibility. Assume Problem (16) admits a solution at event step k = 0, χ(k) =
[

x(0)
0

]

. Let

w∗(χ(k)) be the corresponding optimal input sequence, and let χ(k + 1) = χ∗
χ(k)(1). Consider the input sequence

w̃(χ(k + 1)) =
[

w∗
χ(k)(1), . . . , w∗

χ(k)(N − 1),
[

0
ûb

0

]]

.

Then, χχ(k+1)(i) = χχ(k)(i+ 1), for i ∈ Z[0,N−1], and

χχ(k+1)(N) = G
(

χχ(k+1)(N − 1),
[

0
ūb,∞

0

])

= G
(

χ∗
χ(k)(N),

[

0
ūb,∞

0

])

= χ∗
χ(k)(N).

Thus the sequence w̃(χ(k + 1)) satisfies the dynamical, operating, and terminal constraints in (16), so Problem (16)
is solvable at time k + 1. By induction, solvability at k = 0 implies solvability at all event steps k ∈ Z+.

We now prove convergence. Because of optimality, J∗(χ(k + 1)) ≤ J(χ(k + 1), w̃(χ(k + 1))), where

J(χ(k), w̃(χ(k + 1))) = J∗(χ(k)) − L(x(k), t(k), v∗χ(k)(0), q∗χ(k)(0)), (26)

and hence J∗(χ(k + 1)) ≤ J∗(χ(k)). Since J(χ(k)) is lower bounded by 0 and is not increasing with k, there exists
limk→∞ J(χ(k)) = J∞, so that limk→∞ J(χ(k + 1)) − J(χ(k)) = 0, and hence limk→∞ L(x(k), t(k), v(k), q(k)) = 0.
The last implies limk→∞ ψ(‖χ(k) − χ̂‖) = 0, where χ̂ =

[

x̂
t̂

]

. Assume by contradiction ‖χ(k) − χ̂‖ 6→ 0. Then there

exists ǫ ∈ R+ such that for all k ∈ Z0+ there exists k ≥ k̄ such that ‖χ(k)− χ̂‖ ≥ ǫ. As ψ is nondecreasing, ψ(‖χ(k)−

χ̂‖) ≥ ψ(ǫ), which contradicts limk→∞ ψ(‖χ(k)−χ̂‖) = 0. Therefore, limk→∞

∥

∥

∥

x(k)−x̂

t(k)−t̂

∥

∥

∥
= 0 and hence limk→∞ x(k) =

x̂, limk→∞ t(k) = t̂. By linearity of x(t) between two consecutive events it also follows that limt→t̂ x(t) = x̂. 2

Note that function ψ is also called a function of class M in [27]. The condition of ψ being of class M was sufficient
in the proof of Theorem 4.1 to ensure convergence of ‖χ(k) − χ̂‖ to zero when ψ(‖χ(k) − χ̂‖) converges to zero,
a property which is directly assumed in [26]. Note also that the assumption about the existence of function ψ is
satisfied when L is strictly convex with respect to x and t.

The trajectory obtained by the approach of Theorem 4.1 is defined for t ∈ [0, t̂]. For t ≥ t̂ the target state can be
maintained by applying a steady state input, if this exists accordingly to Definition 4.1. Despite convergence of x is
ensured in finite time t̂, it may be asymptotic with respect to the number k of events.

Next Theorem 4.2 considers the case in which the terminal time t(N) is unconstrained (i.e., TN = R0+), L does not
depend on t (for instance, Q2 = 0 in (18)), and in which q > 0. The lower bound q > 0 ensures a minimum dwell
time of the system between two consecutive mode switches, which may prevent for instance that q(k) gets too small
for solving the next optimization problem.

Theorem 4.2 Let XN = {x̂}, TN = R0+ and let q > 0. Let x̂ be an equilibrium point with corresponding steady-state

input û, and assume there exists q̂, q ≤ q̂ ≤ q, such that (x̂, t̂, q̂, v̂) satisfies constraints (16c) and (16d) for v̂ =
[

q̂
ûb

]

4 When using the full state χ we use the notation χ(k) for χ(t(k)), as stated in Section 1.1.

13

and for all t̂ ≥ 0. Let L be independent of t, be such that L(x̂, t, q̂, v̂) = 0, for all t ∈ R, and L(x, t, q, v) ≥ ψ(‖x− x̂‖),
where ψ : R0+ → R0+ is a nondecreasing function, ψ(0) = 0, ψ(α) ∈ R+, for all α ∈ R+. If Problem (16) is
feasible for the initial state for x0 = x(0) and t0 = 0, then it is recursively feasible, i.e., it is feasible for all
[

x(k+1)
t(k+1)

]

= G(χ(k), w∗
χ(k)(0)), k ≥ 0, and limt→∞ x(t) = x̂.

Proof. The proof is similar to the proof of Theorem 4.1. Assume Problem (16) admits a solution at event step k = 0,

χ(k) =
[

x(0)
0

]

. Let w∗(χ(k)) be the corresponding optimal input sequence, and let χ(k + 1) = χ∗
χ(k)(1). Then, the

shifted sequence

w̃(χ(k + 1)) =
[

w∗
χ(k)(1), . . . , w∗

χ(k)(N − 1),
[

v̂
q̂

]

]

is feasible, because (x̂, t̂, q̂, v̂) is an equilibrium quadruple which satisfies constraints (16c) and (16d), for all t̂ ≥ 0,
and hence

x∗χ(k+1)(N) = x∗χ(k+1)(N − 1) = x∗χ(k)(N).

Therefore, (26) still holds and hence limk→∞ L(x(k), t(k), v(k), q(k)) = 0. The latter implies that limk→∞ ψ(‖x(k)−
x̂‖) = 0 and, as shown in the proof of Theorem 4.1, that limk→∞ x(k) = x̂. Since t(k + 1) − t(k) = q(k) ≥ q > 0,
limk→∞ t(k) = +∞. Hence, x(t) is defined for all t ∈ R0+ and by linearity of x(t) between two consecutive events it
follows that limt→∞ x(t) = x̂. 2

In order to have that limk→∞ v(k) = v̂, limk→∞ q(k) = q̂, it is enough to assume that L(x, t, q, v) ≥ ψ

(
∥

∥

∥

∥

x−x̂
v−v̂
q−q̂

∥

∥

∥

∥

)

.

Note that the eMPC controller designed in Section 4.1 satisfies the hypotheses of Theorem 4.2.

5 Conclusions

In this paper we have introduced integral continuous-time hybrid automata (icHA), a special class of continuous-time
hybrid dynamical models that can be suitably controlled through numerically viable optimization tools. The key
idea for reformulating the infinite-dimensional optimization problem into a tractable finite-dimensional one is to use
an event-driven control strategy. Differently from standard optimization-based discrete-time techniques, the event-
driven approach guarantees that the constraints are enforced continuously in time, while keeping the computation
load comparable. This paper only scratched the surface of the modelling power of the approach, by emphasizing for
instance the relations that exist between icHA and linear hybrid automata. Finally, we have shown how closed-loop
control strategies for icHA can be designed through receding horizon ideas, for which we have provided sufficient
conditions for finite time and asymptotic convergence.

References

[1] P.J. Antsaklis. A brief introduction to the theory and applications of hybrid systems. Proc. IEEE, Special Issue on Hybrid Systems:

Theory and Applications, 88(7):879–886, July 2000.

[2] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science,
pages 278–292, New Brunswick, New Jersey, 1996.

[3] J. Lygeros, K.H. Johansson, S.N. Simic, J. Zhang, and S.S. Sastry. Dynamical properties of hybrid automata. IEEE Tr. Automatic

Control, 48:2–17, January 2003.

[4] E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Tr. Automatic Control, 26(2):346–358, April 1981.

[5] A.F. Filippov. Differential equations with discontinuous righthand sides. Kluwer Academic Publishers, Dordrechht, 1988.

[6] V.I. Utkin. Sliding modes in control optimization. Springer Verlag, Berlin, 1978.

[7] X. Xu and P.J. Antsaklis. Results and perspectives on computational methods for optimal control of switched systems. In Hybrid

Systems: Computation and Control, pages 540–555. Springer-Verlag, 2003.

[8] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3):407–427, 1999.

[9] S. Di Cairano. Model Predictive Control of Hybrid Dynamical Systems: Stabilization, Event-driven, and Stochastic Control. PhD
thesis, Dip. Ing. Informazione, Universita’ di Siena, Italy, 2008.

[10] J.M. Maciejowski. Predictive control with constraints. Englewood Cliffs, NJ: Prentice Hall., 2002.

[11] B. De Schutter and T.T.J. van den Boom. Model predictive control for max-plus-linear discrete event systems. Automatica,
37(7):1049–1056, 2001.

14

[12] L. Miao and C. G. Cassandras. Receding horizon control for a class of discrete-event systems with real-time constraints. IEEE

Trans. Automatic Control, 52(5):825–839, May 2007.

[13] C.G. Cassandras and R. Mookherjee. Receding horizon control for a class of hybrid systems with event uncertainties. American

Control Conference, 2003, 6:5197–5202 vol.6, June 2003.

[14] F. Borrelli, P. Falcone, and C. del Vecchio. Event-based receding horizon control for two-stage multi-product production plants.
Control Engineering Practice, 15(12):1556–1568, December 2007.

[15] X. Xu and P.J. Antsaklis. A linear programming approach to time optimal control of integrator switched systems with state
constraints. In Proc. 41th IEEE Conf. on Decision and Control, pages 2168–2173, 2002.

[16] F.D. Torrisi and A. Bemporad. HYSDEL — A tool for generating computational hybrid models. IEEE Tr. Contr. Systems

Technology, 12(2):235–249, March 2004.

[17] T.A. Henzinger, P.H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid systems. Int. J. on Software Tools for Technology

Transfer, 1(1–2):110–122, 1997.

[18] H.P. Williams. Model Building in Mathematical Programming. John Wiley & Sons, Third Edition, 1993.

[19] A. Bemporad. Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form. IEEE Tr. Automatic

Control, 49(5):832–838, 2004.

[20] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. 36th IEEE Conf. on Decision and Control, pages
4607–4612, 1997.

[21] S. Di Cairano and A. Bemporad. An equivalence result between linear hybrid automata and picewise affine systems. In Proc. 45th

IEEE Conf. on Decision and Control, pages 2631–2636, San Diego, CA, 2006.

[22] A. Bemporad, S. Di Cairano, and J. Júlvez. Event-based model predictive control and verification of integral continuous-time hybrid
automata. In A. Tiwari J. Hespanha, editor, Hybrid Systems: Computation and Control, volume 3927 of Lecture Notes in Computer

Science, pages 93–107. Springer-Verlag, 2006.

[23] M. Silva and L. Recalde. Petri nets and integrality relaxations: A view of continuous Petri net models. IEEE Trans. on Systems,

Man, and Cybernetics, 32(4):314–327, 2002.

[24] J. Julvez, A. Bemporad, L. Recalde, and M. Silva. Event-driven optimal control of continuous petri nets. Decision and Control,

2004. CDC. 43rd IEEE Conference on, 1:69–74 Vol.1, Dec. 2004.

[25] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive control: Stability and optimality.
Automatica, 36(6):789–814, June 2000.

[26] M. Alamir and G. Bornard. On the stability of receding horizon control of nonlinear discrete-time systems. Syst. Control Lett.,
23(4):291–296, 1994.

[27] M. Lazar, W.P.M.H. Heemels, A. Bemporad, and S. Weiland. Discrete-time non-smooth nonlinear MPC: Stability and input-to-state
stability. In R. Findeisen F. Allgower, L. Biegler, editor, Assessment and Future Directions of Nonlinear Model Predictive Control,
volume 358 of Lect. Notes on Comp. Inf. Sciences, pages 93–103. Springer-Verlag, 2007.

15

