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Abstract

In this paper, we discuss infinite-horizon soft-constrained stochastic Nash games involving state-dependent noise in weakly
coupled large-scale systems. First, we formulate linear quadratic differential games in which robustness is attained against model
uncertainty. It is noteworthy that this is the first time conditions for the existence of robust equilibria have been derived based on
the solutions of sets of cross-coupled stochastic algebraic Riccati equations (CSAREs). After establishing an asymptotic structure
along with positive definiteness for CSAREs solutions, we derive the formula for Newton’s method for solving CSAREs. As
another important feature, we propose a high-order approximate Nash strategy based on iterative solutions. Finally, we provide
a numerical example to verify the efficiency of the proposed algorithms.
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1 Introduction

Over the last decade, stochastic control problems
governed by Itô’s differential equation have attracted
considerable research interest. Recently, the stochastic
H∞ control problem with state- and control-dependent
noise was investigated (Ugrinovskii, 1998; Hinrichsen and
Pritchard, 1998). It has attracted considerable attention
and has been widely applied in various fields. In particu-
lar, the stochastic H2/H∞ control with state-dependent
noise has been addressed (Chen and Zhang, 2004).

Linear quadratic Nash games and their applications
have been widely investigated in many literatures (e.g.
Petrovic and Gajić, 1988; Mukaidani, 2006,2007a,2007b
for weakly coupled large-scale systems). Nash game as
a concept has its roots in decision making and has been
applied to various control fields (Basar and Olsder, 1999;
Engwerda, 2005). However, robust Nash equilibrium in
deterministic uncertain systems has not been investi-
gated thus far. In contrast, robust equilibria in indefinite
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linear quadratic differential games under a deterministic
disturbance input affecting systems have been discussed
(Broek et al., 2003; Engwerda, 2005,2006). Although the
results in (Broek et al., 2003; Engwerda, 2005,2006) are
very elegant in theory and despite it being easy to obtain
a strategy pair by solving the cross-coupled algebraic
Riccati equations, stochastic uncertainty is an issue that
remains to be considered.

On the other hand, stochastic Nash games have been
widely studied (Buckdahn et al., 2004; Huang et al.,
2006). Although many results are available on stochastic
Nash games, they are limited to stochastic uncertainty,
such as the Wiener process without deterministic distur-
bance. For practical applications, both deterministic and
stochastic uncertainties should be considered. This can
be convincing motivation to investigate soft-constrained
stochastic Nash games with both state-dependent
stochastic noise and unknown deterministic disturbance.

In this paper, we discuss theoretical and numerical
aspects by extending the results of (Broek et al., 2003;
Engwerda, 2005,2006) in the deterministic case to the
soft-constrained stochastic Nash games governed by
Itô’s differential equations with state-dependent noise.
It is noteworthy that earlier studies on weakly coupled
stochastic Nash games (Srikant and Basar, 1992) did not
take the state-dependent noise into consideration. Fur-
ther, even the deterministic disturbance input was not
considered. On the other hand, although the stochas-
tic H2/H∞ control was considered, stochastic noise and
unknown deterministic disturbance (Chen and Zhang,

Preprint submitted to Automatica 24 April 2009



2004) involving multiple players were not addressed. The
main contributions of this paper are as follows. First,
linear quadratic differential games are investigated with
respect to an infinite horizon. After formulating the soft-
constrained problem for the one-player case, a set of
sufficient conditions is given as the saddle-point solution.
Moreover, in order to guarantee the existence of strategy
sets, sets of cross-coupled stochastic algebraic Riccati
equations (CSAREs) are introduced for the first time.
Second, for solving CSAREs, Newton’s method is directly
applied to find their solution. Another important feature
is that a new high-order approximation strategy based on
the numerical solution of CSAREs is established. Finally,
in order to demonstrate the efficiency of the proposed
algorithm, a numerical example is provided for practical
megawatt-frequency control problems.

Notations: The notations used in this paper are fairly
standard. δij denotes the Kronecker delta. In denotes an
n×n identity matrix. block diag denotes a block diago-
nal matrix. || · || denotes the Euclidean norm of a matrix.
|| · ||F denotes the Frobenius norm of a matrix such that
||M ||2F := Tr[MT M ]. E denotes the expectation. ⊗ de-
notes the Kronecker product. vecM denotes the column
vector of matrix M . The space of the Rk-valued functions
that are quadratically integrable on (0, ∞) are denoted
by Lk

2(0, ∞). Finally, throughout this paper we have
used the notation ||x(t)||2R instead of xT (t)Rx(t) for a real
positive semidefinite symmetric matrix R and vector x(t).

2 Soft-constrained Stochastic Nash Games

Consider stochastic linear time-invariant weakly cou-
pled large-scale systems 1 .

dx(t) =
[
Aεx(t) +

N∑
j=1

Bjεuj(t) + Eεv(t)
]
dt

+
M∑

p=1

Apεx(t)dwp(t), x(0) = x0, (1)

where

x(t) :=
[
xT

1 (t)· · ·xT
N (t)

]T
, v(t) :=

[
vT
1 (t)· · ·vT

N (t)
]T

,

Aε :=


A11 εA12 · · · εA1N

εA21 A22 · · · εA2N

...
...

. . .
...

εAN1 εAN2 · · · ANN

 ,

1 It should be noted that the generalized derivative of the
Wiener process is called Gaussian white noise. Hence, we can
also consider the problem by introducing the same equation
that has been studied in (Gajić and Losada, 1999).

Apε :=


Ap11 εAp12 · · · εAp1N

εAp21 Ap22 · · · εAp2N

...
...

. . .
...

εApN1 εApN2 · · · ApNN

 ,

Eε :=


E11 εE12 · · · εE1N

εE21 E22 · · · εE2N

...
...

. . .
...

εEN1 εEN2 · · · ENN

 , Bjε :=


ε1−δ1j B1j

ε1−δ2j B2j

...
ε1−δNj BNj

 .

xi(t) ∈ Rni , i = 1, ... , N represent the i-th state vec-
tors. uj(t) ∈ Rmj , j = 1, ... , N represent the j-th
control inputs. vi(t) ∈ Rli , i = 1, ... , N represent the
i-th disturbance. wp(t) ∈ R, p = 1, ... , M is a one-
dimensional standard Wiener process defined in the fil-
tered probability space (Ugrinovskii, 1998; Hinrichsen and
Pritchard, 1998; Chen and Zhang, 2004; Rami and Zhou,
2000). Moreover, vi(t) ∈ Lli

2 (0, ∞) is considered to be an
unknown finite-energy deterministic disturbance (Ugri-
novskii, 1998; Chen and Zhang, 2004). Without loss of
generality, it is assumed that wr(t) and ws(t) are mutually
independent for all r, s = 1, ... ,M and E[w(t)wT (t)] =
IM , where w(t) :=

[
w1(t) · · · wM (t)

]T
. Here, ε denotes a

relatively small positive coupling parameter that relates
the linear system with the other subsystems 2 . It should
be noted that the considered linear large-scale stochas-
tic systems (1) cannot be treated by using the existing
technique used in (Broek et al., 2003; Mukaidani 2006;
Mukaidani 2007; Sagara et al, 2008) because the stochas-
tic and deterministic uncertainties are both included.

The cost function for each strategy subset is defined by

Ji(u1, ... , uN , v, x(0))

= E

∞∫
0

[
||x(t)||2Qiε

+ ||ui(t)||2Rii

+µ

N∑
j=1, j 6=i

||uj(t)||2Rij
− ||v(t)||2Viµ

]
dt, (2)

where i = 1, ... , N ,

Qiε = QT
iε

=


ε1−δi1Qi1 εQi12 · · · εQi1N

εQT
i12 ε1−δi2Qi2 · · · εQi2N

...
...

. . .
...

εQT
i1N εQT

i2N · · · ε1−δiN QiN

 ∈ Rn̄×n̄,

Rii = RT
ii > 0 ∈ Rmi×mi , Rij = RT

ij ≥ 0 ∈ Rmj×mj ,

Viµ = block diag
(
µ−(1−δi1)Vi1 µ−(1−δi2)Vi2

2 In general, ε is an arbitrary sign for weakly coupled systems.
In this paper, since the sign of the coefficient matrix can be
changed without loss of generality, it is assumed that ε has a
positive sign.
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· · ·µ−(1−δiN )ViN

)
> 0, n̄ :=

N∑
i=1

ni, m̄ :=
N∑

i=1

mi.

The weighting matrix Viµ is always symmetric and
positive definite for all i = 1, ... , N . On the other
hand, the state weight matrices Qiε are symmetric and
assumed to be sign-indefinite (Broek et al., 2003; Eng-
werda, 2005,2006). In many applications of differential
games, state changes that are beneficial to some players
may be harmful to other players; thus we allow for the
state weighting matrices Qiε to be indefinite. Although
this allowance causes considerable technical complica-
tions, this generality would be natural in the multiplayer
context (Engwerda, 2005).

In this paper, Rij 6= 0 is allowed, provided the param-
eter µ in the cost function is scaled. However, in order
to simplify the algebra, it is assumed that µ denotes a
small positive parameter, which is of the same order as
the small parameter ε.

The following stabilizability, which is an essential
assumption, has been introduced in (Chen and Zhang,
2004).

Definition 1 (Chen and Zhang, 2004) A stochastically
controlled system governed by Itô’s equation dx = (Fx +
Gu)dt+G1xdw1, x(0) = x0 is considered stabilizable in the
mean-square sense if there exists a feedback law u = Kx
such that for any x0, the closed-loop system dx = (F +
GK)xdt + G1xdw1, x(0) = x0 is asymptotically mean-
square stable, i.e., limt→∞ ExT (t)x(t) = 0, where K is a
constant matrix.

It is noteworthy that in this study, the strategies u∗
i

are restricted as linear feedback strategies (Basar, 1974)
such as ui := Fiεx. We consider the formulation of the
objective functions of the players in order to express a
desire for robustness.

J̄i(u1, ... , uN , x(0))
:= sup

v∈Ll̄
2(0, ∞)

Ji(F1εx, ... , FNεx, v, x(0)), (3)

where

Ji(F1εx, ... , FNεx, v, x(0))

= E

∞∫
0

(||x(t)||2T 1
− ||v(t)||2Viµ

)dt,

T 1 := Qiε + FT
iεRiiFiε + µ

N∑
j=1, j 6=i

FT
jεRijFjε, l̄ :=

N∑
i=1

li.

Since Viµ has a minus sign in Ji, this matrix constrains
the disturbance vector v in an indirect way; therefore, it
can be used to describe the aversion to the model risk of
player i (Broek et al., 2003).

Let FN denote the set of all (F1ε, ... , FNε) such that

the following closed-loop stochastic system

dx(t) =
[
Aε +

N∑
j=1

BjεFjε

]
x(t)dt +

M∑
p=1

Apεx(t)dwp(t) (4)

is asymptotically mean-square stable.
According to the feedback information structure, a set

of equilibrium strategies should be independent of the ini-
tial state. Furthermore, the strategies should satisfy the
usual equilibrium inequalities. A formal definition is given
below.

Definition 2 (Broek et al., 2003; Engwerda, 2005,2006)
The strategy set (u∗

1, ... , u∗
N ), u∗

i (t) := F ∗
iεx(t) is a soft-

constrained stochastic Nash equilibrium strategy set if for
each i = 1, ... , N , the following inequality holds:

J̄i(u∗
1, ... , u∗

N , x(0))
≤ J̄i(u∗

1, ... , u∗
i−1, ui, u∗

i+1, ... , u∗
N , x(0)), (5)

for all x(0) and for all (F1ε, ... , FNε) that satisfy
(F1ε, ... , FNε) ∈ FN .

In the next section, we discuss the one-player case.

2.1 One-player Case

First, a one-player case is discussed. The result ob-
tained for that particular case is used as the basis for the
derivation of results for the general N -player case.

Consider a linear time-invariant stochastic stabilizable
system

dx(t) = [Aεx(t) + B1εu1(t) + Eεv(t)]dt

+
M∑

p=1

Apεx(t)dwp(t), x(0) = x0, (6)

where u1(t, x) := F1εx(t), F1ε ∈ F1.
It should be noted that strategy spaces involve a linear

feedback strategy with a memory-less perfect-state infor-
mation structure (Basar, 1974). The cost function is given
below.

J(u1, v, x(0))

= E

∞∫
0

(||x(t)||2Q1ε
+ ||u(t)||2R11

− ||v(t)||2V1µ
)dt. (7)

Let us define the strategy spaces Γu := {u1(t, x) :=
F1εx(t) | F1ε ∈ F1} and Γv := {v(t) | v(t) ∈ Ll̄(0, ∞)}.

Definition 3 A strategy pair (u∗
1, v∗) ∈ Γu × Γv is in

saddle-point equilibrium if

J(u∗
1, v, x(0))≤J(u∗

1, v∗, x(0)) ≤ J(u1, v∗, x(0)) (8)

for all (u∗
1, v) ∈ Γu × Γv and (u1, v∗) ∈ Γu × Γv.
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The following theorem generalizes the existing results of
(Broek et al., 2003; Engwerda, 2005,2006); these results
are very important in deterministic soft-constrained Nash
games for a stochastic case.

Theorem 4 Assume that for all (u1, v) ∈ Γu × Γv, the
closed-loop system is asymptotically mean-square stable.
Suppose the following stochastic algebraic Riccati equation
(SARE) (9) has a solution Pε ≥ 0.

PεAε + AT
ε Pε +

M∑
p=1

AT
pεPεApε

−Pε(S1ε − M1ε)Pε + Q1ε = 0, (9)

where S1ε := B1εR
−1
11 BT

1ε, M1ε := EεV
−1
1µ ET

ε .
Furthermore, suppose there exists a real symmetric ma-

trix Wε that satisfies matrix inequality (10).

WεAε+AT
ε Wε+

M∑
p=1

AT
pεWεApε−WεS1εWε+Q1ε≥0. (10)

The strategy pair

u∗
1(t, x) = F ∗

1εx(t) = −R−1
11 BT

1εPεx(t), (11a)
v∗(t) = V −1

1µ ET
ε Pεx̃(t), (11b)

dx̃(t) = [Aε − (S1ε − M1ε)Pε]x̃(t)dt

+
M∑

p=1

Apεx̃(t)dwp(t), x̃(0) = x0 (11c)

is in saddle-point equilibrium. That is, if these condi-
tions hold then inequality (8) related to cost function
J(u1, v, x(0)) is satisfied. Moreover, J(u∗

1, v∗, x(0)) =
xT (0)Pεx(0).

The proof of Theorem 4 is given in Appendix I.

Note that if Q1ε ≥ 0, condition (10) is trivially satisfied
by choosing Wε = 0. Otherwise, it is sufficient to have
a symmetric solution Wε of inequality (10). As a special
case, Wε = −Pε may be considered from a natural point
of view.

The concept in inequality (10) is very important to
generalize the result for a non-definite Q1ε matrix. Thus,
we first introduced an arbitrary matrix Wε. It should be
noted that this condition is considerably less stringent
than the condition Q1ε ≥ 0.

2.2 Soft-constrained Stochastic Nash Equilibrium

The soft-constrained stochastic Nash games are given be-
low.

Theorem 5 Assume that for all ui(t) ∈ Γu, i = 1, ... , N
and v(t) ∈ Γv, the closed-loop system is asymptotically

mean-square stable. Suppose that N real symmetric ma-
trices Piε ≥ 0 and N real symmetric matrices Wiε exist
such that

F i(ε, µ, P1ε, ... , PNε)

= PiεA + AT Piε +
M∑

p=1

AT
pεPiεApε − PiεSiεPiε

+µ
N∑

j=1, j 6=i

PjεSijεPjε + PiεMiεPiε + Qiε = 0, (12a)

WiεA + AT Wiε +
M∑

p=1

AT
pεWiεApε − WiεSiεWiε

+µ
N∑

j=1, j 6=i

PjεSijεPjε + Qiε ≥ 0, (12b)

where i = 1, ... , N , A := Aε −
∑N

j=1, j 6=i SjεPjε, Siε :=
BiεR

−1
ii BT

iε, Sijε := BjεR
−1
jj RijR

−1
jj BT

jε, i 6= j, Miε :=
EεV

−1
iµ ET

ε .
Define the set (F ∗

1ε, ... , F ∗
Nε) by

u∗
i (t) := F ∗

iεx(t) = −R−1
ii BT

iεPiεx(t), i = 1, .. , N. (13)

Then, (F ∗
1ε, ... , F ∗

Nε) ∈ FN , and this strategy set denotes
the soft-constrained stochastic Nash equilibrium. Further-
more, J̄i(F ∗

1εx, ... , F ∗
Nεx, x(0)) = xT (0)Piεx(0).

Proof: Now, let us consider the following problem in
which the cost function (14) is minimal at Fiε = F ∗

iε.

φ(Fε) := sup
v∈Ll̄

2(0, ∞)

E

∞∫
0

(||x(t)||2T 2
− ||v(t)||2Viµ

)dt, (14)

where T 2 := Qiε +FT
iεRiiFiε +µ

∑N
j=1, j 6=i PT

jεSijPjε and
x(t) follows from

dx(t) =

[(
Aε −

N∑
j=1, j 6=i

SjεPjε + BiεFiε

)
x(t)

+Eεv(t)

]
dt +

M∑
p=1

Apεx(t)dwp(t), x(0) = x0. (15)

Note that the function φ coincides with function J in The-
orem 4. Applying Theorem 4 to this minimization prob-
lem as Piε ⇒ Pε, Aε −

∑N
j=1, j 6=i SjεPjε ⇒ Aε, Biε ⇒

B1ε, Qiε + µ
∑N

j=1, j 6=i PT
jεSijPjε ⇒ Q1ε and Rii ⇒ R11,

Viµ ⇒ V1µ yields the fact that the function φ is minimal
at

F ∗
1ε = −R−1

11 BT
1εPε ⇒ F ∗

iε = −R−1
ii BT

iεPiε. (16)

Moreover, the minimal value is xT (0)Piεx(0).
It should be noted that if Qiε ≥ 0 and Sijε ≥ 0 for all

i = 1, ... , N , matrix inequality (12b) is trivially satisfied
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by Wiε = 0 (Broek et al., 2003; Engwerda, 2005,2006). In
the case that one of these matrices is not positive semi-
definite, one might consider Wiε = −Piε as a solution to
(12b).

3 Asymptotic Structure of CSAREs

First, the asymptotic structure of CSAREs (12a) is
established. Since Aε, Apε, Siε, Sijε, Qiε and Miε include
the parameter ε, the solution Piε of CSAREs (12a), if
it exists, should contain the parameter ε. By considering
this fact, the solution Piε of CSAREs (12a) is assumed to
have the following structure.

Piε :=


ε1−δi1Pi1 εPi12 · · · εPi1N

εPT
i12 ε1−δi2Pi2 · · · εPi2N

...
...

. . .
...

εPT
i1N εPT

i2N · · · ε1−δiN PiN

∈Rn̄×n̄. (17)

It should be noted that this assumption originated from
the simulation results. In fact, when CSAREs (12a) are
solved, the structure (17) can be predicted easily for var-
ious small ε.

The following reduced-order stochastic algebraic Ric-
cati equation (SARE) is obtained by substituting the ma-
trices Aε, Apε, Siε, Sijε, Qiε, Miε and Piε into (12a); let-
ting ε = µ = 0; and partitioning CSAREs (12a). Here
P̄ii, i = 1, ... , N is the 0-order solution 3 of CSAREs
(12a) as ε = µ = 0.

P̄iiAii + AT
iiP̄ii +

M∑
p=1

AT
piiP̄iiApii

−P̄iiSiiP̄ii + P̄iiMiiP̄ii + Qii = 0, (18)

where Sii := BiiR
−1
ii BT

ii and Mii := EiiV
−1
ii ET

ii .
It may be noted that there is a unique positive semi-

definite solution of (18) (Dragan and Morozan, 1997).
The following condition is assumed.

Assumption 6 The following matrices are nonsingular.

Dii := Θ̄T ⊗ In̄ + In̄ ⊗ Θ̄T +
M∑

p=1

ĀT
p ⊗ ĀT

p , (19)

where i = 1, ... , N , Θ̄ := Ā −
∑N

j=1 S̄jP̄j + M̄iP̄i,

Ā := block diag
(
A11 · · · ANN

)
,

S̄j := block diag
(
0 · · · 0 Sjj 0 · · · 0

)
,

M̄i := block diag
(
0 · · · 0 Mii 0 · · · 0

)
,

P̄i := block diag
(
0 · · · 0 P̄ii 0 · · · 0

)
,

Āp := block diag
(
Ap11 · · · ApNN

)
.

3 The first order approximations Piε corresponding to ε are
called 0-order solutions.

The asymptotic expansion of CSAREs (12a) for ε = µ = 0
is described by the following theorem.

Theorem 7 Assume that the solutions Piε of CSAREs
(12a) have the structure (17). Suppose that SARE (18) has
a positive definite solution. Under Assumption 6, there
exists a small σ∗ such that for all ε ∈ (0, σ∗), CSAREs
(12a) allows for a positive definite solution P ∗

iε, which can
be written as

Piε := P ∗
iε = P̄i + O(ε). (20)

Proof: This can be proved by applying the implicit func-
tion theorem (Jittorntrum, 1978) on CSAREs (12a). In
order to do this, it is sufficient to show that the corre-
sponding Jacobian is nonsingular at ε = 0. The derivative
of the function F i(ε, µ, P1ε, ... , PNε) at matrix Piε is
given by

J ii :=
∂

∂vecPiε
vecF i(ε, µ, P1ε, ... , PNε)T

= ΘT ⊗ In̄ + In̄ ⊗ Θ +
M∑

p=1

AT
pε ⊗ AT

pε, (21a)

J ij :=
∂

∂vecPjε
vecF i(ε, µ, P1ε, ... , PNε)T

=−(SjεPiε − µSijεPjε)T ⊗ In̄

−In̄ ⊗ (SjεPiε − µSijεPjε)T , (21b)

where i 6= j, j = 1, ... , N and Θ := Aε −
∑N

j=1 SjεPjε +
MiεPiε

Based on the fact that SjεPiε = O(ε), i 6= j, after
performing some algebraic calculations, the Jacobian of
CSAREs (12a) in the limit ε → +0, µ → +0 can be
expressed as

J =

 J11|ε=µ=0 · · · J1N |ε=µ=0

...
. . .

...
JN1|ε=µ=0 · · · JNN |ε=µ=0


= block diag

(
D11 · · · DNN

)
. (22)

Obviously, Dii, i = 1, ... , N are nonsingular under As-
sumption 6. Thus, detJ 6= 0, i.e., J is nonsingular for
ε = µ = 0. As a consequence of the implicit function the-
orem, this implies that there exists a unique continuous
mapping Piε := Hi(ε) that possesses the Taylor series ex-
pansion at ε = 0 (Kokotović et al., 1999); in other words
Piε := Hi(0) +

∑∞
l=1

εl

l! H
(l)
i (0). Thus we have an equa-

tion with the form of (20). On the other hand, taking into
account the fact that P̄ii is a positive definite matrix, for
sufficiently small parameters ε and µ, Piε is also a posi-
tive definite solution.

It is noteworthy that the asymptotic structure of (20)
can also be obtained by applying a result that will be
given later as k = 0 in Theorem 8.
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4 Newton’s Method

In order to obtain the solution of CSAREs (12a), New-
ton’s method can be applied.

P
(k+1)
iε A(k)

ε + A(k)T
ε P

(k+1)
iε +

M∑
p=1

ApεP
(k+1)
iε Apε

−
N∑

j=1, j 6=i

(P (k+1)
jε Ξ(k)

ε + Ξ(k)T
ε P

(k+1)
jε )

+
N∑

j=1, j 6=i

(P (k)
iε SjεP

(k)
jε + P

(k)
jε SjεP

(k)
iε ) + P

(k)
iε SiεP

(k)
iε

−µ

N∑
j=1, j 6=i

P
(k)
jε SijεP

(k)
jε − P

(k)
iε MiεP

(k)
iε

+Qiε = 0, i = 1, ... , N, k = 0, 1, ... , (23)

where A
(k)
ε := Aε −

∑N
j=1 SjεP

(k)
jε + MiεP

(k)
iε and Ξ(k)

ε :=
SjεP

(k)
iε − µSijεP

(k)
jε with the initial conditions

P
(0)
iε = P̄i. (24)

It is easy to show that equation (23) is equivalent to the
Newton’s method. In fact, equation (23) can be revised
as follows.

P (k+1) = P (k) − [∇F (ε, µ, P
(k)
1ε , ... , P

(k)
Nε )]−1[vecF (k)],

F :=
[
F 1 · · · F N

]T
,

vecF (k) :=
[

[vecF (k)
1 ]T · · · [vecF (k)

N ]T
]T

,

F
(k)
i := F

(k)
i (ε, µ, P

(k)
1ε , ... , P

(k)
Nε ),

P (k) := ([vecP (k)
1ε ]T , ... , [vecP (k)

Nε ]T ).

In general, it is well known that there exist several soft-
constrained Nash equilibriums such as those in ordinary
Nash games.

The following theorem give a feature of the uniqueness.

Theorem 8 Under the conditions of Theorem 7, there ex-
ists a small σ̄ such that for all ε ∈ (0, σ̄), Newton’s method
(23) converges to the exact solution of Piε at the same rate
as that of quadratic convergence; here, P

(k)
iε is positive def-

inite. Moreover, the convergence solutions attain a unique
solution P ∗

iε of CSAREs (12a) in the neighborhood of the
initial condition P

(0)
iε = P̄i. In other words, the following

conditions are satisfied.

||P (k)
iε − P ∗

iε|| = O(ε2k

), i = 1, ... , N, k = 0, 1, ... . (25)

Proof: The proof is given directly by applying the
Newton-Kantorovich theorem (Ortega, 1990; Yamamoto,
1986) for CSAREs (12a). A positive scalar γ can be im-
mediately obtained from CSAREs (12a) such that for

any P a
iε and P b

iε

||∇F (ε, µ, P a
1ε, ... , P a

Nε) −∇F (ε, µ, P b
1ε, ... , P b

Nε)||
≤ γ||([vecP a

1ε]
T , ... , [vecP a

Nε]
T )

−([vecP b
1ε]

T , ... , [vecP b
Nε]

T )||,

where

γ := 2(2N − 1)
N∑

j=1

||Sjε|| + 2µ
N∑

i=1

N∑
j=1, j 6=i

||Sijε||.

Moreover, it is easy to verify that∇F (ε, µ, P̄1, ... , P̄N ) =
J + O(ε) is nonsingular because for the small parameters
ε and µ and using (20), J is also nonsingular. Therefore,
there exists β such that β = ||[∇F (ε, µ, P̄1, ... , P̄N )]−1||.
On the other hand, since ||F (ε, µ, P̄1, ... , P̄N )|| = O(ε),
there exists η such that η = ||[∇F (ε, µ, P̄1, ... , P̄N )]−1|| ·
||F (ε, µ, P̄1, ... , P̄N )|| = O(ε). Thus, h exists such that
h = βηγ < 2−1 because η = O(ε). Finally, the Newton-
Kantorovich theorem yields the desired results (25).

Second, the local uniqueness of the solution is dis-
cussed. Let us define R ≡ [1 +

√
1 − 2h]/(γβ). Clearly,

S ≡ { Piε : ||Piε − P
(0)
iε || < R } is in the certain convex

set D. Subsequently, since the solution P ∗
iε is unique in

S, the local uniqueness of P ∗
iε is guaranteed in the neigh-

bourhood of ε = 0 for a subset S by applying the Newton-
Kantorovich theorem.

It should be noted that for solving the cross-coupled
stochastic algebraic Lyapunov equations (CSALEs) (23)
that appear in Newton’s method, fixed-point algorithm
can also be combined. See (Mukaidani, 2006; Sagara et
al., 2007) for details.

5 High-order Approximate Soft-constrained
Stochastic Nash Strategies

We focus our attention on the design of high-order
approximate soft-constrained stochastic Nash strategies.
Such strategies are obtained by using iterative solution
(23).

u
(k)∗
i (t) = −R−1

ii BT
iεP

(k)
iε x(t) = F

(k)∗
iε x(t),

i = 1, ... , N. (26)

Theorem 9 Suppose that SARE (18) has a positive def-
inite solution such that Dii := Aii − SiiP̄ii is stable.
Then, there exists a small constant σ̃ and positive scalar
parameters α > 0 and β > 0 such that for all ε ∈ (0, σ̃),
|| exp[(Aε +

∑N
j=1 BjεF

(k)∗
jε )t]|| ≤ αe−βt. Moreover, if

α2/β
∑M

p=1 ||Apε||2 ≤ ω < 2/(M + 1), stochastic system
(1) with u

(k)∗
i (t) given by (26) and v(t) = 0 is exponen-

tially mean-square stable.
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Proof: First, it is easy to verify that

Aε +
N∑

j=1

BjεF
(k)∗
jε = Ā −

N∑
j=1

S̄jP̄j + O(ε)

= block diag
(
D11 · · · DNN

)
+ O(ε) (27)

Hence, using the stability assumption of Dii, it can be
shown that there exists a small constant σ̃ and positive
scalar parameters α > 0 and β > 0 such that for all
ε ∈ (0, σ̃), || exp[(Aε +

∑N
j=1 BjεF

(k)∗
jε )t]|| ≤ αe−βt. Let

us consider the closed-loop stochastic system (28).

dx(t) =
[
Aε +

N∑
j=1

BjεF
(k)∗
jε

]
x(t)dt

+
M∑

p=1

Apεx(t)dwp(t), x(s) = xs. (28)

The representation of the solution of equation (28) is given
as

x(t) = exp

[
Aε +

N∑
j=1

BjεF
(k)∗
jε

]
(t − s)

x(s)

+
M∑

p=1

t∫
s

exp

[
Aε +

N∑
j=1

BjεF
(k)∗
jε

]
(t − τ)


×Apεx(τ)dwp(τ). (29)

Using inequality
∣∣∣∣∣∣∑L

l=1 al

∣∣∣∣∣∣2 ≤ L
∑L

l=1 ||al||2 and con-
sidering the independence of the Wiener processes wp(t)
yields

E||x(t)||2

≤ (M + 1)

∣∣∣∣∣∣
∣∣∣∣∣∣exp

[
Aε +

N∑
j=1

BjεF
(k)∗
jε

]
(t − s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

×E||x(s)||2 + (M + 1)

×
M∑

p=1

t∫
s

∣∣∣∣∣∣
∣∣∣∣∣∣exp

[
Aε +

N∑
j=1

BjεF
(k)∗
jε

]
(t − τ)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

×||Apε||2E||x(τ)||2dτ. (30)

Thus, the conditions || exp[(Aε +
∑N

j=1 BjεF
(k)∗
jε )t]|| ≤

αe−βt, ∃ α, β > 0 and α2/β
∑M

p=1 ||Apε||2 ≤ ω imply that

e2β(t−s)E||x(t)||2 ≤ (M + 1)α2E||x(s)||2

+(M + 1)βω

t∫
s

e2β(τ−s)E||x(τ)||2dτ. (31)

From the Bellman-Gronwall inequality (Wu et al., 1994)
it follows that

E||x(t)||2 ≤ (M + 1)α2E||x(s)||2eβ[(M+1)ω−2](t−s). (32)

Since ω has been selected such that ω < 2/(M + 1),
equation (28) is exponentially mean-square stable.

The degradation of the cost functional via new high-
order approximate soft-constrained stochastic Nash
strategies (26) is given as follows.

Theorem 10 Under Assumption 6, the application of
high-order approximate soft-constrained stochastic Nash
strategies (26) to stochastic systems (1) results in J̄i

satisfying the relation

J̄i(F
∗(k)
1ε x, ... , F

(k)∗
Nε x, x(0))

= J̄i(F ∗
1εx, ... , F ∗

Nεx, x(0)) + O(ε2k+1),
k = 0, 1, ..., i = 1, ... , N. (33)

The following lemma will play an important role in
establishing performance degradation.

Lemma 11 Consider the stochastic system

dx(t) = [Aεx(t) + Eεv(t)]dt

+
M∑

p=1

Apεx(t)dwp(t), x(0) = x0 (34)

and the corresponding cost function

Ĵ(v, x(0)) = E

∞∫
0

(||x(t)||2Qε
− ||v(t)||2Vµ

)dt. (35)

Assume that stochastic system (34) is asymptotically
mean-square stable. Suppose that the following SARE has
a solution Lε ≥ 0.

LεAε+AT
ε Lε+

M∑
p=1

AT
pεLεApε+LεMεLε+Qε = 0, (36)

where Mε := EεV
−1
µ ET

ε .
Then, the maximum of Ĵ(v, x(0)) is uniquely attained

by

v̄(t) = V −1
µ ET

ε Lεx(t), (37a)
dx(t) = [Aε + MεLε]x(t)dt

+
M∑

p=1

Apεx(t)dwp(t), x(0) = x0 (37b)

Moreover, Ĵ(v̄, x(0)) = xT (0)Lεx(0).

The proof of Lemma 11 is given in Appendix II.

Proof of Theorem 10: This can be proved directly by
applying the Newton-Kantorovich theorem (Ortega, 1990;
Yamamoto, 1986). When u

(k)∗
i (t) is used, the equilibrium
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values of the cost functional is given by (38) because of
Lemma 11.

J̄i(F
∗(k)
1ε x, ... , F

(k)∗
Nε x, x(0)) = xT (0)Ziεx(0), (38)

where Ziε is a positive definite solution of the following
SALEs

Ziε

Aε −
N∑

j=1

SjεP
(k)
jε

 +

Aε −
N∑

j=1

SjεP
(k)
jε

T

Ziε

+
M∑

p=1

AT
pεZiεApε + P

(k)
iε SiεP

(k)
iε

+µ
N∑

j=1, j 6=i

P
(k)
jε SijεP

(k)
jε + ZiεMiεZiε + Qiε = 0. (39)

Subtracting (12a) from (39) and using the result of (25),
Ziε = Ziε − Piε satisfies the following SALE

G(Ziε) := ZiεΘ̃ε + Θ̃
T

ε Ziε +
M∑

p=1

AT
pεZiεApε

+ZiεMiεZiε + O(ε2k+1) = 0, (40)

where Θ̃ε := Aε −
∑N

j=1 SjεP
(k)
jε + MiεP

(k)
iε + O(ε2k

).
Since the function G(Ziε) is continuous at any Ziε,

taking the partial derivative of the function G(Ziε) with
respect to Ziε yields

∇G(Ziε) := In̄ ⊗ (Θ̃ε+MiεZiε)T

+(Θ̃ε+MiεZiε)T ⊗ In̄+
M∑

p=1

AT
pε ⊗ AT

pε. (41)

Thus, by using Assumption 6, there exists a small constant
σ̂ such that for all ε ∈ (0, σ̂), ∇G(0) = In̄ ⊗ Θ̃

T

ε + Θ̃
T

ε ⊗
In̄+

∑M
p=1 AT

pε⊗AT
pε is nonsingular. Then, for any matrices

Xε and Y ε that belong to Ziε, it is immediately obtained
from equation (41) that

||∇G(Xε) −∇G(Y ε)|| ≤ γ̄||Xε − Y ε||, (42)

where γ̄ := 2||Miε||.
Moreover, there exists η̄ such that ||[∇G(0)]−1G(0)|| <

O(ε2k+1) = η̄ because of G(0) = O(ε2k+1). Using the
Newton-Kantorovich theorem, the estimate is given by

||Ziε − 0|| = ||Ziε|| ≤ 2η̄ = O(ε2k+1). (43)

Hence, since Ziε = O(ε2k+1), x(0)T Ziεx(0) = O(ε2k+1)
results in (33).

6 Numerical Example

In order to demonstrate the efficiency of the soft-
constrained stochastic Nash games, we present results

for the megawatt-frequency control problem of multiarea
electric energy systems. The model is based on the multi-
stage decomposition of two interconnected areas (Elgerd
and Fosha, 1970). The detailed physical significances of
the model were also developed in (Gajić et al., 1990). The
system matrices are given as follows.

A11 =


0 0.315 0 0 0
0 0 1 0 0
0 −1.888 −0.0498 6 0
0 0 0 −3.333 3.333
0 0 −5.2083 0 −12.5

 ,

A12 =


−3.15 0 0 0

0 0 0 0
18.88 0 0 0

0 0 0 0
0 0 0 0

 , A21 =


0 0 0 0 0
0 18.88 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

A22 =


0 1 0 0

−1.888 −0.0498 6 0
0 0 −3.333 3.333
0 −5.2083 0 −12.5

 ,

A111 = block diag
(
0 0 0.00249 0 0

)
,

A122 = block diag
(
0 0.00249 0 0

)
,

BT
11 =

[
0 0 0 0 33.333

]
, BT

22 =
[
0 0 0 33.333

]
,

ET
11 =

[
0 0 −0.6 0 0

]
, ET

22 =
[
0 −0.6 0 0

]
,

Q1 = block diag
(
I5 εI4

)
,

Q2 = block diag
(
εI5 I4

)
,

R1 = R2 = 0.1, V11 = V22 = 10,

A1ij = 0, Bij = 0, Eij = 0, Vij = 0, i 6= j.

Small parameters ε = 0.1 and µ = 0 are selected. In order
to guarantee the feasibility of the solution, we consider
that the difference in the area power angle for the model
presented in (Gajić et al., 1990) is 60 degrees.

It should be noted that both the deterministic distur-
bance distribution and the state-dependent noise related
to the load frequency constant (Elgerd and Fosha, 1970)
are considered. That is, the nature of stochastic uncer-
tainty considered here is not addressed in (Gajić et al.,
1990). We suppose that the error of the load frequency
constant is within 5% of the nominal value. Therefore, the
proposed design method is very useful because the result-
ing strategy can be implemented to more practical weakly
coupled large-scale stochastic systems.

The proposed computational algorithm was developed
in MATLAB 5.2 and Control System Toolbox 5.2 for simu-
lation purposes. Moreover, the computer used in this sim-
ulation was a Pentium M 1200 MHz with 632MB RAM,
running Windows XP.

It is easy to verify that for the two-players case, al-
gorithm (23) converges to the exact solution of CSAREs
(12a) with an accuracy of ||F (k)|| < 1.0e − 11 after seven
iterations, where ||F (k)|| :=

∑2
i=1 ||F i(ε, µ, P

(k)
1ε , P

(k)
2ε )||.
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Table 1. Errors per iterations.

k ||F (k)|| k ||F (k)||
0 2.7022 4 5.0196e − 02

1 1.1057e + 01 5 4.3264e − 04

2 2.8660 6 2.6499e − 08

3 6.0292e − 01 7 6.2248e − 14

In order to verify the accuracy of the solution, the re-
mainder per iteration is substituted by P

(k)
iε into CSAREs

(12a). In Table 1, the results of the error ||F (k)|| per iter-
ation are given. It can be seen that algorithm (23) yields
quadratic convergence.

Finally, high-order approximate soft-constrained
stochastic Nash strategies are obtained as follows.

F
(7)∗
1ε =

[
−2.8614e −1.7457 −3.9435 −5.0595
−2.9645 −1.4043 −7.1326e − 02
4.9675e − 02 1.9434e − 03

]
, (44a)

F
(7)∗
2ε =

[
3.3869e − 01 −2.1367 −3.4923e − 01
−1.5753e − 01 −4.5787e − 03 −9.9669e − 01
−3.6633 −4.8556 −2.9584

]
. (44b)

As a result, although both state-dependent stochas-
tic noise and unknown deterministic disturbance are in-
cluded, the high-order approximate Nash strategy was ob-
tained.

7 Conclusion

In this paper, infinite-horizon stochastic Nash games
were discussed. First, conditions required for the exis-
tence of Nash equilibrium were established by utilizing
CSAREs. Second, after establishing an asymptotic struc-
ture along with positive definiteness for solving CSAREs,
Newton method was adopted. As a result, it was shown
that quadratic convergence can be attained. Thus, the
proposed algorithm is expected to be very useful and
reliable for a sufficiently small value of ε. As another
important feature, a high-order approximate strategy
that yields better cost performance was attained. In fact,
the cost degradation by using the proposed approximate
strategy was demonstrated.
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Appendix I: Proof of Theorem 4

Let us consider the scalar function V (t, x(t)) :=
xT (t)Pεx(t). By applying Itô’s formula to V (t, x(t))
and considering (9), we have dV (t, x(t)) =

[
||u1(t) +

R−1
11 B1εPεx(t)||2R11

−||v(t)−V −1
1µ ET

ε Pεx(t)||2V1µ
−[||x(t)||2Q1ε

+
||u(t)||2R11

−||v(t)||2V1µ
]
]
dt+2

∑M
p=1 xT (t)PεApεx(t)dwp(t).

Since we assume that for all u1(t) and v(t), the closed-
loop system is asymptotically mean-square stable,
limt→∞ ExT (t)x(t) = 0. Thus, integrating both sides of
the above equation and using E

∫ ∞
0

xT (t)PεApεx(t)dwp(t) =
0 results in J(u1, v, x(0)) = xT (0)Pεx(0)+E

∫ ∞
0

[
||u1(t)−

u∗
1(t)||2R11

−||v(t)−V −1
1µ ET

ε Pεx(t)||2V1µ

]
dt. From this, it fol-

lows that J(u∗
1, v, x(0)) = xT (0)Pεx(0) − E

∫ ∞
0

||v(t) −
V −1

1µ ET
ε Pεx̌(t)||2V1µ

dt ≤ xT (0)Pεx(0), where x̌(t) is gov-

erned by dx̌(t) =
[
(Aε − S1εPε)x̌(t) + Eεv(t)

]
dt +∑M

p=1 Apεx̌(t)dwp(t), x̌(0) = x0. Furthermore, if
J(u∗

1, v, x(0)) = xT (0)Pεx(0), then v(t) = v∗(t). Hence,
J(u∗

1, v, x(0)) < xT (0)Pεx(0), for all v(t) 6= v∗(t) and
J(u∗

1, v∗, x(0)) = xT (0)Pεx(0). Then, x̌(t) is governed
by (11c) as x̃(t) = x̌(t).

Let x̂(t) and x̄(t) be governed by dx̂(t) = [Aεx̂(t) +
B1εF1εx̂(t) + Eεv

∗(t)]dt +
∑M

p=1 Apεx̂(t)dwp(t), x̂(0) =
x0, dx̄(t) = [Aεx̄(t) + B1εF

∗
1εx̄(t) + Eεv

∗(t)]dt +∑M
p=1 Apεx̄(t)dwp(t), x̄(0) = x0, respectively. Further-

more, we define two new variables ν(t) := (F ∗
1ε −F1ε)x̂(t)

and η(t) := v∗(t)−V −1
1µ ET

ε Pεx̂(t). Then, J(u1, v∗, x(0))−
J(u∗

1, v∗, x(0)) = E
∫ ∞
0

[
||ν(t)||2R11

− ||η(t)||2V1µ

]
dt. In-

troducing ξ(t) := x̄(t) − x̂(t) yields dξ(t) = [(Aε −
S1εPε)ξ(t) + B1εν(t)]dt +

∑M
p=1 Apεξ(t)dwp(t), ξ(0) = 0,

η(t) = V −1
1µ ET

ε Pεξ(t). Hence, taking into account the fact
that for any ν(t), the closed-loop system is asymptotically
mean-square stable, E

∫ ∞
0

d||ξ(t)||2Pε
= 0. Furthermore,

taking E
∫ ∞
0

ξT (t)PεApεξ(t)dwp(t) = 0 and the SARE (9)
into account, we have J(u1, v∗, x(0))−J(u∗

1, v∗, x(0)) =
E

∫ ∞
0

[
[||ν(t)||2R11

− ||η(t)||2V1µ
]dt − dξT (t)Pεξ(t)

]
=

E
∫ ∞
0

[
||ν(t)||2R11

− ξT (t)
[
PεEεV

−1
1µ ET

ε Pε + Pε(Aε −
S1εPε) + (Aε − S1εPε)T Pε +

∑M
p=1 AT

pεPεApε

]
ξ(t) −

2ξT (t)PεB1εν(t)
]
dt = E

∫ ∞
0

[
||ν(t) + F ∗

1εξ(t)||2R11
+

||ξ(t)||2Q1ε

]
dt. Next, assuming that v(t) := ν(t)+F ∗

1εξ(t) =
F ∗

1εx̄(t) − F1εx̂(t) yields dξ(t) = [Aεξ(t) + B1εv(t)]dt +∑M
p=1 Apεξ(t)dwp(t). Since ξ(0) = 0 and ξ(t) is asymp-

totically mean-square stable, E
∫ ∞
0

d||ξ(t)||2Wε
= 0. Thus,

J(u1, v∗, x(0)) − J(u∗
1, v∗, x(0)) = E

∫ ∞
0

[
[||v(t)||2R11

+

||ξ(t)||2Q1ε
]dt+d||ξ(t)||2Wε

]
= E

∫ ∞
0

[
||v(t)+R−1

11 BT
1εWεξ(t)||2R11

+

||ξ(t)||2W
]
dt, where W := WεAε+AεW

T
ε +

∑M
p=1 AT

pεWεApε−
WεS1εWε + Q1ε.

Since inequality (10) holds, the desired result is ob-
tained.

9



Appendix II: Proof of Lemma 11

Since it is assumed that the stochastic system is asymp-
totically mean-square stable, limt→∞ ExT (t)x(t) = 0.
Thus, applying Itô’s formula to xT (t)Lεx(t) and using a
completion of squares yields Ĵ(v, x(0)) = xT (0)Lεx(0)−
E

∫ ∞
0

||v(t) − V −1
µ ET

ε Lεx(t)||2Vµ
dt. Hence, Ĵ(v, x(0)) ≤

xT (0)Lεx(0), and equality holds iff (37). Furthermore, the
maximum value Ĵ(v̄, x(0)) = xT (0)Lεx(0) is obtained
uniquely by v̄(t).
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