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Abstract

The input-state linear horizon (ISLH) for a nonlinear discrete-time system is defined as the smallest number of time steps it
takes the system input to appear nonlinearly in the state variable. In this paper, we employ the latter concept and show that the
class of constraint admissible N-step affine state-feedback policies is equivalent to the associated class of constraint admissible
disturbance-feedback policies, provided that N is less than the system’s ISLH. The result generalizes a recent result in Goulart,
Kerrigan, and Maciejowski (2006) and is significant because it enables one: (i) to determine a constraint admissible state-
feedback policy by employing well-known convex optimization techniques; and (ii) to guarantee robust recursive feasibility of
a class of model predictive control (MPC) policies by imposing a suitable terminal constraint. In particular, we propose an
input-to-state stabilizing MPC policy for a class of nonlinear systems with bounded disturbance inputs and mixed polytopic
constraints on the state and the control input. At each time step, the proposed MPC policy requires the solution of a single
convex quadratic programme parameterized by the current system state.
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1 Introduction

Since an appropriate optimization problem needs to be solved on-line for the current system state, it can be im-
practical to apply model predictive control (MPC) to relatively fast, nonlinear or high-dimensional systems. An
interesting area of research has thus been the task of reducing online computation times by means of, for example,
explicit solutions (Bemporad et al., 2002) or “reformulations” that enable the optimal control problem to be solved
efficiently as a standard convex problem.

In this context, Mare, De Doná, Seron, Haimovich, and Ramagge (2008); Mare, Lazar, and De Doná (2007) recently
made the observation that the optimal control sequence for a nonlinear system with a quadratic stage cost and
linear constraints may be computed exactly via a quadratic programme (QP), provided the number of stages in the
open-loop optimal control problem is less than some critical integer. To characterize the latter integer, the notions of
input-output linear horizon (IOLH) and input-state linear horizon (ISLH) were introduced by Mare et al. (2008). In
particular, for the control problem considered in Mare et al. (2007), the critical integer was shown to be the system’s
ISLH.

Another line of research which rely on a reformulation in order to pose and solve the optimization problem of
interest efficiently is the work of Goulart, Kerrigan, and Maciejowski (2006) on feedback control of linear systems
with disturbance inputs and (polytopic) constraints. Here a relevant problem is to minimize a quadratic cost over a
class of N -step affine state-feedback policies. In Goulart et al. (2006), the authors established equivalence between
the class of N -step affine state-feedback policies and an associated class of disturbance-feedback polices (van Hessem
and Bosgra, 2002; Löfberg, 2003; Kerrigan and Alamo, 2004). The equivalence result was subsequently used to pose
the optimization problem as a convex QP and to prove properties (e.g., robust recursive feasibility) of the associated
class of MPC policies.



In this paper, we combine and generalize some of the results of Goulart et al. (2006) and Mare et al. (2007). In
particular, we generalize the equivalence result of Goulart et al. (2006) to nonlinear dynamics by showing that the
class of constraint admissible N -step affine state-feedback policies is equivalent to the associated class of disturbance-
feedback policies, provided that 1 ≤ N < ℓF , where ℓF denotes the system’s ISLH. We then use the latter result to
construct an input-to-state stabilizing MPC policy based on a convex QP. The region of attraction obtained using
the proposed MPC policy equals the set of states that can be steered to a suitable target set in N < ℓF steps using
any constraint admissible N -step affine state-feedback policy. Whilst the restriction N < ℓF is the key device used
to obtain our results, we acknowledge that it may lead to poor performance and a small region of attraction, unless
ℓF is relatively large. However, from a theoretical point of view, the results of the present paper are interesting in
their own right, since they are more general than existing results for linear systems (in which case ℓF =∞).

The paper outline is as follows: Section 2 describes the dynamical system under consideration. Section 3 presents
results on N -step affine feedback policies. Section 4 uses the results of Section 3 to construct a robust MPC policy
based on a convex QP. Notation and terminology: A polyhedral set is a set of the form {x ∈ R

n|Ax ≤ b}. A polytope
is a bounded polyhedral set. A matrix B ∈ RNnx×Nnu , with block entries Bij ∈ Rnx×nu , is said to be (strictly)
lower block triangular if Bij = 0 when i ≤ j (i < j). The notation Z[m,l] denotes the integers on the interval

{m,m + 1, · · · , l} and the notation Z[m,∞) denotes the integers i satisfying i ≥ m. We also use Z+ , Z[0,∞) (and
R+) to denote the non-negative integers (and non-negative real numbers).

2 System Description

2.1 State Space Model

We consider the following discrete-time system

xk+1 = F (xk, µk), x0 = x, (1)

where xk ∈ M ⊆ Rnx and µk ∈ Rm, respectively, are the system state and the system input at time k ∈ Z+, and
where the function F : M × Rm → M is analytic on its domain. The input µk = (uk, wk) of the system comprises a
control input uk ∈ Rnu and a disturbance input wk ∈ Rnw , and we assume that the dynamics (1) may be expressed
alternatively in terms of uk and wk as follows:

xk+1 = a(xk) + b(xk)uk + bw(xk)wk. (2)

Here, the matrix bw(x) is assumed to have full column rank for all x ∈M. The disturbance input satisfies

wk ∈W, ∀k ∈ Z+, (3)

whereas the state and control input are subject to the following mixed constraints:

(xk, uk) ∈ C, ∀k ∈ Z+, (4)

where C ⊆M×R
m. In the MPC design of Section 4, the sets W and C are assumed to be polytopes with the origin

contained in the interior, but this assumption is not required in Section 3.

2.2 Input-State Linear Horizon

Next we define the input-state linear horizon (ISLH) for the system (1). To this end, we also define the input-output
linear horizon (IOLH) for the system when the system is assigned an output of the form yk = H(xk). For a more
extensive treatment of the ISLH and IOLH of a nonlinear system, the reader is referred to Mare et al. (2008); Mare
(2007).

Denoting by Uk , (µ0, . . . , µk), we use the following notation:

F0(x,U0) , F (x, µ0),

Fk+1(x,Uk+1) , F (Fk(x,Uk), µk+1), k ∈ Z+,
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where Uk+1 = (Uk, µk+1). Also, to denote the ith component of the input vector µk at time k, we use µi,k, i ∈ Z[1,m],
and similarly for the state xk, xi,k, i ∈ Z[1,nx].

The IOLH of the system (1) with output yk = H(xk) is the smallest number of time steps it takes any of the
components of the input to appear on the output in a nonlinear form.

Definition 1 (Input-Output Linear Horizon) Consider any “output function” H : M → R analytic on its
domain. The system (1) with output yk = H(xk) is said to have input-output linear horizon (IOLH) ℓ ∈ Z[1,∞) in
the set M if

(i)
∂2

∂µp,0∂µq,i

H ◦ Fk(x,Uk) = 0,

∀p, q ∈ Z[1,m], ∀i ∈ Z[0,k],

∀[x,Uk] ∈M× R
m(k+1), ∀k ∈ Z[0, ℓ−2].

(ii)
∂2

∂µp,0∂µq,i

H ◦ Fℓ−1(x,Uℓ−1) 6= 0 a.e. in M× R
mℓ,

for some p, q ∈ Z[1,m]and some i ∈ Z[0, ℓ−1].

The system (1) with output yk = H(xk) is said to have input-output linear horizon ∞ in M if (i) holds for all
ℓ ∈ Z[1,∞). We use ℓH,F to denote the IOLH.

The following definitions and properties of the IOLH of a dynamical system, stated in Mare et al. (2007) for the
SISO case, also hold in the present case of multiple-input systems (e.g., the proofs in Mare et al. (2007) generalize
straightforwardly).

Definition 2 (Coordinate Transformation) A mapping z = ψ(x), where ψ : M → M is an analytic invertible
function, defines a coordinate transformation.

Definition 3 (Regular Feedback) A mapping µ = γ(x, v), where γ : M×R
nv → R

m is an analytic function such
that J(x, v) 6= 0m×nv

a.e. in M × Rnv , (where J(x, v) denotes the Jacobian of γ(x, v) w.r.t. v), defines a regular
feedback law for system (1).

Lemma 4 Given a discrete-time system (1) with output yk = H(xk), its IOLH ℓH,F is invariant under coordinate
transformation but, in general, not under feedback.

The ISLH is the smallest number of time steps it takes any component of the input to appear in the state-variable
in a nonlinear form.

Definition 5 (Input-State Linear Horizon) Consider the discrete-time system (1) and output functions

Hi(x) , ci x, where ci, i ∈ Z[1,nx], are row vectors given by the ith row of the nx × nx identity matrix. The
input-state linear horizon (ISLH) ℓF ∈ Z+ in the set M is defined as

ℓF , min
i∈Z[1,nx]

{ℓHi,F}. (5)

Lemma 6 Given the discrete-time system (1), its ISLH ℓF is invariant under coordinate transformation but, in
general, not under feedback.

Note that, for a linear system, we have ℓF = ∞, whereas, for a nonlinear system, we have ℓF ≤ nx + 1 (c.f. Mare
(2007)). The following example illustrates a nonlinear system structure with ℓF = nx +1 (i.e., the system order plus
one).

Example 1 (The Flexible Joint Robot) Consider the following nonlinear model of a flexible joint robot, taken
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from Sira-Ramı́rez and Castro-Linares (2000), where we have introduced an additive disturbance wk:

x1,k+1 = x1,k + Tsx2,k, (6a)

x2,k+1 = x2,k +
MgLTs

I
sin(x1,k) +

KaTs

I
(x1,k − x3,k), (6b)

x3,k+1 = x3,k + Tsx4,k, (6c)

x4,k+1 = x4,k +
KaTs

J
(x1,k − x3,k) +

Ts

J
uk + wk, (6d)

and where x1,k is the link angular position, x2,k is the link angular velocity, x3,k is the motor axis angular position,
x4,k is the motor axis angular velocity, and uk is the motor applied torque. The parameters I, J , mgL and Ka

represent the inertia of the link, the motor inertia, the nominal load in the link, and the flexible joint stiffness
coefficient, respectively, and Ts is the sampling period. A vector function F can be found such that the above system
can be written as xk+1 = F (xk, µk), where µk = (uk, wk). It follows by direct computation that, when applying
the input sequence (µ0, µ1, µ2, . . . ), the state variable x2,5 is the first sample of the state that shows a nonlinear
dependency on the input µ0. Thus, ℓF = 5.

Remark 1 Example 1 exhibits no dependency of the state in the system matrices b(x), bw(x) in (2). As an example

of a system structure with ∂bw(x)
∂x

6= 0 , consider the system (6) but with the last term of (6d) replaced by σ(x1,k)wk,

where ∂σ(y)
∂y
6= 0. It can be verified that the ISLH of such a system is, as above, given by ℓF = 5. Further examples

can be found in Mare et al. (2008).

2.3 “N -step Lifted” System Model

For systems of the present form (1)-(2) the ISLH is always greater than, or equal to, two. Hence, for any prediction
horizon length N , satisfying N ∈ Z[1,ℓF −1] (i.e., 1 ≤ N < ℓF ), we have that the sequence of future states can be

expressed as an affine function of the control- and disturbance sequences. That is, for some functions, A : M→ RNnx ,
B : M→ R

Nnx×Nnu and Bw : M→ R
Nnx×Nnw , we have

x = A (x) +B (x)u +Bw (x)w, (7)

where x0 = x and

x ,

[
x1

...
xN

]

, u ,

[
u0

...
uN−1

]

, w ,

[
w0

...
wN−1

]

. (8)

3 N-step Affine Feedback Policies

In this section we generalize recent results onN -step affine feedback policies for linear systems to the case of nonlinear
systems. We treat the case N ∈ Z[1,ℓF −1] when the affine relation (7)-(8) holds.

3.1 State-Feedback Policies

For a given initial state x and prediction horizon N ∈ Z[1,ℓF −1], consider an N -step affine state-feedback policy of
the following form:

ui = gi +
i∑

j=1

Ki,jxj , ∀i ∈ Z[0,N−1], (9)

where gi and Ki,j are design parameters that may depend on the initial state x. In view of (8), we may express the
state-feedback policy (9) in matrix form as follows:

u = g + Kx, (10)
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where

g ,





g0
g1

...
gN−1



 , K ,





0 ··· ··· 0
K1,1 0 ··· 0

...
. . .

. ..
...

KN−1,1 ··· KN−1,N−1 0



 . (11)

Remark 2 To relate the present state-feedback parameterization (9)-(10) to the state-feedback parameterization
considered in Goulart et al. (2006), that is,

ui = ci +

i∑

j=0

Li,jxj , ∀i ∈ Z[0,N−1], (12)

note that, to realize any given policy of the form (12) using parameterization (9), we simply need to assign the design
parameters as follows:

gi = ci + Li,0x0, ∀i ∈ Z[0,N−1], Ki,j = Li,j , ∀i, j ∈ Z[1,N−1]. (13)

Thus, since each gi may depend on the initial state x0, parameterization (9) is as general as the parameterization
(12) considered in Goulart et al. (2006).

Since N ∈ Z[1,ℓF −1], we have by combining (7) and (10) that the closed-loop state and control sequence under the
state-feedback policy (10) can be expressed as

x = (I−B (x)K)
−1

(A (x)+B (x) g+Bw (x)w) , (14)

u = (I−KB (x))−1 (g+KA (x)+KBw (x)w) . (15)

Here, we note that both the indicated matrix inverses exist, since the matrices B (x)K and KB (x) are strictly

lower triangular for all x ∈ M (c.f. strict causality (1)). In the sequel, we use the notation x
{g,K}
0 (x,w) = x and

x
{g,K}
i (x,w), i ∈ Z[1,N ], to refer, respectively, to the initial state and the ith block component of x in (14) (i.e., xi is

the state at time i). Similarly, we use the notation u
{g,K}
i (x,w), i ∈ Z[0,N−1], to refer to the (i+1)th block component

of u in (15). We say that the policy (10) is constraint admissible for the initial state x, if: (i) the constraints (4) are
satisfied for the first N steps, that is,

(
x
{g,K}
i (x,w), u

{g,K}
i (x,w)

)
∈ C,

∀i ∈ Z[0,N−1], ∀w ∈W
N , W× · · · ×W

︸ ︷︷ ︸

N times

, (16)

and (ii) the terminal state satisfies

x
{g,K}
N (x,w) ∈ Xf , ∀w ∈W

N , (17)

where Xf is some given “terminal constraint” set.

The set Πsf
N (x) of all pairs (g,K) that define a constraint admissible state-feedback policy for the initial state x is

as follows:

Πsf
N (x),







(g,K)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(g,K) satisfies (11),

xi = x
{g,K}
i (x,w),

ui = u
{g,K}
i (x,w),

(xi, ui) ∈ C, xN ∈ Xf ,

∀i ∈ Z[0,N−1], ∀w ∈WN







. (18)
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Also of interest below is the set of states for which there exists at least one constraint admissible state-feedback
policy of the form (10), that is,

Xsf
N , {x ∈M |Πsf

N (x) 6= ∅}. (19)

Unfortunately, even in the case of linear dynamics, the set Πsf
N (x) may be non-convex for a given initial state x ∈ Xsf

N
(Goulart et al., 2006), and the present state-feedback parameterization is thus, in general, not suited to numerical
optimization. However, following Goulart et al. (2006), we next introduce an associated class of disturbance-feedback
policies, which, via a nonlinear transformation, is equivalent to the present class of state-feedback policies. Further-
more, as shown subsequently in Section 3.4, computing a constraint admissible disturbance-feedback policy for a

given initial state x ∈ Xsf
N is a linear programming problem, provided that the sets C, W and Xf are polyhedral.

3.2 Disturbance-Feedback Policies

For a given initial state x and prediction horizon N ∈ Z[1,ℓF −1], consider an N -step affine disturbance-feedback policy
of the following form:

ui = vi +

i−1∑

j=0

Mi,jwj , ∀i ∈ Z[0,N−1], (20)

where vi and Mi,j are design parameters that may depend on the initial state x. In view of (8), we may express the
control policy (20) in matrix form as follows:

u = v + Mw, (21)

where

v ,





v0
v1

...
vN−1



 , M ,





0 ··· ··· 0
M1,0 0 ··· 0

...
. ..

.. .
...

MN−1,0 ··· MN−1,N−2 0



 . (22)

Since N ∈ Z[1,ℓF −1], we have from (7) that the state sequence under the policy (21) can be expressed as

x = A (x) +B (x)v + [B (x)M +Bw (x)]w. (23)

In the sequel, we use the notation x
{v,M}
0 (x,w) = x and x

{v,M}
i (x,w), i ∈ Z[1,N ], to refer, respectively, to the initial

state and the ith block component of x in (23). Similarly, we use the notation u
{v,M}
i (w), i ∈ Z[0,N−1], to refer to

the (i + 1)th block component of u in (21). The set Πdf
N (x) of all pairs (v,M) that define a constraint admissible

disturbance-feedback policy for the initial state x is as follows:

Πdf
N (x),







(v,M)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(v,M) satisfies (22),

xi = x
{v,M}
i (x,w),

ui = u
{v,M}
i (w),

(xi, ui) ∈ C, xN ∈ Xf ,

∀i ∈ Z[0,N−1], ∀w ∈WN







. (24)

The associated set of states for which at least one constraint admissible disturbance-feedback policy exists is

Xdf
N , {x ∈M |Πdf

N (x) 6= ∅}. (25)
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3.3 Equivalence Result

The following theorem is the main result of this section; it provides a generalization to nonlinear dynamics of the
equivalence result stated as Theorem 9 in Goulart et al. (2006).

Theorem 7 Suppose that N ∈ Z[1,ℓF −1]. (i) Given any x ∈ Xsf
N and any state-feedback policy (10) with (g,K) ∈

Πsf
N (x), one can find a corresponding disturbance-feedback policy (21) with (v,M) ∈ Πdf

N (x) that results in the same

sequences of states and control inputs for all w ∈ WN . Conversely, (ii) given any x ∈ Xdf
N and any disturbance-

feedback policy (21) with (v,M) ∈ Πdf
N (x), one can find a corresponding state-feedback policy (10) with (g,K) ∈

Πsf
N (x) that results in the same sequences of states and control inputs for all w ∈ WN . Hence, it follows that (iii)

Xsf
N = Xdf

N .

Proof As in Goulart et al. (2006), we prove statement (i) and the set inclusion Xsf
N ⊆ Xdf

N by constructing a pair

(v,M) ∈ Πdf
N (x) from any given pair (g,K) ∈ Πsf

N (x), x ∈ Xsf
N , in such a way that the associated control input

sequences coincide for all disturbance input sequences w ∈WN . Indeed, from (15) and the fact that both B (x) and
Bw (x) are lower block triangular, we have that such a construction is obtained using:

v , (I −KB (x))
−1

(g + KA (x)) , (26)

M , (I −KB (x))
−1

KBw (x) . (27)

To prove statement (ii) and the set inclusion Xdf
N ⊆ Xsf

N in a similar fashion, we firstly note from the appendix
that the matrix Bw (x) has a lower block triangular left inverse B†

w(x) satisfying B†
w(x)Bw (x) = I,∀x ∈ M. Left

multiplying (7) by B†
w(x) and rearranging yields

w = B†
w(x)x −B†

w(x)A (x)−B†
w(x)B (x)u. (28)

Under any disturbance-feedback policy (21), we thus have

u = v + Mw =

v −MB†
w(x)B (x)u + M

(
B†

w(x)x −B†
w(x)A (x)

)
.

Alternatively, since both B†
w(x) and B (x) are lower block triangular, we may express the control policy in the required

state-feedback form (10) using

g ,
(
I+MB†

w(x)B (x)
)−1 (

v−MB†
w(x)A (x)

)
, (29)

K ,
(
I + MB†

w(x)B (x)
)−1

MB†
w(x). (30)

This completes the proof of (i)-(iii).

An important consequence of the equivalence result established above is Corollary 8 below, which requires the
following assumption on the terminal constraint set Xf :

Assumption 1 The set Xf introduced in (17) is robustly invariant for the closed-loop system obtained using a linear
feedback gain law uk = −Kfxk, that is, for some Kf ∈ R

nu×nx ,

a(x)− b(x)Kfx+ bw(x)w ∈ Xf , ∀x ∈ Xf , ∀w ∈W.

Moreover, the system constraints are satisfied along the associated trajectories, that is,

(x,−Kfx) ∈ C, ∀x ∈ Xf ,

where the set C is as in (4).
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Corollary 8 Suppose that N ∈ Z[1,ℓF −1] and that Assumption 1 holds. Then, the following set inclusions hold:

Xf ⊆ X
sf
1 ⊆ · · · ⊆ X

sf
N , (31)

Xf ⊆ X
df
1 ⊆ · · · ⊆ X

df
N . (32)

Proof It suffices to prove (31) since (32) then follows from point (iii) of Theorem 7. Proving (31) may be accom-

plished as in Goulart et al. (2006). For example, to prove the set inclusion Xf ⊆ X
sf
1 , note from Assumption 1 that

x ∈ Xf implies

(−Kfx, 0) ∈ Πsf
1 (x) ⇒ x ∈ Xsf

1 . (33)

Similarly, to prove the set inclusions Xsf
1 ⊆ · · · ⊆ X

sf
N , consider an integer L ∈ Z[2,N ], and note from Assumption 1

that x ∈ Xsf
L−1 implies

(g+,K+) ∈ Πsf
L (x) ⇒ x ∈ Xsf

L , (34)

where

g+ ,

[

gL−1

0

]

, K+ ,




KL−1 0

[

0 · · · 0 −Kf

]

0



 , (35)

and where (gL−1,KL−1) ∈ Πsf
L−1 (x) is some pair whose existence follows from the assumption x ∈ Xsf

L−1.

Corollary 8 can be used to establish recursive feasibility and thereby robust constraint satisfaction of MPC policies
that are based on optimization over the class of affine feedback policies. See, for example, Goulart et al. (2006) and
Corollary 10 below.

3.4 Convex Parameterization of Admissible Policies

When N ∈ Z[1,ℓF −1] and the sets C, W and Xf are polyhedral, it is straightforward to find matrix functions Hx(x),

Hu(x), Hw(x) and matrices S, s and h such that the set Πdf
N (x) in (24) can be expressed as follows:

Πdf
N (x)=







(v,M)

∣
∣
∣
∣
∣
∣
∣
∣

(v,M) satisfies (22)

maxw∈WN {[Hu(x)M+Hw(x)] w}

+Hx(x) +Hu(x)v ≤ h







, (36)

where WN =
{
w ∈ RNnw

∣
∣Sw ≤ s

}
. The following corollary may be proven as in Ben-Tal et al. (2004) or Goulart

et al. (2006) and shows that the set Πdf
N (x) is convex and, in fact, characterized by linear inequalities.

Corollary 9 The set Πdf
N (x) in (36) can be expressed as

Πdf
N (x) =







(v,M)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(v,M) satisfies (22),

∃Z ≥ 0 such that

Zs+Hx(x) +Hu(x)v ≤ h

ZS = [Hu (x)M +Hw (x)]







,

where Z is a matrix of appropriate dimensions, and where all inequalities are componentwise.
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Thanks to Corollary 9, in the polyhedral case (36), we are able to compute a disturbance-feedback policy given any

initial state x ∈ Xdf
N = Xsf

N , by formulating and solving, for example, a linear programme. As explored further in
the following section, it is also possible to use the results of this section to design robust MPC policies that are based
on a QP parameterized by the current system state.

Remark 3 By employing the results in Goulart (2006), it is possible to treat the case when the set WN is ellipsoidal
(as opposed to polytopic) using a second-order cone (as opposed to a linear or quadratic) programme.

4 Robust Nonlinear Model Predictive Control

In this section we propose an input-to-state stabilizing MPC policy for the system (1).

4.1 Nonlinear MPC via QP

Consider the following quadratic cost function which penalizes the “nominal trajectory” obtained using u = v and
w = 0 [see (21)]:

V (x,v) = ‖xN‖
2
Pf

+

N−1∑

i=0

(
‖xi‖

2
Q + ‖ui‖

2
R

)
, (37)

where Q > 0, R > 0, Pf > 0, xi = x
{v,M}
i (x, 0) = x

{v,0}
i (x, 0) and ui = u

{v,M}
i (0) = u

{v,0}
i (0), and where

x
{v,M}
i (x,w) and u

{v,M}
i (w) are as in (24). The MPC policy we propose is obtained by minimizing V (x,v) over

the set (v,M) ∈ Πdf
N (x) using the current system state x = xk as it evolves. More precisely, the MPC policy is as

follows:

Algorithm 1 For the current system state x = xk ∈ X
df
N , k ∈ Z+, solve the following optimization problem

(v∗ (x) ,M∗ (x)) , arg min
(v, M)∈Πdf

N
(x)
V (x,v) (38)

and apply uk = v∗
0(xk) to the system (1), where v∗

0(xk) denotes the nu first components of v∗(xk).

To facilitate our stability analysis below and ensure that the optimization problem (38) can be posed as a standard
convex QP (c.f. Lemma 9), we require the following assumption:

Assumption 2 The prediction horizon N satisfies N ∈ Z[1,ℓF −1] and the constraint sets C, W and Xf are polytopes
with the origin contained in the interior.

In the sequel, we write the closed-loop dynamics under Algorithm 1 as follows:

xk+1 = f(xk, wk), (39)

where f(x,w) , a(x) + b(x)v∗
0(x) + bw(x)w. We also refer to the MPC value function V ∗ : Xdf

N → R, defined as

V ∗(x) , V (x,v∗ (x)) . (40)

Remark 4 Note that there is a unique solution v∗ (x) for each x ∈ Xdf
N , since the cost function V (x,v) is strictly

convex in v by our choice of R > 0. On the other hand, the mapping M∗ (x) may be set-valued (i.e., M∗ (x) ⊂
RNnu×Nnw), since the cost function V (x,v) does not depend on M. To prove the main theorem below, we make
an arbitrary but single-valued selection M∗∗ (x) ∈ M∗ (x). For example, we take M∗∗ (x) to be the unique M that

minimizes Trace
(
MTM

)
subject to (v∗ (x) , M) ∈ Πdf

N (x). We also make use of the following block partition:

v∗(x) =

[

v∗
0(x)

v̄(x)

]

, M∗∗(x) =




0

[

M̄(x) MN−1
+ (x)

]



 , (41)

9



where v̄(x) ∈ R(N−1)nu , M̄(x) ∈ Rnu(N−1)×nw and MN−1
+ (x) ∈ Rnu(N−1)×(N−1)nw , and where v∗

0(x) is the model
predictive control law.

4.2 Robust Constraint Satisfaction

The following corollary is a direct consequence of Corollary 8 and shows that Algorithm 1 guarantees constraint
satisfaction in the presence of the disturbance input wk ∈W.

Corollary 10 (Robust Constraint Satisfaction) Suppose that Assumptions 1 and 2 hold. Then, the set Xdf
N is

robustly invariant for the closed-loop system (39), that is,

f(x,w) ∈ Xdf
N , ∀x ∈ Xdf

N , ∀w ∈W. (42)

Consequently, the MPC policy ensures that the system constraints are satisfied for all admissible disturbance sequences

provided that x0 ∈ X
df
N , that is, provided that the optimization problem (38) is solvable at initial time k = 0.

Proof It can be verified that, for N = 1, f(x,w) ∈ Xf , ∀x ∈ X
df
N , ∀w ∈ W, whereas, for 2 ≤ N < ℓF , f(x,w) ∈

Xdf
N−1, ∀x ∈ X

df
N , ∀w ∈W. Thus, (42) follows from the set inclusions (32) of Corollary 8.

4.3 Input-To-State Stability

Here we show that the closed-loop system is input-to-state stable in the set Xdf
N provided that Assumptions 1, 2 and

the following additional assumption hold:

Assumption 3 Consider the matrices Q > 0, R > 0 and Pf > 0 of the cost function and the feedback gain Kf of
Assumption 1. For all x ∈ Xf , we have

Vf (a (x)− b (x)Kfx)− Vf (x) ≤ −‖x‖2Q+KT
f

RKf
,

where Vf (x) , ‖x‖2Pf
.

Remark 5 Note that we require the “terminal controller” u = −Kfx in Assumptions 1 and 3 to be linear. Also
note that, disregarding the linearity of the terminal controller, Assumption 3 is typical for MPC of systems without
disturbances (Mayne, Rawlings, Rao, and Scokaert, 2000), whereas Assumption 1 is typical for MPC of systems with
disturbances (Mayne, 2001).

Following Jiang and Wang (2001), we next define the notion of input-to-state stability. To this end, we also introduce
standard definitions of K-, K∞- and KL-functions.

Definition 11 (Comparison Functions) A function σ : R+ → R+ is said to be a K-function if it is continuous,
strictly increasing and σ(0) = 0. A K-function σ(r) which is radially unbounded (i.e., σ(r)→∞ as r →∞) is said
to be a K∞-function. A function β : R+×R+ → R+ is said to be a KL-function if for each fixed k ∈ R+, the function
β(·, k) is a K-function, and for each fixed r ∈ R+, the function β(r, ·) is non-increasing with limk→∞ β(r, k) = 0.

Definition 12 (Input-To-State Stability) Consider the discrete-time system

xk+1 = f(xk, wk), (43)

where xk ∈ X, 0 ∈ int(X), wk ∈W ⊆ R
nw and f(0, 0) = 0, and let φ

(
k, x, {wt}

k−1
t=0

)
denote the state at time k when

the initial state is x0 = x and the disturbance sequence is {wt}
k−1
t=0 . The system (43) is input-to-state stable (ISS) in

10



the set X, if there exist a KL-function β(·) and a K-function γ(·), such that, for all integers k ≥ 0, for all x ∈ X
and for all sequences {wt}

k−1
t=0 taking values in W, we have φ

(
k, x, {wt}

k−1
t=0

)
∈ X and

∥
∥φ

(
k, x, {wt}

k−1
t=0

)∥
∥ ≤ β (‖x‖, k) + γ

(

max
t∈Z[0,k−1]

‖wt‖

)

.

We are then ready to state the main result of this section.

Theorem 13 The closed-loop system (39) is ISS in the set Xdf
N = Xsf

N provided that Assumptions 1, 2, 3 hold.

Proof By Corollary 10 above and Lemma 3.5 in Jiang and Wang (2001) it suffices to show that the MPC value
function V ∗(x) in (40) satisfies the following condition: 1 There exist three K∞-functions α1(·), α2(·) and α3(·) and
a K-function σ(·), such that

α1(‖x‖) ≤ V
∗ (x) ≤ α2(‖x‖), ∀x ∈ X

df
N . (44)

V ∗ (f (x,w))− V ∗ (x) ≤ −α3(‖x‖) + σ(‖w‖), ∀x ∈ Xdf
N , ∀w ∈W. (45)

Since Q > 0, we may choose the K∞-function α1(r) in (44) as α1(r) , λmin(Q)r2, where λmin(Q) denotes the
smallest eigenvalue of Q. Furthermore, by exploiting the terminal controller u = −Kfx and Assumptions 1, 2 and

3, it can be shown that V ∗ (x) ≤ Vf (x) ≤ λmax(Pf )‖x‖2, ∀x ∈ Xf . Hence, since V ∗ (x) is bounded on Xdf
N and

0 ∈ int(Xf ), there exists a sufficiently large scalar c such that (44) holds using α2(r) , cr2.

It remains to find a K∞-function α3(r) and a K-function σ(r) satisfying (45). To this end, we define two functions,
v+ (x,w) and M+ (x,w), satisfying

(v+ (x,w) ,M+ (x,w)) ∈ Πdf
N (f (x,w)) , ∀x ∈ Xdf

N , ∀w ∈W. (46)

[Note that (46) implies that the pair (v+(·),M+(·)) is a feasible solution to the problem (38) when the current system

state is f(·).] When N = 1, we use v+ (x,w) , −Kff (x,w) and M+ (x,w) , 0. When 2 ≤ N < ℓF , we use

v+ (x,w) ,

[

vN−1
+ (x,w)

vN
+ (x,w)

]

, M+ (x,w) ,

[

MN−1
+ (x) 0

MN
+ (x,w) 0

]

, (47)

where vN−1
+ (x,w) , v̄(x) + M̄(x)w, and where MN−1

+ (x), v̄(x) and M̄(x) are as in (41). To describe the bottom
entries in (47), we first note that the top entries in (47) satisfy

(
vN−1

+ (x,w) ,MN−1
+ (x)

)
∈ Πdf

N−1 (f (x,w)) , ∀x ∈ Xdf
N , ∀w ∈W. (48)

Hence, in view of Assumption 1, we may define the bottom entries by “adding a step” in a similar manner to the
proof of Corollary 8 [see (34)-(35)]. That is,

vN
+ (x,w) , −Kf

[
AN−1 (f (x,w)) +BN−1 (f (x,w))vN−1

+ (x,w)
]
, (49)

MN
+ (x,w) , −Kf

[
BN−1 (f (x,w))MN−1

+ (x) +BN−1
w (f (x,w))

]
, (50)

where the notation AN−1(·), BN−1(·) and BN−1
w (·), respectively, denote the last block row of the functions A(·), B(·)

and Bw(·) in (7) when N is reduced to N ← N − 1 in (8).

1 As remarked by Goulart (2006) and others, the ISS-Lyapunov function V ∗(x) need not be continuous in the proof of
Lemma 3.5 in Jiang and Wang (2001).
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A useful observation regarding the function v+ (x,w) defined above is that, subject to Assumption 3, the following
holds:

V (f (x, 0) ,v+ (x, 0))− V ∗(x) ≤ −‖x‖2Q − ‖u‖
2
R, ∀x ∈ Xdf

N , (51)

where u = v∗
0(x). Another useful property is that v+ (x,w) is Lipschitz continuous in w on its domain Xdf

N ×W,
that is, there exists a scalar L (i.e., a Lipschitz constant) such that the following holds:

‖v+ (x,w2)− v+ (x,w1)‖ ≤ L ‖w2 − w1‖ , ∀x ∈ Xdf
N , ∀w1, w2 ∈W. (52)

This follows from (42), (47) and (49) since: (i) the sets Xdf
N and Πdf

N (x), ∀x ∈ Xdf
N , are bounded; (ii) the function

F (x, µ) is analytic, hence Lipschitz continuous when restricted to a bounded set; and (iii) the function f (x,w) is

Lipschitz continuous in w on Xdf
N ×W. Similarly, note that the cost function V (x,v) is Lipschitz continuous in both

its arguments when restricted to any set of the form Xdf
N ×UN , where U is bounded. Next let us consider a bounded

set U such that C ⊆ M × U and note that, since f (x,w) ∈ Xdf
N and v+ (x,w) ∈ UN , we have using some Lipschitz

constants k1, k2, k3 and k4 (which, in general, depend on the sets Xdf
N , W and U) that

‖V (f (x,w) ,v+ (x,w))− V (f (x, 0) ,v+ (x, 0))‖

≤ k1 ‖f (x,w) − f (x, 0)‖+ k2 ‖v+ (x,w)− v+ (x, 0)‖

≤ (k1k3 + k2k4) ‖w‖ , k‖w‖, ∀x ∈ Xdf
N , ∀w ∈W. (53)

Hence we can establish (45) by using the property (46) to upper bound the value function V ∗ (f (x,w)) and then
employing (51) and (53) as follows:

V ∗ (f (x,w))− V ∗(x) ≤ V (f (x,w) ,v+ (x,w))− V ∗(x)

= V (f (x, 0) ,v+ (x, 0))− V ∗(x) + [V (f (x,w) ,v+ (x,w))− V (f (x, 0) ,v+ (x, 0))]

≤ −‖x‖2Q − ‖u‖
2
R + k‖w‖ ≤ −α3(‖x‖) + σ(‖w‖), ∀x ∈ Xdf

N , ∀w ∈W, (54)

where u = v∗
0(x), σ(r) , kr and α3(r) , λmin(Q)r2 = α1(r).

Remark 6 As is typical in MPC analysis (see, e.g., Rawlings and Muske (1993); Mayne et al. (2000)), the proof
of Theorem 13 employs the feasibility of a “candidate solution” v+ (x,w) in order to establish an upper bound on
the value function V ∗ (f (x,w)). In contrast to the ISS results in, for example, Kerrigan and Maciejowski (2003);
Goulart et al. (2006), the proof of Theorem 13 does not rely on (local Lipschitz) continuity properties of V ∗(x),
rather, it relies on Lipschitz continuity properties of the candidate solution v+ (x,w). In fact, it remains unclear to

the author whether the value function V ∗(x) can be discontinuous at points in Xdf
N under the stated assumptions.

A related observation is that, since the cost function V (x,v) may be non-convex in its first argument x, the value

function V ∗(x) may also fail to be convex, even when restricted to a convex subset of its domain Xdf
N . Finally,

note that Theorem 13 does not exploit the fact that the optimization problem is a QP and thus the results generalize
straightforwardly to the case of an ellipsoidal disturbance set, in which case the optimization problem is a second-order
cone programme (c.f. Remark 3).

4.4 Numerical Example

We consider the flexible joint manipulator model described in Example 1 with the sampling time set to Ts = 0.05
and the parameter values as described in Sira-Ramı́rez and Castro-Linares (2000) (i.e., m = 0.4, g = 9.81, L = 0.185,

J = 0.002, I = 0.0059 and Ka = 1.61). The disturbance input is assumed to satisfy wk ∈W , {w | |w| ≤ 1}, whereas

the mixed constraints on the state and the control input are given by (xk, uk) ∈ C , {(xk, uk)| |x1,k| ≤ π/2, |xi,k| ≤
100, i ∈ Z[2,4], |uk| ≤ 5}. Our goal is to design an instance of Algorithm 1 using the following weighting matrices:

Q = diag{1, 0.1, ǫ0, ǫ0}, R = ǫ0, ǫ0 , 0.001. (55)
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4.4.1 Finding the Terminal Triplet Kf , Xf and Pf

We first consider the problem of finding the feedback gain Kf , the constraint set Xf and the weighting matrix Pf

so as to satisfy Assumptions 1 and 3 using the given weighting matrices (55). To this end, we note that the system
dynamics (6) may be re-written as follows:

[ x1,k+1
x2,k+1
x3,k+1
x4,k+1

]

=

[
1 0.050 0 0

−7.492 1 13.64 0
0 0 1 0.050

40.25 0 −40.25 1

]

︸ ︷︷ ︸

A

[ x1,k
x2,k
x3,k
x4,k

]

+ Buk + Bϕϕ(x1,k) + Bwwk, (56)

where B , [0 0 0 25]T, Bϕ , [0 − 6.152 0 0]T, Bw , [0 0 0 1]T and ϕ(y) , y − sin(y). Furthermore, we observe
from Fig. 1 that the nonlinearity ϕ(y) is relatively small on the interval y ∈ [−0.5, 0.5]. Hence, whenever the system

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y

ϕ
(y

)

Fig. 1. The function ϕ(y) = (y − sin (y)) on the interval y ∈ [−π
2
, π

2
].

state satisfies xk ∈ X0 ,
{
xk

∣
∣|x1,k| ≤ 0.5

}
, the nonlinear dynamics may be approximated relatively accurately by

the linear dynamics obtained using Bϕ = 0 in (56). Motivated by these observations we propose to compute Kf

as the LQR gain of the linear system model xk+1 = Axk + Buk for the given weighting matrices; the result is
Kf = [0.4961 0.0123 0.7110 0.1223].

Next, to compute an associated terminal constraint set Xf , we consider the following sufficient condition for As-
sumption 1 to hold with our choice of Kf :

Afx+ [Bϕ Bw] w̄ ∈ Xf , ∀x ∈ Xf , ∀w̄ ∈Wϕ ×W, (57a)

[x,−Kfx] ∈ C ∩ {X0 × R} , ∀x ∈ Xf , (57b)

where Af , A − BKf , Wϕ , {ϕ ∈ R | |ϕ| ≤ ϕ(0.5) ≈ 0.0206 }, and where we have made use of the fact that
ϕ(x1,k) ∈Wϕ, ∀xk ∈ X0. To arrive at the sufficient condition (57), we have effectively: (i) introduced the additional
constraint [xk, uk] ∈ X0 × R and (ii) modeled the nonlinearity ϕ(x1,k) as a bounded additive disturbance input
ϕk ∈ Wϕ. These two steps are motivated by the facts that: (i) computing the maximal set Xf that satisfies (57)
is a linear programming problem (Kolmanovsky and Gilbert, 1998); and (ii) the set Wϕ can be taken to relatively
small when we require Xf ⊆ X0. Indeed, as is well known, since the relevant sets are polytopes and the set Wϕ ×W

is sufficiently small, we may use Algorithm 6.2 in Kolmanovsky and Gilbert (1998) to compute the maximal set Xf

that satisfies (57). The result is a polytopic constraint set Xf which contains the origin in the interior. To illustrate
the shape of the resulting terminal constraint set Xf , Fig. 2 shows the specific “slice” of Xf that intersects the
surface x3,k = x4,k = 0. For an alternative approach to compute Xf , see, for example, Cannon et al. (2003).

Towards our next goal of computing the weighting matrix Pf , we observe that the nonlinearity ϕ(y) on the interval

y ∈ [−0.5, 0.5] belongs to the sector [0,K2] (see, e.g., Khalil (2002)), where K2 , 2ϕ(0.5) ≈ 0.0411. That is to say,
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−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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−3

−2

−1

0

1

2

3

4

x1,k

x
2
,k

Fig. 2. Slice along x3,k = x4,k = 0 of the maximal set Xf ⊂ R
4 that satisfies (57).

the function ϕ : [−0.5, 0.5]→ R satisfies:

[

y

ϕ (y)

]T

S

[

y

ϕ (y)

]

≥ 0, ∀y ∈ [−0.5, 0.5], S ,

[

0 K2

K2 −2

]

. (58)

Hence, a sufficient condition for Assumption 3 to hold using Kf and Xf is as follows:

[

Af Bϕ

]T

Pf

[

Af Bϕ

]

−
[

I 0
]T

Pf

[

I 0
]

(59)

≤ −
[

I 0
]T (

Q+KT
f RKf

) [

I 0
]

+mCT
S SCS , (60)

where CS , diag{[1 0 0 0] , 1} and m ≥ 0 is a scalar “multiplier”. [To see that this is the case, left- and right-multiply
(60) by [xk ϕ(x1,k] and [xk ϕ(x1,k]T, respectively, and then use Xf ⊆ X0 and (58).] It follows that determining an
(in some sense) optimal matrix Pf satisfying Assumption 3 may be accomplished by solving the following SDP:

min
Pf , m

Trace (Pf ) subject to (60) and m ≥ 0.

Specifically, by solving this SDP we obtain

Pf =

[ 32.3713 −1.7679 −56.4408 −1.1638
−1.7679 0.4031 5.6113 0.0853
−56.4408 5.6113 138.2601 2.7077
−1.1638 0.0853 2.7077 0.0648

]

. (61)

4.4.2 Simulation Results

Using a prediction horizon of N = 4 < ℓF = 5 we next implement Algorithm 1 by solving the quadratic pro-
gramme (38) at each time step k. Note from the discussion above that Assumptions 1, 2 and 3 hold and that our

MPC policy thus input-to-state stabilizes the system in the set Xdf
4 = Xsf

4 (c.f. Theorem 13). To illustrate that
Algorithm 1 also leads to good nominal performance, Fig. 3 compares the closed-loop responses with the responses

of the linear system xk+1 = Afxk when the initial state is set to x0 = [0.5 0 0 0]T ∈ Xf ⊆ Xdf
4 and wk = 0. Note

that the closed-loop responses of Algorithm 1 shown in Fig. 3 are relatively close to being optimal over an infinite
horizon, since they closely approximate the responses of xk+1 = Afxk and we have ϕ(x1,k) ≈ 0 and wk = 0 (c.f. (56)
and Fig. 1). More importantly perhaps, the MPC policy approximates the associated infinite horizon problem and

input-to-state stabilizes the system in the set Xdf
4 which is significantly larger than the terminal constraint set Xf .

To illustrate this point, Fig. 4 shows the closed-loop responses obtained when the initial state x0 ∈ X
df
4 is close to

the boundary of the set Xdf
4 and the disturbance wk varies randomly within its constraint set W. Note from Fig. 2

that the initial state in Fig. 4 is far outside the terminal constraint set, and from Fig. 1 that the initial state of x1,k
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Fig. 3. Closed-loop responses under Algorithm 1 when wk = 0 (solid) and the corresponding responses of the linear system
xk+1 = Afxk, uk = −Kfxk (dashed).

is far outside the “flat” region of the nonlinearity ϕ(x1,k). Also note that the control input uk hits its constraints at
−5, 5, and that the responses are stable and converge to a neighborhood around zero in the presence of the persistent
disturbance wk ∈W, as established in Theorem 13.
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Fig. 4. Closed-loop responses under Algorithm 1 when wk ∈ W and x0 = [1.32 0 0 0]T.

5 Conclusions

We have presented results on N -step affine feedback policies that enable the systematic design of affine and predictive
control policies for a class of nonlinear systems with bounded disturbance inputs. Our results generalize recent results
for linear systems to the case when N is chosen to be less than the nonlinear system’s input-state linear horizon
ℓF . As a particular application, we have presented an input-to-state stabilizing MPC policy based on a convex QP
parameterized by the current system state. The MPC policy has been applied to control a nonlinear discrete-time
model of a flexible joint manipulator, and simulations results illustrating this have been reported.

The authors would like to stress that the results presented here are well-known in the linear case when ℓF = ∞
(see Goulart et al. (2006)). We also acknowledge that the results seem to be restricted to a relatively small class
of nonlinear systems due to the restriction N < ℓF . We hope, however, that our approach will motivate further
developments that exploit structure in order to reduce computational complexity and better understand nonlinear
MPC.

A promising extension of our approach is to attempt to relax the restriction N < ℓF , at the expense of introducing
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an approximation error, by making use of an approximate N -step prediction model of the form (7)-(8); whilst the
QP of the present MPC policy yields the exact solution to the problem of optimizing a quadratic criterion over
the class N -step affine state-feedback policies whenever N < ℓF , such an approach would produce an approximate
solution for the cases when N ≥ ℓF . It is also of significant practical interest to attempt to extend our results to
cases with imperfect state measurements.
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J. Mare, M. Lazar, and J. De Doná. Input to state stabilising nonlinear model predictive control based on QP. In

Proc. of the 7th IFAC Symposium on Nonlinear Control Systems, 2007.
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Appendix: Lower Block Triangular Left Inverse

Lemma 14 Suppose that N ∈ Z[1,ℓF −1] and that bw (x) in (2) has full column rank for all x ∈ M. Then, it follows

that Bw (x) in (7) has a lower block triangular left inverse B†
w (x) ∈ RNnw×Nnx for all x ∈ M.

Proof Firstly note that the matrix Bw (x) is lower block triangular with rank (Bw (x)) = Nnw for all N ∈ Z[0,ℓF −1]

and all x ∈ M. [Conversely, if Bw (x) is rank deficient for some N ∈ Z[0,ℓF −1] and some x ∈ M, then there exist
two different disturbance sequences, say w1 and w2, w1 6= w2, which result in the same state sequence under the
open-loop control policy u = 0 when x0 = x. However, this, in turn, implies that the matrix bw(x) in (2) is rank
deficient for some x ∈ M, which contradicts our initial assumption.] Using the latter fact, which is necessary and
sufficient for Bw (x) to have some left inverse, we proceed with an induction argument to show that there exists, as
claimed, a specific left inverse B†

w (x) which also is lower block triangular. When N = 1, there is only one block, that
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is, we have Bw (x) = bw(x) and we may thus choose B†
w (x) = b†,full

w (x) where b†,full
w (x) is any left inverse of bw(x).

To complete the induction argument, we next show that, if the lemma statement holds for N ∈ Z[1,ℓF −2], then it also

holds when N is incremented to N ← N +1. To this end, let Bw,L (x) and B†
w,L (x) denote Bw (x) and B†

w (x) when

N = L, L ∈ Z[1,ℓF −2], and note that Bw,L+1 (x) is of the form

Bw,L+1 (x) =





[

Bw,L (x) 0
]

Bw,+ (x)



 , (62)

for some matrix Bw,+ (x). As a consequence of (62) and the induction hypothesis that B†
w,L (x)Bw,L (x) = I where

B†
w,L (x) is lower block triangular, it follows by direct computation that the following matrix is a lower block triangular

left inverse of Bw,L+1 (x):

B†
w,L+1 (x) =





[

B†
w,L (x) 0

]

eL+1B
†,full
w,L+1 (x)



 . (63)

Here, B†,full
w,L+1 (x) denotes any left inverse of Bw,L+1 (x) and eL+1 denotes the nw last rows of the identity matrix

of dimension (L + 1)nw. Since the required left inverse B†,full
w,L+1 (x) exists for all L ∈ Z[1,ℓF −2] and all x ∈ M, this

completes the proof.
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