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Abstract

This paper deals with the decentralized overlapping control of interconnected systems. The notion of a quotient overlapping
fixed mode (QOFM) is first introduced and it is shown that a mode of an interconnected linear time-invariant system can be
shifted by means of a general decentralized overlapping controller if and only if it is not a QOFM. It is then asserted that
any interconnected system with no unstable QOFM can be stabilized by using an appropriate finite-dimensional linear time-
varying controller. It is also shown how the existing results aiming at designing a decentralized controller of a certain type
such as generalized sampled-data hold function, finite-dimensional linear time-varying, and sampled-data can be utilized to
design a decentralized overlapping controller of a desired form, in order to achieve any design specifications. The efficacy of
the results is elucidated through two numerical examples.
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1 Introduction

Control of interconnected systems has been of great in-
terest in the literature in the past three decades, due to
its wide range of applications in important real-world
problems. Such applications include power systems,
communication networks, flexible space structures, etc.
to name only a few. Due to the distributed nature
of the problems of this type, the conventional control
techniques are often not capable of handling them effi-
ciently. More specifically, it is desired in the distributed
interconnected systems to impose some constraints on
the structure of the controller to be designed. These
constraints determine the outputs of which subsys-
tems could contribute to the construction of the input
of each subsystem. To formulate the control problem,
these constraints are usually represented by a matrix,
which is often referred to as the information flow matrix
(Davison and Chang, 1990).

A special case of structurally constrained controllers is
when the local controller of each subsystem operates in-
dependently of the other subsystems, i.e., there is no di-
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rect influence of the output of each subsystem on the
control signal of other subsystems. This case is of a par-
ticular interest in the control literature, and is usually
referred to as the decentralized control problem (Wang
and Davison, 1973; Siljak, 1991; Lavaei, Momeni, and
Aghdam, 2008; Lavaei and Aghdam, 2007c). Each con-
trol component in a decentralized control system ob-
serves only the output of its corresponding subsystem
to construct the input of that subsystem. The notion
of a decentralized fixed mode (DFM) was introduced in
Wang and Davison (1973) to characterize the modes of
an interconnected system which are fixed with respect to
any decentralized linear time-invariant (LTI) controller.
Since a DFM may not be fixed with respect to a nonlin-
ear and time-varying controller, the notion of a quotient
fixed mode (QFM) was introduced in Gong and Aldeen
(1997) to identify those modes that are fixed with re-
spect to any type of decentralized control law (i.e., non-
linear and time-varying). Since this notion was merely
defined for strictly proper systems, it was further devel-
oped in Lavaei, Sojoudi, and Aghdam (2007) to identify
the unwanted modes of any general proper system. Var-
ious properties of decentralized controllers have been in-
vestigated thoroughly in the literature (Siljak, 1991).

More recently, the case when the local controllers of an
interconnected system can partially communicate with
each other is studied intensively in the literature. This
problem is referred to as decentralized overlapping con-
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trol (Zecevic and Siljak , 2005; Stankovic, Stanojevic,
Siljak , 2000; Siljak and Zecevic, 2005), and is motivated
by the following practical issues:

(1) The subsystems of many interconnected systems
(referred to as overlapping subsystems) share some
states (Siljak and Zecevic, 2005; Iftar, 1993, 1991).
In this case, it is often desired that the structure of
the controller matches the overlapping structure of
the system (Siljak and Zecevic, 2005).

(2) In some systems, there are limitations on the avail-
ability of the states. In this case, only a subset of the
outputs of the system are available for constructing
each control signal, and the controller need not be
localized like the conventional decentralized control
structure (Lavaei and Aghdam, 2008).

The control constraint in both cases discussed above is
described by an information flow matrix which reflects
the desired control structure. Decentralized overlapping
control can, in fact, be envisaged as a general case of
traditional decentralized control problem. Note that the
terms structurally constrained controller and decentral-
ized overlapping controller are interchangeably used in
the literature (Lavaei and Aghdam, 2007a, 2006; Ebi-
hara and Hagiwara, 2003). Analogously to the definition
of a DFM, the notion of a decentralized overlapping fixed
mode (DOFM) was introduced in Lavaei and Aghdam
(2008) to identify those modes of an interconnected sys-
tem which are fixed with respect to LTI decentralized
overlapping controllers. A procedure was then proposed
to place the non-DOFMs freely in the complex plane.
The question arises: Is there any non-LTI decentralized
overlapping controller to shift a DOFM? It is also desired
to employ the existing non-LTI decentralized control de-
sign techniques such as finite-dimensional linear time-
varying (LTV), sampled-data, generalized sampled-data
hold functions (GSHF), etc. to obtain a stabilizing de-
centralized overlapping controller.

This paper aims to address the above-mentioned ques-
tions. For this purpose, the mapping between the decen-
tralized overlapping control and the decentralized con-
trol structures introduced in Lavaei and Aghdam (2008)
is studied. This mapping brings about using the existing
results on the traditional decentralized control design
in order to solve the decentralized overlapping control
design problem. Different types of decentralized over-
lapping control laws, namely sampled-data, GSHF, and
finite-dimensional LTV are then investigated via this
mapping. Moreover, the important problem of stabiliz-
ability of an interconnected system by means of a general
(nonlinear and time-varying) decentralized overlapping
controller is addressed via the new notion of a quotient
overlapping fixed mode (QOFM). It is shown that any
mode of the system is movable via a decentralized over-
lapping controller if and only if it is not a QOFM.

This paper is organized as follows. Some preliminary

results, which are basically borrowed from Lavaei and
Aghdam (2008), are presented in Section 2. The stabi-
lizability with respect to decentralized overlapping con-
trollers is studied in Section 3. The notion of analogous-
ness is thoroughly investigated in Section 4 for several
types of controllers, followed by two numerical examples
in Section 5. Finally, some concluding remarks are given
in Section 6.

2 Preliminaries

Consider a ν-channel system S with the following state-
space representation:

ẋ(t) = Ax(t) +
ν∑

i=1

Biui(t)

yi(t) = Cix(t) +
ν∑

j=1

Dijuj(t), i ∈ ν̄ := {1, 2, ..., ν}

(1)
where x(t) ∈ <n is the state, and ui(t) ∈ <mi and yi(t) ∈
<ri , i ∈ ν̄, are the input and the output of the i-th
channel of the system. Define now:

u(t) :=
[

u1(t)T u2(t)T · · · uν(t)T
]T

,

y(t) :=
[

y1(t)T y2(t)T · · · yν(t)T
]T

,

B :=
[

B1 B2 · · · Bν

]
,

C :=
[

CT
1 CT

2 · · · CT
ν

]T

,

D :=




D11 · · · D1ν

...
. . .

...

Dν1 · · · Dνν


 ,

m :=
ν∑

i=1

mi, r :=
ν∑

i=1

ri

(2)

It is desired to stabilize the system S by using a struc-
turally constrained controller. The structure of this con-
troller is determined by either of the matrices introduced
below.

Definition 1
• Information flow matrix K is a matrix whose (i, j)

entry, i, j ∈ ν̄, is equal to 1 if the output yj(t) could
contribute to the construction of the input ui(t) and is
zero otherwise.

• Control interaction structure matrix K is a matrix
whose (i, j) block entry, i, j ∈ ν̄, is a mi × rj matrix
denoted by the symbol kij if the output yj(t) could con-
tribute to the construction of the input ui(t) and is a
mi × rj zero matrix otherwise.

2



The information flow matrix corresponding to any sys-
tem is enclosed in parentheses throughout the paper, if
necessary. For instance, S(K) indicates that the struc-
ture of the controller to be designed for the system S is
to comply with the information flow matrix K.

It is noteworthy that kij in Definition 1 represents the
control channel which transforms the output yj(t) to
the input ui(t). Note also that the interaction structure
matrix K not only conveys the information of the matrix
K, but also labels the control components.

In order to present the main results of this work, some
important concepts will be introduced first. Since K is
not block-diagonal in general, it is preferable to expand
it to a block-diagonal form. For this purpose, one can
only perform the following operations:

• Introduce new block rows and block columns to the
matrix K.

• Swap the existing block rows of K.
• Swap the existing block columns of K.

However, this should be carried out in such a way that
both of the following criteria hold:

• The resultant block-diagonal matrix has the same
nonzero block entries as K.

• If two nonzero block entries in the resultant matrix lie
in the same block row (column), they are in the same
block row (column) in the matrix K as well.

The informal expansion method described above is
spelled out in detail in Lavaei and Aghdam (2008) (Pro-
cedures 1, 2 and 3). Denote all matrices obtained using
this expansion with K1,K2, ...,Kl and, with no loss
of generality, assume that K1 has the same number of
columns as K. For any µ ∈ l̄ := {1, 2, ..., l}, let mµ × rµ

denote the dimension of Kµ. Moreover, denote the size
of the i-th diagonal block of Kµ with mµ

i × rµ
i .

Lemma 1 (Lavaei and Aghdam (2008)) There ex-
ist constant matrices Φµ and Φ̄µ satisfying the relation:

K = ΦµKµΦ̄µ (3)

for any µ ∈ l̄.

A simple algorithm is also proposed in Lavaei and Agh-
dam (2008) to obtain the transformation matrices intro-
duced in Lemma 1.

Definition 2 Define Sµ, µ ∈ l̄, as an interconnected
system with the following state-space representation:

ẋµ(t) = Axµ(t) + Bµuµ(t)
yµ(t) = Cµxµ(t) + Dµuµ(t)

(4)

where the system parameters are related to the state-space
matrices of the system S given by (1), as shown below:

Bµ = BΦµ, Cµ = Φ̄µC, Dµ = Φ̄µDΦµ (5)

uµ(t) ∈ <mµ

and yµ(t) ∈ <rµ

are the input and the
output of Sµ, respectively, and xµ(0) = x(0). Define
also the information flow matrix Kµ associated with the
system Sµ as a matrix obtained from Kµ by replacing
each of its nonzero entries (namely kij) with the scalar
1, and each of its block zeros with the scalar 0.

Partition now the matrices Bµ,Cµ and Dµ, µ ∈ l̄, as
follows:

Bµ =
[
Bµ

1 Bµ
2 · · · Bµ

νµ

]
,

Cµ =




Cµ
1

Cµ
2

...

Cµ
νµ




, Dµ =




Dµ
1,1 · · · Dµ

1,νµ

...
. . .

...

Dµ
νµ,1 · · · Dµ

νµ,νµ




(6)

where νµ denotes the number of block-diagonal entries
of Kµ, and:

Bµ
i ∈ <mµ

i , Cµ
i ∈ <rµ

i , Dµ
i,j ∈ <rµ

i
×mµ

j (7)

for any i, j ∈ {1, 2, ..., νµ}.

Definition 3 (Lavaei and Aghdam (2008)) Con-
sider two arbitrary systems Sd1 and Sd2 associated with
the information flow matrices Kd1 and Kd2 , where Sd1

and Sd2 are of the same order and have the same initial
state. Let M denote a given set of controllers. The sys-
tems Sd1(Kd1) and Sd2(Kd2) are called analogous with
respect to (w.r.t.) M if for any controller Kd1 in M
complying with the information flow matrix Kd1 , there
also exists a controller Kd2 in M complying with the
information flow matrix Kd2 (and vice versa), such that
the state of the system Sd1 under the controller Kd1 is
equivalent to the state of Sd2 under Kd2 .

One of the main objectives of this work is to prove that
the systems S(K),S1(K1), S2(K2), ..., Sl(Kl) are analo-
gous w.r.t. several classes of controllers, including finite-
dimensional LTI and LTV controllers. The significance
of this result will now be spelled out.

Consider a set of controllers denoted by M. Assume that
S(K) and Sµ(Kµ), µ ∈ l̄, are analogous w.r.t. M. In
order to design a controller belonging to M for the sys-
tem S w.r.t. the information flow structure K to achieve
any design objectives, one can equivalently design a con-
troller belonging to M for the system Sµ, w.r.t. the in-
formation flow structure Kµ, to attain the same objec-
tives. The mapping between the components of K and
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Kµ (derived from the equation (3)) can then be used to
find the corresponding controller for the system S(K).
The important advantage of this indirect design proce-
dure is that the information flow structure Kµ is block-
diagonal, and hence using the above mapping the prob-
lem is converted to the conventional decentralized con-
trol design framework.

3 Decentralized overlapping stabilizability

It is desired to find out under what conditions the system
S(K) is stabilizable. To this end, the following notion is
introduced.

Definition 4 A mode λ ∈ sp(A) is a quotient overlap-
ping fixed mode (QOFM) of the system S w.r.t. the infor-
mation flow matrix K, if it cannot be eliminated by using
any type of controller whose structure complies with K.

It is desired now to characterize the QOFMs of the sys-
tem S(K). The next two lemmas are essential for this
purpose.

Lemma 2 The sets of the QFMs of the systems
Sµ(Kµ), µ ∈ l̄, are all identical.

Proof: The proof can be deduced from the following hi-
erarchy of arguments:

• The systems S1(K1), ..., Sl(Kl) all have the same A-
matrix, and hence the same modes.

• It is shown in Gong and Aldeen (1997) and Anderson
and Moore (1981) that all of the non-QFMs of any
system can be eliminated by using a proper finite-
dimensional LTV controller.

• As will be proved later in Theorem 4, the systems
S1(K1), ..., Sl(Kl) are all analogous w.r.t. the set of
finite-dimensional LTV controllers. ¥

Lemma 3 The systems S(K) and S1(K1) are analogous
w.r.t. the class of all (nonlinear and time-varying) con-
trollers.

Proof: The system S1 is obtained from S by introduc-
ing some redundant outputs and reordering them with
the aim of converting the structure K to K1. The proof
follows by noting that this system expansion does not
change the internal behavior of the system. ¥

Note that the systems S(K) and Sµ(Kµ), are not neces-
sarily analogous w.r.t. the set of nonlinear controllers if
µ 6= 1. This results from the fact that the proposed con-
trol structure conversion does not preserve the superpo-
sition property, in general.

The following theorem captures an elegant property of
the QOFMs of S(K).

Theorem 1 The QOFMs of the system S(K) are the
same as the QFMs of the system Sµ(Kµ), ∀µ ∈ l̄. More-
over, the system S(K) is stabilizable if and only if it does
not have any unstable QOFM.

Proof: It can be concluded from Lemma 3 that the
QOFMs of the system S(K) are the same as the QFMs
of the system S1(K1). On the other hand, the QFMs of
S1(K1) are identical to the QFMs of Sµ(Kµ),∀µ ∈ l̄, as
asserted in Lemma 2. These two observations together
complete the first part of the proof. The second state-
ment of the theorem follows directly from the definition
of analogousness and the celebrated result which states
that a system with no unstable QFMs can be stabilized
using a proper structurally constrained controller. ¥

4 Decentralized overlapping controller design

Assume that the system S(K) has no unstable QOFM.
The question arises as to how to design a stabilizing con-
troller of a desired form which satisfies any prescribed
specifications. The raised question is answered in Lavaei
and Aghdam (2008) for designing a LTI overlapping con-
troller. For the case of non-LTI controllers, however, the
answer would require a meticulous study, which will be
carried out below.

4.1 Generalized sampled-data hold function

Periodic control design using generalized sampled-data
hold function (GSHF) and its advantages have been
studied intensively in the literature (Kabamba, 1987;
Rossi and Miller, 1999; Lavaei and Aghdam, 2007a,b).
Assume that it is desired to obtain a GSHF for the sys-
tem S complying with the information flow structure K
in order to achieve certain design objectives. Let this
GSHF be denoted by F (t). Hence, the resultant control
signal can be formulated as follows:

u(t) = F (t)y[κ], κh ≤ t < (κ + 1)h, κ ≥ 0 (8)

where h represents the sampling period. Note that the
discrete argument corresponding to the samples of any
signal is enclosed in brackets (e.g., y[κ] := y(κh)). In
this subsection, assume that D is a zero matrix.

Theorem 2 The systems S(K), S1(K1), ..., Sl(Kl) are
analogous w.r.t. the set of all GSHF-type controllers.

Proof: To prove the theorem, it suffices to show that
S(K) and Sµ(Kµ) are analogous w.r.t. all GSHF-type
controllers, for any µ ∈ l̄. Consider a GSHF F (t) which
complies with the information flow structure K. Utilize
the proper transformation on F (t) to obtain the equiv-
alent hold function Fµ(t) for the system Sµ(Kµ). Note
that Fµ(t) can be attained using the mapping between
the components of K and Kµ. Since F (t) and Fµ(t)
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comply with the information flow matrices K and Kµ,
respectively, it is straightforward to show that F (t) =
ΦµFµ(t)Φ̄µ. On the other hand, it follows from (8) that:

ẋ(t) = Ax(t) + BF (t)Cx[κ] (9)

for all t ∈ [κh, (κ + 1)h), κ ≥ 0, and consequently:

ẋµ(t) = Axµ(t) + BµFµ(t)Cµxµ[κ]
= Axµ(t) + BΦµFµ(t)Φ̄µCxµ[κ]
= Axµ(t) + BF (t)Cxµ[κ]

(10)

in the above-mentioned time-interval. The equations (9)
and (10), and the equality x(0) = xµ(0) result in the
relation x(t) = xµ(t) for all t ≥ 0. Conversely, for any
GSHF Fµ(t) complying with the information flow ma-
trix Kµ, it is straightforward to show that the state of
the system S under the GSHF F (t) = ΦµFµ(t)Φ̄µ is
identical to that of the system Sµ under Fµ(t). ¥

Theorem 2 states that the problem of designing a GSHF
for the system S(K) can be formulated as the problem of
designing a GSHF for the system Sµ(Kµ) for any µ ∈ l̄.
However, due to the decentralized control structure of
Sµ(Kµ), µ ∈ l̄, the corresponding GSHF design can be
accomplished by using the existing methods (Lavaei and
Aghdam, 2007a,b; Aghdam, 2006).

4.2 Sampled-data controller

A typical sampled-data controller consists of a sampler,
a zero-order hold (ZOH) and a discrete-time controller
(Chen and Francis, 1995). It is desired in this subsec-
tion to present a method for designing a sampled-data
controller for the system S, whose structure complies
with a given information flow matrix K. The term linear
shift-invariant (LSI) controller will henceforth refer to a
sampled-data controller which is LTI w.r.t. the discrete-
time equivalent model of the system S. It is worth men-
tioning that a LSI controller is, in fact, LTV w.r.t. the
original continuous-time system.

Theorem 3 The systems S(K), S1(K1), ..., Sl(Kl) are
all analogous w.r.t. the set of all LSI controllers.

Proof: Denote the sampling period with h, and
the discrete-time equivalent models of the systems
S, S1, ..., Sl with S̄, S̄1, ..., S̄l, respectively. Assume
that the system S̄ is represented by:

x[κ + 1] = Āx[κ] + B̄u[κ]
y[κ] = Cx[κ] + Du[κ]

(11)

Similarly, let the system S̄µ be represented by:

xµ[κ + 1] = Āxµ[κ] + B̄µuµ[κ]
yµ[κ] = Cµxµ[κ] + Dµuµ[κ], µ ∈ l̄

(12)

It can be easily verified that:

B̄µ =
∫ h

0

eτABµ dτ =
∫ h

0

eτAB dτ ×Φµ = B̄Φµ (13)

It results from (11), (12), and (13) that the state-space
matrices of S̄ are related to those of S̄µ, exactly in the
same way the state-space matrices of S and Sµ are re-
lated. Hence, the systems S̄ and S̄µ are analogous w.r.t.
the LSI controllers. Consider now a LSI controller with
the transfer function matrix K̄(z) for the system S̄(K).
Construct a LSI controller with the transfer function
matrix K̄µ(z) for the system S̄µ(Kµ), such that it corre-
sponds to the controller K̄(z) for S̄(K). This controller
can be obtained from the mapping between the compo-
nents of K and Kµ. It is straightforward to show that
K̄(z) = ΦµK̄µ(z)Φ̄µ. Applying the controller K̄(z) to
the system S̄ and the controller K̄µ(z) to S̄µ, one can
conclude that x[κ] = xµ[κ] and u[κ] = Φµuµ[κ] for any
κ ≥ 0. Therefore:

x(t) = e(t−κh)Ax[κ] +
∫ t

κh

e(τ−κh)ABu[κ] dτ

= e(t−κh)Axµ[κ] +
∫ t

κh

e(τ−κh)ABΦµuµ[κ] dτ

= e(t−κh)Axµ[κ] +
∫ t

κh

e(τ−κh)ABµuµ[κ] dτ

= xµ(t)
(14)

for any t ∈ [κh, (κ + 1)h), k ≥ 0. Similarly, it can be
easily verified that given any controller K̄µ(z) for the
system S̄µ(K), the controller K̄(z) := ΦµK̄µ(z)Φ̄µ cor-
responds to the information flow matrix K, and that the
state of the system S under the controller K̄(z) is the
same as that of Sµ under K̄µ(z). ¥

Note that finding a sampled-data decentralized control
law to achieve any desired design objectives has been
investigated in the literature; e.g, see Lavaei et al. (2006).

4.3 Finite-dimensional linear time-varying controller

It is well-known that finite-dimensional linear time-
varying (LTV) controllers are superior to their LTI
counterparts in many control applications. It is desired
in this subsection to present a procedure for designing
a finite-dimensional LTV controller complying with the
information flow matrix K, for the system S. The term
”finite-dimensional LTV controller” refers in this paper
to a control law which can be represented as:

˙̃z(t) = Ã(t)z̃(t) + B̃(t)ũ(t)

ỹ(t) = C̃(t)z̃(t) + D̃(t)ũ(t)
(15)
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Theorem 4 The systems S(K), S1(K1), ..., Sl(Kl) are
analogous w.r.t. the set of all finite-dimensional LTV
controllers.

Rather than presenting a formal proof here, the following
insightful discussion is provided to clarify the main idea
of the proof and the reason why this structure conversion
is introduced.

One can easily verify that Bµ, µ ∈ l̄, is extracted from B
by rearranging its columns and repeating some of them.
Analogously, Cµ is extracted from C by rearranging its
rows and repeating some of them. The reason for these
repetitions and rearrangements is described below:

1. Repetition of the rows of Cµ reflects the fact that some
of the outputs of S are duplicated to construct the sys-
tem Sµ. To justify the necessity of this duplication, as-
sume that one output of the system S directly influences
two distinct control inputs, resulting in a non-diagonal
information flow structure. Now, if this output of the
system is duplicated and directed to one of the two con-
trol agents mentioned above, while its duplicate goes to
the other control agent, the resultant controller from
the input’s point of view would be decentralized. How-
ever, both closed-loop systems (the original one and
the one obtained following the above procedure) are ba-
sically the same.

2. Regarding the repetition in the columns of Bµ, assume
that two outputs of the system go to one control agent.
Since the controller is linear, one can split it into two
sub-controllers such that each of the two outputs goes to
one of these sub-control agents. In addition, the output
of the original control agent is the sum of the outputs of
these two sub-control agents. Again, the functionality
of the control system is unaltered, while its structure
is converted to a decentralized form.

3. The rearrangement of the rows and the columns of C
and B in constructing Cµ and Bµ means that the inputs
and outputs of S are reordered (i.e., the corresponding
indices are renumbered), which again would not affect
the functionality of the control system.

Taking the aforementioned issues into consideration, the
system Sµ is indeed constructed from S in such a way that
the control structure K is converted to the decentralized
structure Kµ, without affecting the functionality of the
overall system.

Remark 1 It is shown in Anderson and Moore (1981)
that a system is decentrally stabilizable if and only if there
exists a decentralized finite-dimensional LTV controller
to stabilize it. Applying this result to the system Sµ(Kµ)
and exploiting Theorem 4, one can conclude that S(K) is
stabilizable if and only if there exists a finite-dimensional
LTV controller which complies with K and stabilizes the
system. If such a controller exists, it can be designed by
employing the concept of analogousness.

5 Numerical examples

Example 1: Let S be a four-SISO-channel system with
the following Jordan matrices:

A =




1 0 0 0

0 −1 0 0

0 0 3 0

0 0 0 −3




, B =




0 0 2 −1

−1 0 0 0

4 3 2 1

3 0 0 0




(16)

and

C =




0 0 0 −1

2 3 −1 2

0 3 0 0

0 −2 −3 −4




, D =




1 0 0 0

5 3 2 8

3 0 0 1

1 −1 0 1




(17)

Assume that the desired control interaction structure is:

K =




k11 0 0 0

0 k22 k23 0

0 0 k33 k34

k41 k42 k43 0




(18)

Using Procedures 1, 2, and 3 introduced in Lavaei and
Aghdam (2008), one can construct the matrix K2 as
follows:

K2 =




k22 k23 0 0 0

k42 k43 0 0 0

0 0 k33 k34 0

0 0 0 0 k11

0 0 0 0 k41




(19)

(note that this matrix is denoted by K2 instead of K1,
because the notation K1 has been reserved for a partic-
ular matrix transformation). As a result, following the
method given in Lavaei and Aghdam (2008), the matri-
ces Φ2 and Φ̄2 satisfying the relation K = Φ2K2Φ̄2 are
obtained as follows:

Φ2 =




0 0 0 1 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 1




, Φ̄2 =




0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

1 0 0 0




(20)

Consequently, the system S2 can be straightforwardly
formed according to Definition 2. It results from Lavaei,

6



Sojoudi, and Aghdam (2007) that λ = −1 is a QFM of
the system S2(K2), which implies that this mode is a
QOFM of the system S(K) (in light of Theorem 1).This
means that there is no structurally constrained con-
troller complying withK to displace this mode. However,
since λ = −1 is a stable mode, there exists a LTV stabi-
lizing structurally constrained controller for the system
as stated earlier.

Example 2: Let the system S be represented by the fol-
lowing state-space matrices:

A =




−1.5 −1 −1 −2 −1 −2.5

−1.5 −2 0 2 0 1.5

0 0 −3 0 0 0

−1 −1 −1 −3 −1 −1

1.5 3 0 −2 1 −1.5

−0.5 1 1 2 1 0.5




,

B =




0 2 −0.5 −0.5

0 1 0.5 −2.5

0 1 0 0

0 1 0 −1

1 −1 −0.5 2.5

0 1 0.5 0.5




,

C =




−1 0 1 0 0 1

0 1 1 0 1 0

1 0 −4 0 0 1

0 −1 −4 4 0 1




(21)

and D = 0. Assume that the desired control interaction
structure is:

K =




0 0 k13 k14

0 k22 k23 k24

0 0 k33 k34

k41 0 0 0




(22)

Using Procedures 1, 2 and 3 introduced in Lavaei and
Aghdam (2008), the block-diagonal matrix K1 can be
obtained as:

K1 =




k13 k14 0 0

k23 k24 0 0

k33 k34 0 0

0 0 k22 0

0 0 0 k41




(23)

Hence, the matrices Φ1 and Φ̄1 can be found using the
method given in Lavaei and Aghdam (2008). Conse-
quently, the system S1 can be straightforwardly formed.
As pointed out in Lavaei and Aghdam (2008), the
DOFMs of the system S(K) are identical to the DFMs
of the system S1(K1). It is easy to verify that S1(K1)
has a DFM at λ = +1; therefore, the system S has a
DOFM at λ = +1 w.r.t. the information flow matrix
K. Thus, this system cannot be stabilized by means
of a structurally constrained LTI controller complying
with K (Lavaei and Aghdam, 2008).

On the other hand, it follows from the characterization of
QFMs given in Gong and Aldeen (1997) that the system
S1(K1) has no QFM w.r.t. the information flow matrix
K1. From the results of the present work, it is known
that the QOFMs of the system S(K) are the same as the
QFMs of the system S1(K1). Thus, one can conclude
that the system S has no QOFM w.r.t. the information
flow matrix K. This implies that the system S(K) can
be stabilized by utilizing a proper non-LTI controller.

It is desired now to find a structurally constrained con-
troller which stabilizes the system S(K). Due to the fact
that the DFM of the system S1 w.r.t. K1 is not a QFM,
it can be eliminated by means of sampling, as pointed
out in Lavaei and Aghdam (2006). To this end, choose
the sampling period h = 3, and find the discrete-time
equivalent models of S and S1, denoted by S̄ and S̄1,
respectively. It can be easily verified that S̄1(K1) has no
DFM, as expected. Moreover, the technique given in An-
derson and Moore (1981) can be utilized to control the
system from only one subsystem. More precisely, since
the structural graph of the system S̄1 is strongly con-
nected, all the control components but K̄13(z) can be
generically chosen as:

K̄22(z) = 1, K̄24(z) = 2, K̄34(z) = 3,

K̄41(z) = 4, K̄14(z) = K̄23(z) = K̄33(z) = 0
(24)

where K̄ij(z) represents the discrete-time compensator
for the system S̄1, which along with a ZOH builds the
corresponding control component kij . Let the closed-
loop system consisting of S̄1 and all the controller com-
ponents given in (24) be denoted by S̄1cl . This closed-
loop system is controllable and observable through/from
the input and the output corresponding to the controller
component K̄13(z). Therefore, the controller K̄13(z) can
be designed for the system S̄1cl to not only stabilize
the system but also place the modes at desired loca-
tions, by using the conventional pole-assignment tech-
niques. Since S(K) and S1(K1) are analogous w.r.t. the
sampled-data controllers, the designed components for
controlling the system S1 can be used for controlling the
system S as well. Both closed-loop systems would per-
form identically.
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6 Conclusions

This work tackles the structurally constrained control
design problem for interconnected systems. The conven-
tional techniques for designing a decentralized controller
with a desired type such as finite dimensional linear time-
varying and generalized sampled-data hold functions are
developed to handle the problem of designing an over-
lapping controller with any given information flow struc-
ture. The notion of a quotient overlapping fixed mode
(QOFM) is also defined to investigate the stabilizability
of the system via a general (nonlinear and time-varying)
decentralized overlapping control law. It is shown that a
mode of the system can be moved in the complex plane
by means of a structurally constrained controller if and
only if it is not a QOFM. Numerical examples illustrate
the significance of the results.
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