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Abstract

In this paper, we consider two problems which can be posed as spectral radius minimization problems. Firstly, we consider the
fastest average agreement problem on multi-agent networks adopting a linear information exchange protocol. Mathematically,
this problem can be cast as finding an optimal W ∈ Rn×n such that x(k + 1) = Wx(k), W1 = 1, 1T W = 1T and W ∈ S(E),
where x(k) ∈ Rn is the value possessed by the agents at the kth time step, 1 ∈ Rn is an all-one vector and S(E) is the set of
real matrices in Rn×n with zeros at the same positions specified by a network graph G(V, E), where V is the set of agents and E
is the set of communication links between agents. The optimal W is such that the spectral radius ρ(W −11T /n) is minimized.
To this end, we consider two numerical solution schemes: one using the qth-order spectral norm (2-norm) minimization (q-
SNM) and the other gradient sampling (GS), inspired by the methods proposed in [3,20]. In this context, we theoretically
show that when E is symmetric, i.e. no information flow from the ith to the jth agent implies no information flow from the jth

to the ith agent, the solution W
(1)
s from the 1-SNM method can be chosen to be symmetric and W

(1)
s is a local minimum of

the function ρ(W − 11T /n). Numerically, we show that the q-SNM method performs much better than the GS method when
E is not symmetric. Secondly, we consider the famous static output feedback stabilization problem, which is considered to be
a hard problem (some think NP-hard): for a given linear system (A,B,C), find a stabilizing control gain K such that all the
real parts of the eigenvalues of A + BKC are strictly negative. In spite of its computational complexity, we show numerically
that q-SNM successfully yields stabilizing controllers for several benchmark problems with little effort.

Key words: Spectral radius, Distributed control, Communication networks, Output feedback.

1 Introduction and Problem Statement

A typical scenario in multi-agent missions is for the
agents to agree upon a certain quantity or decision based
on their current information. For example, suppose that
a team of UAVs (unmanned air vehicles) is tracking a
moving object and needs to sense continuously relevant
data, e.g. position and heading of the object, and to
communicate them to the team members in order to up-
date the current status of the object. In practice, each
UAV is likely to have limited data processing power and
therefore the tracking must be done in a decentralized
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author Y. Kim. Tel. +27 (0)21 808 4265. Fax. +27 (0)21 808
4958.
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manner. In other words, a UAV is only capable of com-
municating with a limited number of adjacent UAVs.
Therefore, one may easily conclude that the mission
heavily hinges on the ramifications of the limited infor-
mation exchange pattern. Such a decentralized tracking
problem that requires each agent (processor) to do it-
erative weighted average operations in a decentralized
manner is called the average consensus problem, and
has been studied for numerous applications, e.g. mobile
ad-hoc and wireless sensor networks. These applica-
tions include consensus with statically or dynamically
changing information-exchange topologies [14], high-
frequency channel noise [15], corrupted measurement
data [18], network link failures [6], or state-dependent
graph settings [11].

In this paper, we are particularly interested in the opti-
mal matrix W ∈ Rn×n (denoted by W ∗) such that the
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following rule

x(k + 1) = Wx(k), (1)

allows xi(k) converge to 1T x(0)/n with minimum
k∗ within a prescribed tolerance for every i (∈
{1, 2, . . . , n}), where xi(k) is the value possessed by
the ith agent at time step k on a network (graph) G
with a proper 1 information exchange pattern E , and
k (∈ {0, 1, 2, . . .}) is the discrete-time step index. A
network (graph) G consists of a set V of nodes (agents)
vi (i = 1, 2, . . . , n) and a set E of edges (communication
links) eij (i, j = 1, 2, . . . , n, i 6= j) with weight wij on
eij . The weighting factor wij is zero if no communica-
tion link exists from i to j, and can be any real (not
necessarily positive) value otherwise. The position of
zero weights (no communication links) defines different
information exchange patterns and a set

S(E)
def
= {W = [wij ] ∈ Rn×n |wij = 0 if eij 6∈ E}.

We note that symmetric E , i.e. eij ∈ E implies eji ∈ E ,
does not necessarily imply symmetric weight W . For the
sake of the average convergence of the rule (1), i.e.

‖W q − 11T /n‖ < ǫ (2)

for large positive integer q and sufficiently small positive
ǫ, the matrix W ∈ S(E) must have the following prop-
erties, as observed in [20]:

W1 = 1, 1T W = 1T

and ρ(W − 11T /n)
def
= ρ(W̃ ) < 1, (3)

where 1 ∈ Rn denotes an all-one vector and ρ(X) is
the spectral radius of matrix X . This implies that the

optimal W ∗ is obtained when ρ(W̃ ) or q is minimized.

1 By a proper information exchange pattern at the kth time
step, we mean an information exchange pattern such that (1)
allows x(k) to converge to (11T /n)x0. In other words, for
W to be associated with a proper information exchange pat-
tern it must satisfy the three conditions in (3). For an exam-
ple of an improper information exchange pattern, consider
four agents whose information exchange pattern is a one-way
path, i.e. the first agent only talks to the second, the second
only to the third and the third only to the fourth. In this
case, there is no W such that (3) is satisfied, and (1) thus
fails to converge to the desired value. The characterization
of proper information exchange patterns is under study and
nontrivial, because the spectral radius condition (3) is not
convex. As a special case, if one further restricts W by three
linear constraints: (i) every entry of W is non-negative; (ii)
the corresponding (directed) graph is strongly connected (see
page 358 in [8] for the notion of strongly connectedness);
(iii) one of the diagonal entries of W is positive; then one
can drop the spectral radius condition in (3) and thus obtain
at least a desired W (satisfying (3)) by solving, for exam-
ple, Ps (to be introduced shortly) with the additional three
linear constraints (see page 522 in [8]).

Finding W ∗ is an old problem, although the structure
embedded in W may not be old. It can be translated
into finding the most stable discrete-time linear system,
or finding the fastest mixing Markov chain (discrete-
time stochastic process) when W is non-negative (entry-
wise). These areas have been popular research topics in
the control community. However, finding W ∗ or mini-
mizing the spectral radius matrix function ρ(·) is known
as a very hard problem in general. This is because ρ(·) is
continuous but neither convex nor locally Lipschtz [16].
For this reason, there are few works in the literature that
directly address the problem in question. In [20], the
authors approach the problem by solving the following
program:

Ps : min
W

‖W̃‖

s.t. W ∈ S(E), W1 = 1, 1T W = 1T

for a given G. The program Ps minimizes the largest

singular value of W̃ , σ̄(W̃ ), instead of ρ(W̃ ). Thus, the
solution Ws to Ps only guarantees the well-known bound

ρ(W̃ ∗) ≤ ρ(W̃s) ≤ σ̄(W̃s),

where the gap between ρ(W̃ ∗) and σ̄(W̃s) can be un-
acceptably large in general. In [3], the authors propose
the so-called (unconstrained) gradient sampling method
to minimize the spectral abscissa α(·) (the largest real
part of the eigenvalues). The gradient sampling method
is a variation of the reliable steepest descent method.
It uses gradient information on the neighbourhood of
each iteration point yk, not just the gradient at the sin-
gle point yk. As a result, the gradient sampling method
becomes particularly useful when it is applied to mini-
mizing a non-smooth (non-differentiable) function such
as ρ(·) (see [3] and §2.2 for details).

In this paper, we further develop the foregoing two ideas
for finding W ∗. In the following section §2.1, we first in-
troduce the q-th order spectral norm (2-norm) minimiza-
tion method (q-SNM) to improve the solution Ws to Ps.
We then show that 1-SNM can yield a symmetric solu-

tion W
(1)
s such that σ̄(W̃

(1)
s ) = ρ(W̃

(1)
s ) if E is symmet-

ric, and, as a consequence, W
(1)
s is a local minimizer of

the objective functional in (4) with any positive integer

q, and thus of the function ρ(W̃ ). In §2.2, we propose
the constrained gradient sampling method (CGSM) to
accommodate non-smooth function minimization prob-
lems with general constraints, wherein we provide for-
mula for computing the gradient of ρ(·). We finally com-
pare the two methods by extensive numerical tests in
§3. These numerical tests suggest that q-SNM is a bet-
ter choice than CGSM when the information exchange
pattern E is non-symmetric.

After the numerical tests for optimal average consen-
sus, we further delineate the q-SNM’s superiority in non-
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symmetric cases in §4. We consider the classical static
output feedback stabilization problem which has long
been considered a hard problem [19]: for a given state
model (A,B,C), find a stabilizing K such that all the
eigenvalues of A + BKC are strictly negative. We con-
sider several benchmark problems in which all associ-
ated A+BKC have non-symmetric structures. It is then
shown numerically that q-SNM successfully yields sta-
bilizing controllers with little effort, in spite of the prob-
lems’ notorious reputation. Concluding remarks follow
in §5.

2 Optimal Average Consensus and Two Meth-
ods

2.1 q-SNM

The qth-order spectral norm minimization method (q-
SNM) basically solves the following program: for a given
G and a positive integer q

P(q)
s : min

W
‖W q − 11T /n‖ (4)

s.t. W ∈ S(E), W1 = 1, 1T W = 1T ,

where ‖ · ‖ denotes the 2-norm of a matrix. Note that

P
(1)
s = Ps. If there exists W such that (2) is satisfied

for some fixed q and ǫ, W must be a feasible solution to

P
(q)
s . Since we are interested in finding the least q, we

first solve (4) with q = 1, and then increase q to enlarge
the feasible set Wq, where

Wq = {W |W1 = 1, 1T W = 1T , W ∈ S(E),

‖W q − 11T /n‖ < ǫ}

for given ǫ and G (note that Wq1
⊆ Wq2

for 1 ≤ q1 < q2).
In other words, we aim to find the smallest q such that
Wq is non-empty.

Unfortunately, P
(q)
s is not convex for q > 1 and thus can-

not be exactly solved using convex programming tech-
niques. For this reason, we consider approaching the op-

timal solution to P
(q)
s from a feasible solution by itera-

tively solving the following dynamic version of P
(q)
s , i.e.

min
W (t)

‖X(t) − 11T /n‖

s.t. W (t) ∈ S(E), W (t)1 = 1, 1T W (t) = 1T ,

X(t) = W (t)q.

For the sake of removing nonlinearity from the program,
we note that (under the assumption that W (t) is differ-
entiable with respect to t)

X(t) = W (t)q (5)

if, and only if, X(0) = W (0)q and

X ′(t) = (W (t)q)′ = W ′(t)W (t)q−1 +

W (t)W ′(t)W (t)q−2 + . . . + W (t)q−1W ′(t).

We now discretize the program via X0 := X(0), W0 :=
W (0), X ′(t) := (Xl − Xl−1)/∆t and W ′(t) := (Wl −
Wl−1)/∆t, where ∆t is a small positive constant and l
is the time index. Note that the discretization is valid
provided that ‖Wl−Wl−1‖ is sufficiently small. In other
words, the nonlinear constraint (5) can be treated as lin-
ear constraints via differentiation and linearization un-
der certain restrictions. Thus, we actually solve the fol-

lowing P
(q)

s for Wl and Xl, instead of P
(q)
s : for given

Wl−1 and Xl−1 = W q
l−1,

P
(q)

s : min
Wl

‖Xl − 11T /n‖

s.t. Wl ∈ S(E), Wl1 = 1, 1T Wl = 1T ,

Xl = Xl−1 + (Wl − Wl−1)W
q−1
l−1 +

Wl−1(Wl − Wl−1)W
q−2
l−1 +

. . . + W q−1
l−1 (Wl − Wl−1)

and

‖Wl − Wl−1‖ ≤ δ, (6)

where δ > 0 is a sufficiently small constant and varies
dynamically (see the algorithm As below).

The choice of initial matrix W0 is crucial for obtain-

ing a high-quality solution to P
(q)

s . Since the program

P
(1)
s (before linearization) can be globally solved using

a convex program, we use the solution W
(1)
s to P

(1)
s as

the initial condition for P
(q)

s . Recalling (2), suppose we

fix ǫ ∈ (0, 1) and, after solving P
(1)
s , we have

‖W (1)
s − 11T /n‖

def
= ‖W̃ (1)

s ‖ ≤ ǫ1,

which implies

‖(W (1)
s )q − 11T /n‖= ‖(W (1)

s − 11T /n)q‖

≤ ‖W (1)
s − 11T /n‖q

= ‖W̃ (1)
s ‖q ≤ ǫq

1.

If ǫq
1 < ǫ, then W

(1)
s solves P

(q)
s . Otherwise, we search

for a better solution W near W
(1)
s in the sense that

ρ(W̃ ) < ρ(W̃
(1)
s ). Since the least q such that (2) is satis-

fied for the fixed ǫ is unknown, we start with q = 2 and

thus solve P
(2)

s with Wl−1 = W
(1)
s and Xl−1 = (W

(1)
s )2,

in the hope of finding W
(2)
s such that ‖W̃

(2)
s ‖q < ǫ.

Once W
(2)
s is obtained, we check if ρ(W̃

(2)
s ) < ρ(W̃

(1)
s ).
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If so, we iterate again solving P
(2)

s to improve the so-

lution with new Wl−1 = W
(2)
s and Xl−1 = (W

(2)
s )2.

Otherwise, we solve the same problem with a smaller
δ in (6) for a refined search or (if δ is too small) move

on to P
(3)

s and repeat the same procedure until q is
sufficiently large (typically in our experience 7). The
following summarizes the aforementioned algorithm As:

Initialization: Fix δ := 10−3 and set q := 2.

Step 1: Solve P
(1)
s , obtain W

(1)
s and

set W ∗ := W
(1)
s , Wl−1 := W

(1)
s

and Xl−1 := W 2
l−1.

Step 2: Solve P
(q)

s and obtain W
(q)
s .

If ρ(W̃
(q)
s ) < ρ(W̃ ∗),

set W ∗ := W
(q)
s , Wl−1 := W

(q)
s

and Xl−1 := W q
l−1,

and proceed with Step 2;
else

if q > 7,
terminate the algorithm;

elseif δ < 10−5,
set q := q + 1, Xl−1 := W q

l−1,
δ := 10−3 and proceed with Step 2;

else
δ := 0.1δ and proceed with Step 2.

For a fixed ǫ, there is no guarantee that the proposed
algorithm finds a solution, W ∈ Wq, and it is a challenge
to determine how close the solution W is to the optimal
solution W ∗. However, the following result provides us
with a partial answer to this question.

Proposition 1 For a network graph having symmetric

E, W
(1)
s can be chosen to be symmetric, so that

σ̄(W (1)
s − 11T /n) = ρ(W (1)

s − 11T /n).

Furthermore, the symmetric W
(1)
s is a local minimum of

the objective functional in (4) with any positive integer q.

Proof. The first claim easily follows by the convexity
of the norm function. In fact, we first note that

γW (1)
s + (1 − γ)(W (1)

s )T

for any γ ∈ [0, 1], is a feasible solution to P
(1)
s when E is

symmetric. In addition,

‖W − 11T /n‖= γ‖W − 11T /n‖ +

(1 − γ)‖WT − 11T /n‖

≥ ‖γW + (1 − γ)WT − 11T /n‖.

Thus, if W
(1)
s is a global minimizer of the objective func-

tional of P
(1)
s , so is γW

(1)
s + (1 − γ)(W

(1)
s )T for any

γ ∈ [0, 1]. This implies that ‖W
(1)
s −11T /n‖ = ‖γW

(1)
s +

(1− γ)(W
(1)
s )T − 11T /n‖. Setting γ = 1/2, we have an-

other global symmetric minimizer, (W
(1)
s + (W

(1)
s )T )/2.

For the second claim, we only consider q = 2 because
a similar argument can be applied to higher q. We first
note that for a symmetric matrix V ,

‖V q‖ = ‖V ‖q.

Thus,

‖(W (1)
s )q − 11T /n‖= ‖(W (1)

s − 11T /n)q‖

= ‖W (1)
s − 11T /n‖q.

This implies that if W
(1)
s minimizes ‖W −11T /n‖, then

it also minimizes ‖W −11T /n‖q over the set of symmet-
ric W . Suppose now that there exists a non-symmetric
perturbation ∆ such that for a sufficiently small ǫ > 0

‖(W (1)
s + ǫ∆)2 − 11T /n‖< ‖(W (1)

s )2 − 11T /n‖

= ‖W̃ (1)
s ‖2,

and therefore

‖(W (1)
s + ǫ∆T )2 − 11T /n‖ < ‖W̃ (1)

s ‖2.

Then, we have

(‖(W (1)
s + ǫ∆)2 − 11T /n‖ +

‖(W (1)
s + ǫ∆T )2 − 11T /n‖)/2 < ‖W̃ (1)

s ‖2,

and consequently

‖(W (1)
s + ǫ(∆ + ∆T )/2)2 + ǫ2(∆ − ∆T )2/4 − 11T /n‖

< ‖W̃ (1)
s ‖2.

Since ǫ was chosen sufficiently small, we can conclude
that

‖(W (1)
s + ǫ(∆ + ∆T )/2)2 − 11T /n‖ < ‖W̃ (1)

s ‖2,

which contradicts the assumption that W
(1)
s minimizes

‖W 2 − 11T /n‖ when W is symmetric. This completes
the proof.

Proposition 1 reveals two facts. The first part of the
statement implies that one can further restrict the feasi-

ble matrices of P
(1)
s to be symmetric to obtain the same

result, which was observed through numerical simula-
tions in [20]. The second part of the statement indicates
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that W
(1)
s is a local minimizer of the function ρ(W̃ ),

and thus q-SNM may not be better than 1-SNM when
E is symmetric. This is just because of the linearization

around W
(1)
s introduced to approximately solve (4).

Note that the computational complexity of As is dom-

inated by solving P
(q)

s in Step 2 at each iteration. As

P
(q)

s involves order n2 variables, it costs order n6L flops
if one uses an interior-point method (Newton’s method),
where L is the length of a binary coding of the input
data [17].

2.2 The Constrained Gradient Sampling Method

As briefly introduced earlier, the gradient sampling
method (CGSM) seems quite attractive for optimiza-
tion problems with non-smooth functions, e.g. [5]. This
method subsumes and generalizes the classical steepest
descent method by collecting more gradient information
at each iterate. Once the iterates jam near the manifold
on which the minimized functional is not differentiable,
the method samples a bundle of gradients nearby the
jamming point and finds a way-out, as opposed to the
classical steepest descent method which fails to do so.

The original gradient sampling method proposed in [3]
minimizes the spectral abscissa α(·) (the largest real part
of the eigenvalues) of a matrix (

∑m
i=1 xiWi) with respect

to scalar decision variables xi. Here, Wi ∈ Rn×n are
fixed constant matrices and no constraints are imposed
on xi. Thus, for our purpose, we need to modify the
method to accommodate constraints on variables and to
calculate the gradient of the spectral radius function ρ(·)
instead of α(·). To this end, at each iteration matrix X ∈
Rn×n, we sample matrices Y from a uniform distribution
such that ‖Y −X‖ ≤ ǫ for a sufficiently small ǫ > 0, and
Y 1 = 1, 1T Y = 1T and Y ∈ S(E) for a network graph
G. Note that the number of decision variables (non-zero
entries of X) xi (i = 1, 2, . . . , m) is uniquely defined for
each fixed E . In order to satisfy the constraints Y 1 = 1
and 1T Y = 1T , we need 2n linear constraints hj(xi) =
0 (j = 1, 2, . . . , 2n). Recalling the constrained steepest
descent method, we therefore choose a direction d for
each sampled Y such that

∇ρ(Ỹ )T d ≤ 0, (7)

where ∇ρ(Ỹ ) is the gradient of ρ(·) at Y − 11T /n, and

∇hj(x1, x2, . . . , xm)T d = 0 ∀ j = 1, 2, . . . , 2n.

(8)

If there are multiple feasible directions d, we choose the

one such that ∇ρ(Ỹ )T d is minimized.

We now present the gradient formula of ρ(·). The proof
is motivated by that of Theorem 6.3.12 in [8], and could
be deduced from existing works, e.g. [2].

Proposition 2 Suppose ρ(·) is differentiable at X, and
λ = Re(λ) + iIm(λ) is the largest in magnitude eigen-
value of X =

∑
i xiXi and it (and its conjugate pair) is

algebraically simple, i.e. has multiplicity one. Then, for
k ∈ {1, 2, . . . , m}

∂ρ(X)

∂xk

=
Re(λ)

|λ|
(uT Xkv + ũT Xkṽ)

+
Im(λ)

|λ|
(uT Xkṽ − ũT Xkv),

where u+ iũ and v+ iṽ are the left and right eigenvectors
associated with λ, respectively.

Proof. The conditions given in the statement guarantee
that (u − iũ)T (v + iṽ) 6= 0 (see Lemma 6.3.10 in [8]),
which allows the eigenvectors to be normalized such that
(u− iũ)T (v + iṽ) = 1. If we differentiate the normalized
condition with respect to xi, we have

(u′ − iũ′)T (v + iṽ) + (u − iũ)T (v′ + iṽ′) = 0.

Consider

(u − iũ)T X(v + iṽ) = λ(u − iũ)T (v + iṽ) = λ

and differentiate the last equality; we then have

λ′ = (u′ − iũ′)T X(v + iṽ) + (u − iũ)T X ′(v + iṽ) +

(u − iũ)T X(v′ + iṽ′)

= λ ((u′ − iũ′)T (v + iṽ) + (u − iũ)T (v′ + iṽ′)) +

(u − iũ)T X ′(v + iṽ) = (u − iũ)T X ′(v + iṽ,

or

∂λ

∂xk

= (u − iũ)T Xk(v + iṽ)

= uT Xkv + ũT Xkṽ + i(uT Xkṽ − ũT Xkv).

Since ρ(X) = |λ| =
√

Re(λ)2 + Im(λ)2,

∂ρ(X)

∂xk

=
∂ρ(X)

∂Re(λ)

∂Re(λ)

∂xk

+
∂ρ(X)

∂Im(λ)

∂Im(λ)

∂xk

=
Re(λ)

|λ|
(uT Xkv + ũT Xkṽ)

+
Im(λ)

|λ|
(uT Xkṽ − ũT Xkv).

For numerical simulations, we use Algorithm 1 pro-
posed in [3], as shown in Table 1, with the following
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Table 1
Algorithm 1 (Gradient Bundle) proposed in [3]

0. (initialization) Choose an initial feasible point x ∈ Rm,

an initial positive value for the sampling radius ǫ, a posit-

ive radius factor θ < 1, a positive integer N defining the

number of gradients per bundle, and two positive integers

M1 and M2 to terminate the iterations. Initiate k = 1.

1. (Inner Iteration) Carry out minimization k, controlled

by the sampling radius ǫ, as follows. Initialize j = 0.

(a) Define a bundle G as the set of N gradients

{∇f(y)}, where y takes on N values: the current

iterate x, and N − 1 other vectors differing from

x by vectors whose entries are obtained by sam-

pling from a uniform distribution on [−ǫ/2, ǫ/2].

(b) Define the search direction d = −arg min{‖v‖2 :

v ∈ convG}. If d = 0, go to Step 2.

(c) Use a line search to find a positive step-length

satisfying f(x + td) < f(x) with t ∈ (0, t̄],

where t̄ =arg max{t : ‖x + td‖∞ ≤ χ} and

χ is a large constant.

(d) Replace x by x + td. If t = t̄, terminate.

If j < M2, increment j and return to Step (a).

2. (Decrease Sampling Parameter) If k < M1, replace ǫ

by the smaller value θǫ, increment k and return to Step 1.

Otherwise, terminate.

changes: (1) In Step 0, we choose, e.g. by solving a lin-
ear program, initial non-zero entries xi (i = 1, . . . , m)
of X such that X1 = 1, 1T X = 1T and X ∈ S(E)
for a given network graph G; (2) In Step 1-(a) and 1-
(b), we sample Y matrices nearby the current iterate
X such that ‖X − Y ‖ ≤ ǫ, Y 1 = 1, 1T Y = 1T and
Y ∈ S(E), and then d is chosen such that (7) and (8)

are satisfied, and ∇ρ(Ỹ )T d is minimized among Y .
We modify the code (available on the internet site:
http://www.cs.nyu.edu/faculty/overton/papers/gradsa-
mp/alg/ and written by one of the authors of [3]) ac-
cordingly.

Note that the computational complexity of the afore-
mentioned procedure is dominated by evaluating ∇ρ(Y )
N times. Hence, the number of flops per iteration is or-
der mn2N . More theoretical justifications for the gradi-
ent sampling algorithm may be found in [4].

Table 2
The average fractions of ρ(W̃

(1)
s ) for various n and m

n m 2-SNM 3-SNM 4-SNM 5-SNM

5 5 0.6784 0.5225 0.3834 0.1791

5 10 0.5229 0.3996 0.2962 0.2350

10 20 0.6777 0.5988 0.2940 0.2202

10 30 0.5885 0.4807 0.2991 0.1101

10 40 0.8293 0.6960 0.5864 0.4053

3 Numerical Tests for Optimal Average Con-
sensus

In this section, we present test examples to show the
efficacy of the proposed two algorithms. We first show
how much q-SNM can improve the solutions obtained via
1-SNM, and then compare q-SNM and CGSM. For each
fixed number n of agents and the number m of zeros in
the solution matrix W in (1), we randomly generate fifty
symmetric and, respectively, nonsymmetric information
exchange pattern E and apply the proposed algorithms
to each case.

3.1 q-SNM versus 1-SNM

As discussed before, q-SNM is nothing but 1-SNM when
E is symmetric. Therefore, all the simulations below are
meant for non-symmetric E . Table 2 tabulates the simu-
lation results for (n, m) = (5, 5), (5, 10), (10, 20), (10, 30)
and (10, 40), respectively. Each value represents the av-

erage fraction of ρ(W̃
(1)
s ), i.e. ρ(W̃

(q)
s )/ρ(W̃

(1)
s ), after it-

eratively applying q-SNM with different q ∈ {2, 3, 4, 5},

where W
(q)
s is the solution obtained via q-SNM for each

randomly generated pattern. As clearly shown, when E
is non-symmetric, the solutions obtained via 1-SNM are
greatly improved by up to over 80% after successively
applying q-SNM.

3.2 q-SNM versus CGSM

Figs. 1 to 4 show comparison results between q-SNM
and CGSM in terms of the spectral radii of the ob-
tained solutions and the associated computational times.
Figs. 1 and 2 are for (n, m) = (5, 5), Figs. 3 and 4 for
(n, m) = (10, 20), Figs. 1 and 3 are for non-symmetric
information exchange patterns E and Figs. 2 and 4 for
symmetric information exchange patterns E . The dotted
lines correspond to CGSM and the solid lines to q-SNM.
As the figures show, q-SNM finds the solutions with a
lower spectral radius than CGSM for more than 90% of
test cases when E is non-symmetric. In contrast, when E
is symmetric, it is hard to compare the two methods in
general. The two methods show similar performance for
(n, m) = (10, 20), but q-SNM is much inferior to CSGM
for (n, m) = (5, 5). Regarding the computational com-
plexity of the methods, CGSM pertains to the number of
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Fig. 1. Spectral radius values and computational times for
(n, m) = (5, 5) and non-symmetric E : solid line for q-SNM
and dotted line for CGSM
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Fig. 2. Spectral radius values and computational times for
(n, m) = (5, 5) and symmetric E : solid line for q-SNM and
dotted line for CGSM
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Fig. 3. Spectral radius values and computational times for
(n, m) = (10, 20) and non-symmetric E : solid line for q-SNM
and dotted line for CGSM
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Fig. 4. Spectral radius values and computational times for
(n, m) = (10, 20) and symmetric E : solid line for q-SNM and
dotted line for CGSM

samples for surveying gradient information and the size
of the quadratic program for deciding the best direction
to move at each iteration, whereas q-SNM mainly con-
cerns the size of the quadratic or semi-definite program
for solving (4). Since one can not predict which method
requires the least number of mathematical programs to
solve to reach a solution for a fixed information exchange
pattern, the exact estimation of computational complex-
ities of the two algorithms may not be obtained easily.

4 Static Output Feedback Stabilization and q-
SNM

Having noticed that q-SNM performs well particularly
for non-symmetric cases, we further test it for the famous
static output feedback stabilization problem (SOFP). 2

The SOFP is stated as follows: for a given linear system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

find a gain K such that u(t) = Ky(t) stabilzes the sys-
tem, i.e. all the real parts of the eigenvalues of A+BKC
are strictly negative. This simply stated problem is a fa-
mous open problem in control theory [1]. With u(t) =
Ky(t), the closed-loop system becomes

ẋ(t) = (A + BKC)x(t)

or in discrete form

x(k + 1) = (I + ∆t(A + BKC))x(k)

2 Although the SOFP is known to be theoretically difficult,
many practical instances of the SOFP can be solved routinely
using publicly available software, e.g. HIFOO (a MATLAB
package for fixed-order controller design) available on the in-
ternet site: http://www.cs.nyu.edu/overton/software/hifoo/.
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with k = 0, 1, 2, . . . and a sufficiently small ∆t > 0. Note
that ρ(I + ∆t(A + BKC)) < 1 implies all the real parts
of the eigenvalues of A + BKC are strictly negative i.e.
max Re(A + BKC) < 0. Therefore, the SOFP can be
posed as the minimization of ρ(I +∆t(A +BKC)) over
a set of matrices K.

In order to handle the SOFP, the previously proposed
algorithm As can be changed as follows:

Initialization: Set δ := 10−3, ∆t := 10−2, q := 2 and
stabilizing control gain K := Φ.

Step 1: Solve P
(1)
s and obtain (W

(1)
s , K

(1)
s ).

If max Re(A + BK
(1)
s C) < 0,

terminate the algorithm with K := K
(1)
s .

Set W ∗ := W
(1)
s , Wl−1 := W

(1)
s

and Xl−1 := W 2
l−1.

Step 2: Solve P
(q)

s and obtain (W
(q)
s , K

(q)
s ).

If max Re(A + BK
(q)
s C) < 0,

terminate the algorithm with K := K
(q)
s .

If ρ(W
(q)
s ) < ρ(W ∗),

set W ∗ := W
(q)
s , Wl−1 := W

(q)
s

and Xl−1 := W q
l−1,

and proceed with Step 2;
else

if q > 7,
terminate the algorithm;

elseif δ < 10−5,
set q := q + 1, Xl−1 := W q

l−1,
δ := 10−3 and proceed with Step 2;

else
δ := 0.1δ and proceed with Step 2,

where

P(q)
s : min

W=A+BKC
‖W q‖

and (W
(1)
s , K

(1)
s ) is the solution to P

(1)
s . P

(q)

s is simi-
larly defined as we did in §2.1, i.e. the linearized ver-

sion of P
(q)
s , and (W

(q)
s , K

(q)
s ) is the solution to P

(q)

s . If
K = Φ after running the algorithm, then the considered
system may have no stabilizing static output feedback
controllers. As opposed to the previous version of As

in §2.1, the current version can be terminated before q
reaches its maximum value of 7, i.e. as soon as a stabi-
lizing controller is found.

We now proceed with the following benchmark systems

found in the literature [1,13,10,9,12]:

Case 1: A =

[
1 1.05

−1.05 0

]
,

B =

[
0

1

]
, C =

[
0 1

]
;

Case 2: A =




1 1.05 0

−1.05 0 0

0 0 0


 ,

B =




0 0

0 1

1 0


 , C =

[
0 0 1

0 1 0

]
;

Case 3: A =




1 1.05 0 0

−1.05 0 0 0

0 0 0 0

0 0 0 0




,

B =




0 0 0

0 0 1

1 0 0

0 1 0




, C =




0 0 1 0

0 0 0 1

0 1 0 0


 ;

Case 4: A =




−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.7070 1.4200

0.0000 0.0000 1.0000 0.0000




,

B =




0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0.0000 0.0000




, C =
[
0 1 0 0

]
.
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Fig. 5. The root locus plots for Case 1: the closed-loop
ploes associated with different K (black crosses) and the
closed-loop poles associated with each iteration of As (blue
dots) [12]

Case 5: A =




1.38006 −0.2077 6.7150 −5.6760

−0.5814 −4.2900 0.0000 0.6750

1.0670 4.2730 −6.6540 5.8930

0.0480 4.2730 1.3430 −2.1040




,

B =




0.0000 0.0000

5.6790 0.0000

1.1360 −3.1460

1.1360 0.0000




, C =

[
1 0 1 −1

0 1 0 0

]
.

The first case is particularly interesting in that the set of
K which stabilizes the system is very small (see Fig. 5).
As depicted in the figure, As starts out with K = 0.9995
and moves along the standard root-locus plot until it
just enters the stabilizing zone and finds K = −1.0342.
Table 3 summarizes the results for all the cases. Note
that stabilizing gains are found in a couple of minutes for
all the cases when a personal computer equipped with
an Intel(R) Core(TM)2 CPU 2.00GHz is used.

It is observed that As shows stable convergence be-
haviour in that no internal parameters need to be
changed for each case. In view of other approaches,
this numerical stability is the most distinguishable fea-
ture of As and indicates the practical feasibility of the
algorithm.

5 Concluding Remarks

We first considered finding the optimal W ∈ Rn×n

such that W1 = 1, 1T W = 1T and W ∈ S(E) for
a given network graph G. The optimal W is such that
ρ(W−11T /n) is minimized, and results in the fastest av-
erage agreement on multi-agent networks adopting the

Table 3
The results for the five benchmark systems: Iter. and Elap.
denote the number of iterations and the elapsed time (sec-
onds) before the algorithm reaches the stabilizing gain K,
respectively; q̄ is the value of q when the algorithm is termi-
nated

Case K eig(A + BKC) Iter. Elap. q̄

1 -1.0342 -0.0171±j0.2608 66 10.2 2

2


 −100.88 −0.0920

−0.0920 −1.0372




-0.0186±j0.2550, 58 10.0 2

-100.88

3




−109.11 7.2956 2.2455

7.2952 −108.27 −2.0756

2.2455 −2.0756 −1.1160




-0.0173±j0.2584, 46 10.2 2

-116.08, -101.38

4
[

11.151 28.688
]

-179.30, -0.73, 645 117 2

-0.0018±j0.3392

5


 6.0984 −21.513

7.7943 −22.433




-146.62, -9.9656, 188 39.0 7

-1.7797, -0.0004

information exchange protocol x(k+1) = Wx(k), where
x(k) ∈ Rn is the value possessed by the agents at the
kth time step. To this end, we considered two numeri-
cal solution schemes, the qth-order spectral norm mini-
mization method (q-SNM) and the constrained gradient
sampling method (CGSM). We showed that for symmet-

ric information exchange patterns E , the solution W
(1)
s

using 1-SNM can be chosen to be symmetric and q-SNM
is nothing but 1-SNM. We also showed through exten-
sive numerical simulations that q-SNM offers much bet-
ter performance than CGSM when E is non-symmetric.
The numerical simulation result was then elaborated in
concert with the famous static output feedback prob-
lem, and was further supported by the application of q-
SNM to several benchmark systems. Based on the afore-
mentioned results, we believe that the proposed q-SNM
method can offer a promising approach to many difficult
optimization problems.
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