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a b s t r a c t

In this paper we develop new readily testable criteria for system theoretic properties such as stability,
controllability, observability, stabilizability and detectability for a class of spatially invariant systems.
Our approach uses the well-established theory developed to solve infinite-dimensional systems. The
theoretical results are illustrated by several examples.
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1. Introduction

In Freedman, Falb, and Zames (1969) a stability theory was
developed for a very general class of continuous-time systems
defined on a locally compact abelian group G and taking
values in a separable Hilbert space. It relied on a generalization
of the known transform theory in Loomis (1953) and Rudin
(1962) to Hilbert space valued functions on G in Falb and
Freedman (1969). Three decades later, motivated by technological
progress in microelectromechanical systems (MEMS) and possible
applications to platoons of vehicles (see Chu (1974), Jovanović
and Bamieh (2005), Levine and Athans (1966) and Melzer and
Kuo (1971a,b)), Bamieh, Paganini, and Dahleh (2002) reconsidered
this idea under the name of spatially invariant systems. This is
to apply the Fourier transform to the spatially invariant system,
thus obtaining a mathematically simpler system defined on the
character group Ĝ of G. Green and Kamen (1985) and Kamen and
Green (1980) examined stabilizability concepts for discrete-time
systems with G = Z and the character group Ĝ = ∂D, where Z is
the set of integer numbers and ∂D is the unit circle. In this paper
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we consider continuous-time systemswithG = Z. More precisely,
the class of infinite-dimensional systems (with spatially invariant
dynamics (Bamieh et al., 2002)) under consideration is

żr(t) =
∞∑

l=−∞

Alzr−l(t)+
∞∑

l=−∞

Blur−l(t), (1)

yr(t) =
∞∑

l=−∞

Clzr−l(t)+
∞∑

l=−∞

Dlur−l(t), (2)

where r ∈ Z, Al ∈ Cn×n, Bl ∈ Cn×m, Cl ∈ Cp×n,Dl ∈ Cp×m and
zr(t) ∈ Cn, ur(t) ∈ Cm and yr(t) ∈ Cp are the state, the input
and the output vectors, respectively, at time t ≥ 0 and spatial
point r ∈ Z. Using the terminology and formalism of Curtain and
Zwart (1995)we can formulate (1) and (2) as a standard state linear
systemΣ(A, B, C,D)

ż(t) = (Az)(t)+ (Bu)(t), (3)
y(t) = (Cz)(t)+ (Du)(t), t ≥ 0,

with the state space Z = `2(Cn), the input space U = `2(Cm)
and the output space Y = `2(Cp) (defined in Appendix). Note that
Z,U, Y are all infinite dimensional and so z(t) = (zr(t))∞r=−∞ ∈
`2(Cn), u(t) = (ur(t))∞r=−∞ ∈ `2(Cm), y(t) = (yr(t))∞r=−∞ ∈
`2(Cp) and A, B, C,D are convolution operators. We denote the
signals and the convolution operators generically by x(t) and T ,
respectively. Then

((Tx)(t))r =
∞∑

l=−∞

Tlxr−l(t) =
∞∑

l=−∞

Tr−lxl(t).
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To derive conditions for these operators to be bounded we take
Fourier transforms (see Definition A.4)

ˇ((Tx)(t))(ejθ ) =
∞∑

r=−∞

∞∑
l=−∞

Tlxr−l(t)e−jrθ

=

∞∑
l=−∞

Tle−jlθ
∞∑

r=−∞

xr−l(t)e−j(r−l)θ

:= Ť (ejθ )
∞∑

r=−∞

xr(t)e−jrθ

= Ť (ejθ )x̌(ejθ , t),

where Ť (ejθ ) :=
∑
∞

l=−∞ Tle
−jlθ . According to Property A.2 this will

define a bounded operator from L2(∂D;C•) to L2(∂D;C•) provided
that Ť ∈ L∞(∂D;C•×•), i.e., provided that (see Definition A.1)
‖Ť‖∞ < ∞ (‘‘•’’ denotes the appropriate dimension). Note that
the Fourier transform of the convolution product ČA = Č Ǎ is just
matrix multiplication and the product of two operators is also a
convolution operation provided, of course, that this is well defined.
Now, `2(Cq) is isometrically isomorphic to L2(∂D;Cq) under

the Fourier transform F. Hence

x̌ = Fx, x = F−1x̌, F(Tx) = FTF−1Fx, T = F−1ŤF,

and T is bounded if and only if Ť is. They have the same norms,
since

‖T‖ = sup
‖x‖`2=1

‖Tx‖`2 = sup
‖x‖`2=1

‖F−1Ť x̌‖`2

= sup
‖x̌‖L2(∂D)=1

‖Ť x̌‖L2(∂D) = ‖Ť‖∞,

where we have used the fact that ‖x‖`2(Cq) = ‖x̌‖L2(∂D,Cq). The
Fourier transformed operators form the space L∞(∂D;Ck×q).
Taking Fourier transforms of the system equations (3), we

obtain
˙̌z(t) = Fż(t) = Ǎž(t)+ B̌ǔ(t), (4)

y̌(t) = Fy(t) = Č ž(t)+ Ďǔ(t),

where Ǎ = FAF−1, B̌ = FBF−1, Č = FCF−1 and Ď = FDF−1

are multiplicative operators. In our case they are all bounded
operators. The state linear system Σ(A, B, C,D) is isometrically
isomorphic to the state linear system Σ(Ǎ, B̌, Č, Ď) on the state
space L2(∂D;Cn) with input and output spaces L2(∂D;Cm) and
L2(∂D;Cp) respectively. Their system theoretic properties are
identical (see Curtain and Zwart (1995) Exercise 2.5) and so it
suffices to apply the standard theory from Curtain and Zwart
(1995) to the particular class of spatially invariant infinite-
dimensional systems. For almost all θ ∈ [0, 2π ] the system (4)
can be written as
∂

∂t
ž(ejθ , t) = Ǎ(ejθ )ž(ejθ , t)+ B̌(ejθ )ǔ(ejθ , t) (5)

y̌(ejθ , t) = Č(ejθ )ž(ejθ , t)+ Ď(ejθ )ǔ(ejθ , t), t ≥ 0.

where Ǎ, B̌, Č and Ď need not be defined for all θ ∈ [0, 2π ].
The motivation for studying this special class of system stems
from the interest shown in the literature for controlling infinite
platoons of vehicles over the years (see Bamieh et al. (2002), Chu
(1974), Jovanović and Bamieh (2005), Levine and Athans (1966)
and Melzer and Kuo (1971a,b)). The models obtained for these
configurations have the spatially invariant form (5).
In what followswe shall sometimes assume for the convolution

operators T the stronger condition T ∈ `1(Ck×q), i.e.,

‖T‖1 = ‖Ť‖1 =
∞∑

l=−∞

|Tl| <∞,
where | · | denotes the matrix spectral norm (i.e., the operator
norm). In the case that k = q, the space `1(Ck×k) is a
Banach subalgebra of L(`2(Ck)) with convolution as the product
operation.

Definition 1.1. The operator Ť ∈ L∞(∂D;Ck×q) is in the Wiener
class if it has the well-defined expansion Ť (ejθ ) =

∑
∞

l=−∞ Tle
jlθ

and ‖Ť‖1 < ∞. We denote the space of operators with this
property byW(∂D;Ck×q).

It is readily seen that `1(Ck×q) is isometrically isomorphic to
W(∂D;Ck×q). So they are Banach spaces under the norm ‖ · ‖1.
Clearly, ‖Ť‖1 ≥ ‖Ť‖∞, and Ť (ejθ ) is continuous in θ on [0, 2π ].
In the case that k = q we have that W(∂D;Ck×k) is a Banach
algebra. In the subsequent sectionswe consider the particular class
of spatially invariant infinite-dimensional systems (5) and arrive
at simple readily checkable tests for system theoretic properties
such as stability, stabilizability, detectability, observability and
controllability. The same tests are applicable to the isometrically
isomorphic class of spatially invariant systems (1) and (2). The
theory is illustrated by simple examples.

2. Stability properties

In this section we are concerned with exponential stability and
strong stability of the autonomous differential equation

∂

∂t
ž(t) = Ǎž(t), t ≥ 0, (6)

where Ǎ is the Fourier transform of the convolution operator A, and
Ǎ ∈ L∞(∂D;Cn×n). Denote by eǍt and, for a given θ ∈ [0, 2π ],
eǍ(e

jθ )t the strongly continuous semigroups generated by Ǎ and
Ǎ(ejθ ), respectively (Curtain & Zwart, 1995). The semigroup eǍt is
exponentially stable if there exist positive constantsM and α such
that ‖eǍt‖∞ ≤ Me−αt for all t ≥ 0. We also say that the system (6)
is exponentially stable. In particular, the system (6) is exponentially
stable if and only if there exist positive constantsM andα such that
ess sup0≤θ≤2π‖eǍ(e

jθ )t
‖ ≤ Me−αt for all t ≥ 0.

Since Ǎ is a bounded operator, the semigroup eǍt satisfies
the spectrum determined growth assumption (see Curtain and
Pritchard (1978, p. 74)), i.e.,

sup{Re(λ), λ ∈ σ(Ǎ)} = lim
t→∞

log ‖eǍt‖∞
t

= ω0.

Thus the equivalence stated in the following remark holds.

Remark 2.1. The system (6) is exponentially stable if and only if

sup{Re(λ) | λ ∈ σ(Ǎ)} < 0. (7)

Conditions for the spectrum of Ǎ are given in Lemma A.3. In
particular, if Ǎ(ejθ ) is continuous, λ ∈ σ(Ǎ) if and only if det(λI −
Ǎ(ejθ )) = 0 for some value of θ . More precisely

σ(Ǎ) =
⋃

θ∈[0,2π ]

σ(Ǎ(ejθ )). (8)

This allows us to obtain a succinct proof of a sharper result than the
one in Bamieh et al. (2002, Corollary 3).

Theorem 2.2. Consider Ǎ ∈ L∞(∂D;Cn×n) and let Ǎ(ejθ ) be
continuous in θ on [0, 2π ]. Then Ǎ is exponentially stable if and only
if for all θ ∈ [0, 2π ] the matrix A(ejθ ) is exponentially stable and this
is true if and only if

sup{Re(λ) | ∃θ ∈ [0, 2π ] s.t. det(λI − Ǎ(ejθ )) = 0} < 0. (9)



R. Curtain et al. / Automatica 45 (2009) 1619–1627 1621
Proof. Since the semigroup eǍt satisfies the spectrum determined
growth assumption, it will be exponentially stable if and only if
(7) holds. From the continuity assumption of Ǎ ∈ L∞(∂D;Cn×n)
it follows that we have equality (8). So (7) holds if and only if (9)
holds. �

Remark 2.3. Let Ǎ ∈ W(∂D;Cn×n). It is known that λI − Ǎ is
invertible inW(∂D;Cn×n) if and only if

det(λI − Ǎ(ejθ )) 6= 0 ∀θ ∈ [0, 2π ].

So the spectrum of Ǎ with respect to W(∂D;Cn×n) is also given
by (8). Then (7) holds if and only if (9) holds. So (9) is also a
necessary and sufficient condition for exponential stability of Ǎ ∈
W(∂D;Cn×n).

In the case that Ǎ(ejθ ) = A0, a constant matrix, we have σ(Ǎ) =
σ(A0) which comprises eigenvalues with infinite multiplicity.
However, in general, σ(Ǎ) also contains a continuous spectrum. If
Ǎ is a scalar function, the spectrum of Ǎ is equal to the essential
range of Ǎ (Böttcher & Silberman, 1999, Theorem 1.2, p. 4). If Ǎ
is continuous, the essential range of Ǎ is {Ǎ(ejθ )| θ ∈ [0, 2π ]}
(Böttcher & Silberman, 1999, Example 1.6, p. 7). The spectrum of Ǎ
can be very complicated, as some of the examples show.Moreover,
the system can be exponentially stable or only strongly stable, a
weaker form of stability.

Definition 2.4. The system (6) is strongly stable if and only if the
semigroup eǍt is strongly stable, i.e.,

lim
t→∞
‖eǍtz‖L2(∂D;Cn) = 0

for all z ∈ L2(∂D;Cn).

The following result provides sufficient conditions for strong
stability.

Theorem 2.5. If the strongly continuous semigroup eǍt is uniformly
bounded in norm for t ≥ 0, i.e.,

sup
t≥0
ess sup0≤θ≤2π‖e

Ǎ(ejθ )t
‖ <∞, (10)

and the finite-dimensional semigroups {eǍ(e
jθ )t
| θ ∈ [0, 2π ]} are

exponentially stable except for a set of measure zero, then the system
(6) is strongly stable.

Proof. Define

Θn := {θ ∈ [0, 2π ] | there exists an eigenvalue λ(ejθ )
of A(ejθ ) such that Re(λ(ejθ )) ≥ −1/n}.

Since Θn ⊂ Θm if m ≤ n, and since the finite-dimensional
semigroups eǍ(e

jθ )t are exponentially stable except for a set of
measure zero, we find that themeasure ofΘn is converging to zero
for n→∞, see Rudin (1966, Theorem 1.19).
Let z ∈ L2(∂D,Cn) and let ε > 0 be given. By the above, we can

find an N such that

1
2π

∫
ΘN

‖z(ejθ )‖2dθ ≤ ε2. (11)

Define zN ∈ L2(∂D,Cn) as being zero onΘN and equals to z(ejθ ) on
the complement of this set. Then we have that for θ ∈ [0, 2π ]

‖eǍ(e
jθ )tzN(ejθ )‖ ≤

{
0 θ ∈ ΘN

MNe−
t
N ‖z(ejθ )‖ θ 6∈ ΘN .
From this inequality and (11), it can be concluded as in the
following

‖eǍtz‖L2(∂D,Cn) ≤ ‖eǍt(z − zN)‖L2(∂D,Cn) + ‖eǍtzN‖L2(∂D,Cn)

≤ Mε + ‖eǍtzN‖L2(∂D,Cn)

≤ Mε +MNe−
t
N ‖z‖L2(∂D,Cn).

Consequently, the limit of ‖eǍtz‖L2(∂D,Cn) is less than or equal to
Mε. This holds for every ε > 0, and so eǍtz converges to zero. �

If Ǎ(ejθ ) is continuous in θ on [0, 2π ], then the esssup in
(10) can be replaced by max. We conjecture that the converse of
Theorem 2.5 is also true.
The uniform boundedness condition (10) can also be written

as ess sup0≤θ≤2π supt≥0 ‖eǍ(e
jθ )t
‖ < ∞. So, it is tempting to just

check that the finite-dimensional semigroups eǍ(e
jθ )t are bounded

for all θ ∈ [0, 2π ] and t ≥ 0 by showing that the eigenvalues
of Ǎ(ejθ ) are on the left half-plane (including the imaginary axis).
The following example shows that it is not sufficient for uniform
boundedness of eǍt .

Example 2.6. As Ǎ(ejθ )we define

Ǎ(ejθ ) =
(
− sin2(θ) sin(θ)
0 − sin2(θ)

)
.

If θ is not a multiple of π , then the eigenvalues are negative, and
so the exponential of Ǎ(ejθ ) is bounded. If θ is a multiple of π , then
Ǎ(ejθ ) is the zero matrix, and so its exponential is bounded.
However, we can show that (10) does not hold. We have

eǍ(e
jθ )t
=

(
e− sin

2(θ)t sin(θ)te− sin
2(θ)t

0 e− sin
2(θ)t

)
.

If we choose θm = 1
m and tm = (sin

2(θm))
−1, then

eǍ(e
jθm )tm =

(
e−1 (sin(θm))−1e−1

0 e−1

)
and it is clear that this sequence is unbounded in norm. �

In what followswe discuss stability properties of several particular
systems.

Example 2.7. Consider the autonomouspart of the system (1)with
A0 = a, A1 = c and A−1 = b and all other Al = 0. Then

Ǎ(ejθ ) = ce−jθ + a+ bejθ = (b+ c) cos θ + a+ j(b− c) sin θ,

for positive constants b, c. If b = c , we haveσ(Ǎ) = [a−2b, a+2b].
If b 6= c , we have

σ(Ǎ) = {ce−jθ + a+ bejθ | θ ∈ [0, 2π ]}

(Fig. 1, Left). In both cases the spectrum comprises continuous
spectrum. If a + |b + c| < 0 the semigroup eǍt is exponentially
stable. If a = −|b + c| the semigroup eǍt is not exponentially
stable, since 0 ∈ σ(Ǎ). However, it is strongly stable. That follows
from Theorem 2.5 using the fact that the intersection of σ(Ǎ)
with the imaginary axis contains only the origin and the uniform
boundness with respect to t of the semigroup, which follows from
the inequality

|eǍ(e
jθ )t
| = e(b+c) cos(θ)te−|b+c|t ≤ 1,

for all θ ∈ [0, 2π ] and t ≥ 0.
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Fig. 1. Left: Spectrum of Ǎ for Example 2.7 b = 4, c = 1, a = −1; Right: Spectrum
of Ǎ for Example 2.8.

Fig. 2. Spectrum of Ǎ for Example 2.9; Left: µ = 2, β = 1 (strongly stable); Right:
µ = 0.5, β = 1 (unstable).

Example 2.8. Consider the autonomouspart of the system (1)with
A0 = −5.5, A1 = 1.5, A−1 = 0.34, A−2 = −0.46 and A−3 = −3
and all other Al = 0. The spectrum of Ǎ is σ(Ǎ) = {Ǎ(ejθ ) | θ ∈
[0, 2π ]} provided in Fig. 1 (Right) and indicates that the system
is exponentially stable. The exponential stability of the semigroup
follows also from the inequality

|eǍ(e
jθ )t
| < e−0.1t , for all θ ∈ [0, 2π ].

Example 2.9. Consider the autonomouspart of the system (1)with

A0 =
[
0 1
−β −µ

]
, A1 =

[
0 −1
0 0

]
,

and all other Al = 0, where β and µ are positive numbers. The
Fourier transformed system has

Ǎ(ejθ ) =
[
0 1− e−jθ

−β −µ

]
.

The spectrum of Ǎ is

σ(Ǎ) =
{
1
2
(−µ± (x(ejθ )+ jy(ejθ ))), θ ∈ [0, 2π ]

}
,

where x(ejθ ), y(ejθ ) are the positive square roots of

2x(ejθ )2 =
√
(8β sin2 θ/2− µ2)2 + 16β2 sin2 θ

+µ2 − 8β sin2 θ/2

2y(ejθ )2 =
√
(8β sin2 θ/2− µ2)2 + 16β2 sin2 θ

−µ2 + 8β sin2 θ/2.

Note that for θ = 0 x(ej0) = µ and so 0 ∈ σ(Ǎ), which shows
that eǍt does not generate an exponentially stable semigroup.
Since x(ejθ ) > 0 for every θ ∈ [0, 2π ], Ǎ(ejθ ) has two distinct
eigenvalues λ1,2(ejθ ) = 1

2 (−µ± (x(e
jθ )+ jy(ejθ ))). Then

Ǎ(ejθ ) = L−1
[
λ1(ejθ ) 0
0 λ2(ejθ )

]
L,
where L and its inverse are bounded, and

‖eǍ(e
jθ )t
‖ ≤ ‖L‖‖L−1‖

∥∥∥∥∥
[
eλ1(e

jθ )t 0
0 eλ2(e

jθ )t

]∥∥∥∥∥ .
If µ2 − 2β > 0 then the inequality x(ejθ ) ≤ µ is satisfied for all
θ ∈ [0, 2π ], which implies that eλ1,2(e

jθ )t are uniformly bounded.
Then eǍt is uniformly bounded (with respect to t). The intersection
of σ(Ǎ) with the imaginary axis contains only the origin. From
Theorem 2.5, it follows that the semigroup eǍt is strongly stable
provided that µ2 > 2β and β > 0 (Fig. 2).

Example 2.10. Consider the autonomous part of the system (1)
with

A0 =
[
−1 1
0 −1

]
, A1 =

[
1 0
0 1

]
and all other Al = 0. The Fourier transformed system has

Ǎ(ejθ ) =
[
−1+ e−jθ 1

0 −1+ e−jθ

]
.

The system is not exponentially stable because 0 ∈ σ(Ǎ).
Moreover, it is not strongly stable because

‖eǍ(e
jθ )t
‖ = |e(cos θ−1+j sin(θ))t |

∥∥∥∥[1 t
0 1

]∥∥∥∥
= |e(cos θ−1)t |

√
2+ t2 +

√
t4 + 4t2

2
,

which shows that ‖eǍt‖∞ tends to infinity as t →∞.
A Lyapunov-type condition follows from Curtain and Zwart (1995,
Theorem 5.1.3), (see also in Bamieh et al. (2002, Theorem 1) for a
similar claim).

Theorem 2.11. An operator Ǎ ∈ L∞(∂D;Cn×n) generates an
exponentially stable semigroup if and only if there exists a unique
positive operator P̌ ∈ L∞(∂D;Cn×n) such that

Ǎ∗P̌ + P̌∗Ǎ = −I.

If Ǎ(ejθ ) is continuous in θ on [0, 2π ] then P̌(ejθ ) is also continuous.
If A ∈ `1(Cn×n), then P ∈ `1(Cn×n) and so P̌ ∈ W(∂D;Cn×n).

Proof. Weonly need to prove the continuity. If Ǎ(ejθ ) is continuous
in θ , one can apply (Lancaster & Rodman, 1995, Theorem 11.2.1) to
obtain the continuity of P̌(ejθ ).
Consider the case A ∈ `1(Cn×n). The solution to the

isometrically isomorphic Lyapunov equation A∗P + P∗A = −I
is P =

∫
∞

0 e
A∗teAtd t . The space `1(Cn×n) is a Banach algebra

and so closed under limits. Hence eAt ∈ `1(Cn×n) and so is the
integrand. The semigroup eAt is exponentially stable and so, for
some constantsM, α > 0, we have the inequality

‖eA
∗teAt‖∞ ≤ M2e−2αt .

By the Lebesgue lemma we conclude that P ∈ `1(Cn×n), which
implies that P̌ ∈ W(∂D;Cn×n). �

For Example 2.7 the Lyapunov equation has the solution

P̌(ejθ ) = −
1

2[(b+ c) cos θ + a]
,

which shows that eǍt will generate an exponentially stable
semigroup if and only if−a > |b+ c|.
The Lyapunov equation associated to the system considered

in Example 2.9 does not have a positive solution which confirms
our earlier conclusion that eǍt does not generate an exponentially
stable semigroup.
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3. Controllability and observability

The necessary and sufficient conditions for approximate control-
lability from Curtain and Zwart (1995, Definition 4.1.17) applied to
Σ(Ǎ, B̌, Č, Ď) yield

B̌∗eǍ
∗t ž = 0 for t ≥ 0 H⇒ ž = 0,

and for the dual concept of approximate observability they yield

ČeǍt ž = 0 for t ≥ 0 H⇒ ž = 0.

Since Ǎ, B̌, Č are bounded operators, we obtain the following
necessary and sufficient condition for approximate observability
from the dual of Curtain and Pritchard (1978, Theorem 3.16)

ker


Č
Č Ǎ
...

Č Ǎr

...

 = {0}. (12)

Moreover, since Ǎ and Č havematrix values, this condition reduces
to

ker


Č(ejθ )

Č(ejθ )Ǎ(ejθ )
...

Č(ejθ )Ǎ(ejθ )n−1

 = {0} (13)

for almost all θ ∈ [0, 2π ].
Similarly, we obtain the following necessary and sufficient

condition for approximate controllability

rank[B̌(ejθ ) : Ǎ(ejθ )B̌(ejθ ) : ...Ǎ(ejθ )n−1B̌(ejθ )] = n (14)

for almost all θ ∈ [0, 2π ].
As in the finite-dimensional case, this leads to the following

Hautus test.

Theorem 3.1. Σ(Ǎ, B̌, Č, Ď) is approximately controllable if and
only if

rank
[
(λI − Ǎ(ejθ )) : B̌(ejθ )

]
= n

for almost all θ ∈ [0, 2π ] and for all λ ∈ C.
Σ(Ǎ, B̌, Č, Ď) is approximately observable if and only if

rank
[
λI − Ǎ(ejθ )
Č(ejθ )

]
= n

for almost all θ ∈ [0, 2π ] and for all λ ∈ C.

One might expect that, in the case that Ǎ(ejθ ), B̌(ejθ ), Č(ejθ ) are
continuous in θ on [0, 2π ], necessary and sufficient conditions
for approximate observability and controllability should be that
(13) and (14) hold for all θ ∈ [0, 2π ]. The following example
shows that there are approximately controllable systems with
Ǎ(ejθ ), B̌(ejθ ), Č(ejθ ) continuous in θ on [0, 2π ] for which the rank
condition does not hold for all θ ∈ [0, 2π ].

Example 3.2. Consider the system (1) with

A0 =
[
0 1
0 0

]
, B0 =

[
0
1

]
, B1 =

[
0
−1

]
and all other Al, Bl zero. To examine the approximate controlla-
bility of this system we examine the Fourier transformed system
which has the operators

Ǎ(ejθ ) =
[
0 1
0 0

]
, B̌(ejθ ) =

[
0

1− e−jθ

]
.

We have

B̌(ejθ )∗eǍ(e
jθ )∗t

[
ξ
ρ

]
= [ 0 1− e−jθ ]

[
1 0
t 1

] [
ξ
ρ

]
= (1− e−jθ )(tξ + ρ).

If this equals zero almost everywhere in [0, 2π ] for t ≥ 0, wemust
have ξ = 0 = ρ. Consequently it is approximately controllable,
even though it does not satisfy the rank condition (14) in θ = 0.

It turns out that, in the case that Ǎ(ejθ ) and B̌(ejθ ) are continuous
in θ on [0, 2π ], if (14) hold for all θ ∈ [0, 2π ], then the system is
exactly controllable.
Let T < ∞ be a positive real constant. We recall that

Σ(Ǎ, B̌, Č, Ď) is exactly controllable on [0, T ] if and only if there
exists a positive β such that∫ T

0
‖B̌∗eǍ

∗t ž‖2L2(∂D;Cm) dt ≥ β‖ž‖
2
L2(∂D;Cn), (15)

for any ž ∈ L2(∂D;Cn). If there exists a β0 > 0 such that∫
∞

0
‖B̌∗eǍ

∗t ž‖2L2(∂D;Cm) dt ≤ β0‖ž‖
2
L2(∂D;Cn), (16)

for any ž ∈ L2(∂D;Cn) and the inequality (15) holds for T = ∞,
thenwe say thatΣ(Ǎ, B̌, Č, Ď) is exactly controllable in infinite time.
Σ(Ǎ, B̌, Č, Ď) is exactly observable on [0, T ] if and only if there
exists a positive γ such that∫ T

0
‖ČeǍt ž‖2L2(∂D;Cp) dt ≥ γ ‖ž‖

2
L2(∂D;Cn), (17)

for any ž ∈ L2(∂D;Cn). If there exists a γ0 > 0 such that∫
∞

0
‖ČeǍt ž‖2L2(∂D;Cp) dt ≤ γ0‖ž‖

2
L2(∂D;Cn), (18)

for any ž ∈ L2(∂D;Cn) and the inequality (17) holds for T = ∞,
then we say thatΣ(Ǎ, B̌, Č, Ď) is exactly observable in infinite time.
The following statement shows that exact observability of

Σ(Ǎ, B̌, Č, Ď) on [0, T ] is independent of T and is equiva-
lent with the observability of all finite-dimensional systems
Σ(Ǎ(ejθ ), B̌(ejθ ), Č(ejθ ), Ď(ejθ )).

Theorem 3.3. Suppose that Ǎ(ejθ ) and Č(ejθ ) are continuous in θ on
[0, 2π ]. Then the following statements are equivalent:

(1) There exists a T > 0 such that the systemΣ(Ǎ, B̌, Č, Ď) is exactly
observable on [0, T ].

(2) The systemΣ(Ǎ, B̌, Č, Ď) is exactly observable on [0, T ] for every
T > 0.

(3) The systems Σ(Ǎ(ejθ ), B̌(ejθ ), Č(ejθ ), Ď(ejθ )) are observable for
all θ ∈ [0, 2π ], i.e.,

rank
[
λI − Ǎ(ejθ )
Č(ejθ )

]
= n (19)

holds for all θ ∈ [0, 2π ] and for all λ ∈ C.

Proof. We prove (2) → (1) → (3) → (2). The implication
(2)→ (1) is trivial.
(3)→ (2): Let T be a strictly positive real number. If condition

(19) holds, thenwe know that for every θ ∈ [0, 2π ] there exists an
mθ (T ) such that for every v ∈ Cn∫ T

0
‖Č(ejθ )eǍ(e

jθ )tv‖2dt ≥ mθ (T )‖v‖2. (20)
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Note that this holds for all T > 0 since we are looking at a finite-
dimensional system. For simplicity, write mθ instead of mθ (T ).
Now the question is whether themθ can become arbitrarily small.
To prove the contrarywe suppose that there is a sequence θk, k ∈ N
such that for some sequence vk ∈ Cn of norm one, we have∫ T

0
‖Č(ejθk)eǍ(e

jθk )tvk‖
2dt → 0. (21)

Since θk ∈ [0, 2π ] and vk is a sequence of norm one in a finite-
dimensional space, we can find a subsequence such that θk and vk
converge along this subsequence. To keep the notation simple we
denote this subsequence by θk and vk and the limits by θk → θ∞
and vk → v∞. From (21), the continuity of Č and Ǎ, and the
Lebesgue Dominated Convergence theorem, we conclude that∫ T

0
‖Č(ejθ∞)eǍ(e

jθ∞ )tv∞‖
2dt = 0. (22)

This is in contradiction with (20).
So we conclude that if (19) holds, then there exists a constant
m(T ) > 0 such that for every θ ∈ [0, 2π ] and every v ∈ Cn∫ T

0
‖Č(ejθ )eǍ(e

jθ )tv‖2dt ≥ m(T )‖v‖2.

Now it is easy to conclude exact observability on [0, T ] for every
T > 0 as follows.∫ T

0
‖ČeǍtz‖2L2(∂D;Cn)dt =

∫ T

0

1
2π

∫ 2π

0
‖Č(ejθ )eǍ(e

jθ )tz(ejθ )‖2dθdt

=
1
2π

∫ 2π

0

∫ T

0
‖Č(ejθ )eǍ(e

jθ )tz(ejθ )‖2dtdθ

≥
1
2π

∫ 2π

0
m(T )‖z(ejθ )‖2dθ

= m(T )‖z‖2L2(∂D;Cn).

Concluding, we see that if (19) holds, then our system is exactly
observable on [0, T ] for every T > 0.
(1) → (3): Assume that Σ(Ǎ, B̌, Č, Ď) is exactly observable

on [0, T ]. Now Σ(Ǎ, B̌, Č, Ď) is exactly observable on [0, T ] if and
only if Σ(Ǎ + αI, B̌, Č, Ď) is exactly observable on [0, T ] for any
real α (see Curtain and Zwart (1995, Lemma 4.1.6)). Hence we can
assume without loss of generality that the systemΣ(Ǎ, B̌, Č, Ď) is
exponentially stable and exactly observable on [0, T ]. Since eǍt is
exponentially stable,Σ(Ǎ, B̌, Č, Ď) is exactly observable in infinite
time (see Russell and Weiss (1994)). From Grabowski (1990), the
exact observability in infinite time of the system Σ(Ǎ, B̌, Č, Ď) is
equivalent to the existence of a coercive solution Q̌ of the Lyapunov
equation

Ǎ∗Q̌ + Q̌ Ǎ = −Č∗Č . (23)

Suppose now that (19) does not hold, i.e., there exist θ0 ∈
[0, 2π ], a nonzero v0 ∈ Cn and λ ∈ C such that

Ǎ(ejθ0)v0 = λv0, Č(ejθ0)v0 = 0. (24)

The finite-dimensional system Σ(Ǎ(ejθ0), B̌(ejθ0), Č(ejθ0), Ď(ejθ0))
is not observable.We show that this will imply that Q̌ , the solution
of the Lyapunov equation (23), is not coercive.
For every θ ∈ [0, 2π ], consider pointwise correspondent of the

Lyapunov equation (23)

Ǎ(ejθ )∗Q̌ (ejθ )+ Q̌ (ejθ )Ǎ(ejθ ) = −Č(ejθ )∗Č(ejθ ). (25)
Since Ǎ(ejθ ) and Č(ejθ ) are continuous in θ on the finite
interval [0, 2π ], we conclude that Q̌ (ejθ ) inherits this property
(see Lancaster and Rodman (1995, Theorem 11.2.1)). For θ = θ0,
taking in (25) inner product with v0 and using (24) gives the
equality

Re λ〈v0, Q̌ (ejθ0)v0〉 = 0.

Using the exponential stability of Ǎwemust have 〈v0, Q̌ (ejθ0)v0〉 =
0. This implies that det Q̌ (ejθ0) = 0. Using this together with
the continuity of Q̌ (ejθ ) on [0, 2π ] and Lemma A.3 one can
conclude that Q̌ is not a coercive operator. Consequently, the
systemΣ(Ǎ, B̌, Č, Ď) is not exactly observable in infinite time, and
soΣ(Ǎ, B̌, Č, Ď) is not exactly observable on [0, T ]. �

Since exact observability and exact controllability are dual
concepts, one can also claim the following equivalence related to
exact controllability.

Theorem 3.4. Suppose that Ǎ(ejθ ) and B̌(ejθ ) are continuous in θ on
[0, 2π ]. Then the following statements are equivalent:

(1) There exists a T > 0 such that the systemΣ(Ǎ, B̌, Č, Ď) is exactly
controllable on [0, T ].

(2) The system Σ(Ǎ, B̌, Č, Ď) is exactly controllable on [0, T ] for
every T > 0.

(3) The systemsΣ(Ǎ(ejθ ), B̌(ejθ ), Č(ejθ ), Ď(ejθ )) are controllable for
all θ ∈ [0, 2π ] t, i.e.,

rank
[
(λI − Ǎ(ejθ )) : B̌(ejθ )

]
= n (26)

for all θ ∈ [0, 2π ] and for all λ ∈ C.

As a consequence of the necessity proof of Theorem 3.3 one
can obtain the following results on exact controllability and
observability in infinite time.

Corollary 3.5. Suppose that Ǎ(ejθ ), B̌(ejθ ) and Č(ejθ ) are continuous
in θ on [0, 2π ].
If condition (16) is satisfied and (26) holds for all θ ∈ [0, 2π ] and

for allλ ∈ C thenΣ(Ǎ, B̌, Č, Ď) is exactly controllable in infinite time.
If condition (18) is satisfied and (19) holds for all θ ∈ [0, 2π ] and

for all λ ∈ C thenΣ(Ǎ, B̌, Č, Ď) is exactly observable in infinite time.

That the converse to Corollary 3.5 is not true is illustrated by
the following example. However, if eǍt is exponentially stable the
converse to Corollary 3.5 holds (see Russell and Weiss (1994)).

Example 3.6. Consider the following system

.Ǎ(ejθ ) = −2 sin2 θ, Č(θ) = 2 sin θ. (27)

It is easy to see that these are continuous functions of θ on
[0, 2π ]. Furthermore, for θ = π the finite-dimensional system
Σ(Ǎ(π), Č(π)) is not observable, so condition (19) does not hold
for θ = π , and soΣ(Ǎ, Č) is not exactly observable on [0, T ].
We claim that the system Σ(Ǎ, Č) is exactly observable in

infinite time. It is easy to see that Q̌ = I is a solution of
the Lyapunov equation (23) corresponding to our system, which
implies that the system is exactly observable in infinite time.

4. Exponential stabilizability and detectability

We recall that Σ(A, B, C) is exponentially stabilizable if there
exists an F ∈ L(Z,U) such that A+ BF is exponentially stable and
it is exponentially detectable if there exists an L ∈ L(Y , Z) such
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that A + LC is exponentially stable. We derive simple conditions
for exponential stabilizability and exponential detectability by
analyzing its Fourier transformed system.
In the case of continuous symbols, to show thatΣ(Ǎ, B̌, Č) is ex-

ponentially stabilizable we just need to show that (Ǎ(ejθ ), B̌(ejθ ))
is stabilizable for each θ ∈ [0, 2π ]. This was claimed earlier
in Bamieh et al. (2002, Corollary 3), but without an adequate proof.

Theorem 4.1. Suppose that Ǎ(ejθ ) and B̌(ejθ ) are continuous in θ on
[0, 2π ].
Σ(Ǎ, B̌, Č, 0) is exponentially stabilizable if and only if (Ǎ(ejθ ),

B̌(ejθ )) is exponentially stabilizable for each θ ∈ [0, 2π ], i.e.,

rank
[
(λI − Ǎ(ejθ )) : B̌(ejθ )

]
= n (28)

for all θ ∈ [0, 2π ] and for all λ ∈ C+0 .

The dual statement corresponding to Theorem 4.1 is provided in
what follows.

Theorem 4.2. Suppose that Ǎ(ejθ ) and Č(ejθ ) are continuous in θ on
[0, 2π ].
Σ(Ǎ, B̌, Č, 0) is exponentially detectable if and only if (Ǎ(ejθ ),

Č(ejθ )) is exponentially detectable for each θ ∈ [0, 2π ], i.e.,

rank
[
λI − Ǎ(ejθ )
Č(ejθ )

]
= n (29)

for all θ ∈ [0, 2π ] and for all λ ∈ C+0 .

Proof of Theorem 4.1. Sufficiency: Suppose that (28) holds. For
each θ ∈ [0, 2π ] the matrix pair Ǎ(ejθ ), B̌(ejθ ) is stabilizable if and
only if

rank
[
(λI − Ǎ(ejθ )) : B̌(ejθ )

]
= n for all λ ∈ C+0

if and only if there exists a stabilizing solution to the Riccati
equation

Ǎ(ejθ )∗Q̌ (ejθ )+ Q̌ (ejθ )Ǎ(ejθ )

− Q̌ (ejθ )B̌(ejθ )B̌(ejθ )∗Q̌ (ejθ )+ I = 0. (30)

Moreover, it is the unique nonnegative solution. Hence we have a
unique nonnegative solution for all θ ∈ [0, 2π ] and since Ǎ(ejθ ),
B̌(ejθ ) and Č(ejθ ) are continuous in θ on the finite interval [0, 2π ],
we conclude that Q̌ (ejθ ) inherits this property (see Lancaster and
Rodman (1995, Theorem11.2.1)). This provides a nonnegative self-
adjoint solution Q̌ ∈ L(W(∂D;Cn)) to the corresponding operator
Riccati equation, since

‖Q̌‖∞ = ess sup0≤θ≤2π‖Q̌ (e
jθ )‖ = max

0≤θ≤2π
‖Q̌ (ejθ )‖ <∞.

Now

Ǎcl(ejθ ) := Ǎ(ejθ )− B̌(ejθ )B̌(ejθ )∗Q̌ (ejθ )

is continuous in θ and it is stable for all θ ∈ [0, 2π ] and so

{Re(λ)|∃θ ∈ [0, 2π ] s.t. λ ∈ σ(Ǎcl(ejθ ))} < 0.

Comparing this with (9), we see that Ǎ − B̌B̌∗Q̌ generates an
exponentially stable semigroup.
Necessity: Suppose now that the system is exponentially

stabilizable, but (28) fails at θ = θ0. Then there exists a nonzero
v0 ∈ Cn and λ ∈ C+0 such that

v∗0 Ǎ(e
jθ0) = λv∗0 , v∗0 B̌(e

jθ0) = 0. (31)
Choose ž0(ejθ ) = f̌ (ejθ )v0, where f̌ (ejθ ) is 1/
√
2ε on [θ0 −

ε, θ0 + ε] and zero outside this interval. Since Ǎ and B̌ are
continuous we have

Ǎ∗ž0 = λf̌ (v0 + a(ε)), B̌∗ž0 = 0+ f̌ b(ε),

where a(ε) and b(ε) are continuous vectors with norms of the
order of ε.
Since the system is exponentially stabilizable, there exists a

unique nonnegative solution Q̌ ∈ L∞(∂D;Cn×m) to Eq. (30). We
rewrite (30) as

(Ǎ+ B̌F̌)Q̌ + Q̌ (Ǎ+ B̌F̌)∗ = −I, (32)

where F̌ = −B̌∗Q̌ . We take inner products of the first term in A
with respect to z0 to obtain

〈ž0, ǍQ̌ ž0〉 = λ〈v0, Q̌v0〉 + 〈f̌ a(ε), f̌ Q̌v0〉,

where the last term is of the order ε. Next we take inner products
with the first term in B to obtain

〈B̌∗ž0, F̌ Q̌ ž0〉 = 〈b(ε)f̌ , F̌ Q̌ f̌ v0〉,

which is of the order of ε. So taking inner products of (32) yields
up to first order terms in ε

Re λ〈ž0, Q̌ ž0〉 = −〈ž0, ž0〉,

and this is in contradiction to the assumption that λ ∈ C+0 . Hence
the system is not exponentially stabilizable. �

Corollary 4.3. If Ǎ and B̌ are in the Wiener class, then there exists an
F̌ in the Wiener class such that Ǎ + B̌F̌ generates an exponentially
stable semigroup if and only if (28) holds.

Proof. Since the ‖·‖1-norm is strictly larger than the infinity norm,
we need only prove sufficiency.
First we show the existence of an F̌ in the Wiener class.

From Theorem 4.1 we have a stabilizing F̌ = −B̌∗Q̌ so that
there exist positive constants M, α such that ‖e(Ǎ+B̌F̌)t‖∞ ≤

Me−αt . Since F̌(θ) is continuous and periodic on [0, 2π ], it is
approximable by F̌N(θ) =

∑N
l=−N Fle

−jlθ in the‖·‖∞-norm (Young,
1980, Proposition 1, p. 113). Clearly F̌N is in the Wiener class.
Choose N sufficiently large so that

‖F̌ − F̌N‖∞ < ε =
α

2M‖B̌‖∞
.

Then using the perturbation result from Curtain and Zwart (1995,
Theorem 3.2.1) we have

‖e(Ǎ+B̌F̌
N )t
‖∞ ≤ Me−αteM‖B̌‖∞εt = Me−

α
2 t ,

which shows exponential stability in the ‖ · ‖∞-norm. �

We remark that in Theorem 4.1 it is essential that Ǎ(ejθ ), B̌(ejθ )
and Č(ejθ ) be continuous in θ on [0, 2π ]. Unlike the approximate
controllability condition, the rank condition for exponential
stabilizability should hold for all θ ∈ [0, 2π ] as the following
example illustrates.

Example 4.4. Consider Example 3.2 where

Ǎ(ejθ ) =
[
0 1
0 0

]
, B̌(ejθ ) =

[
0

1− e−jθ

]
.

The Riccati equation (30) has the unique positive solution

Q̌ (ejθ ) =

√1+ 1/ sin(θ/2) 1/(2 sin(θ/2))

1/(2 sin(θ/2))
√
1+ sin(θ/2)
2(sin(θ/2))3/2
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for each θ ∈ [0, 2π ], but Q̌ (θ) is not bounded on [0, 2π ]. So the
operator Riccati equation

Ǎ∗Q̌ + Q̌ Ǎ− Q̌ B̌B̌∗Q̌ + I = 0

does not have a nonnegative self-adjoint solution in L∞(∂D). From
Theorem 6.2.4 in Curtain and Zwart (1995) we conclude that
Σ(Ǎ, B̌, Č, Ď) is not exponentially stabilizable. This checkswith the
observation that the condition (28) fails for θ = 0.

So for this class of systems approximate controllability does not
imply exponential stabilizability.

5. Conclusions

Wehave developed simple tests for system theoretic properties
such as stability, stabilizability, controllability for a class of spa-
tially distributed systems. In the case of continuous symbols, the
main system theoretic properties such as exponential stability, ex-
act controllability and observability and exponential stabilizabil-
ity and detectability, can be verified by using the known finite-
dimensional tests for each theta. We illustrated the theory with
several simple examples and counterexamples.

Appendix

In this section we recall the definitions and introduce the
notations for various frequency domain spaces with respect to the
unit disc. Denote by D the unit disc {z ∈ C | |z| < 1} and by ∂D
its boundary, the unit circle {z ∈ C | |z| = 1}.

Definition A.1. Wedefine the following frequency-domain spaces:

L2(∂D;Cq) =

{
f : ∂D→ Cq | f is measurable and

‖f ‖2 =
(
1
2π

∫ 2π

0
|f (ejθ )|2dθ

) 1
2

<∞

}
L∞(∂D;Ck×q) =

{
F : ∂D→ Ck×q | F is measurable

and ‖F‖∞ = ess sup0<θ≤2π‖F(e
jθ )‖ <∞

}
�

L2(∂D;Cq) is a Hilbert space under the inner product

〈f1, f2〉2 =
1
2π

∫ 2π

0
〈f1(ejθ ), f2(ejθ )〉Cqdθ.

L∞(∂D;Ck×q) is a Banach space under the‖·‖∞-norm. Its elements
induce a bounded operator from L2(∂D;Cq) to L2(∂D;Ck).

Property A.2. If F ∈ L∞(∂D;Ck×q) and u ∈ L2(∂D;Cq), then
Fu ∈ L2(∂D;Ck). The multiplication map ΛF : u 7→ Fu defines a
bounded linear operator from L2(∂D;Cq) to L2(∂D;Ck) (often called
a Laurent operator) and

‖ΛF‖ = sup
u6=0

‖ΛFu‖L2(∂D;Ck)

‖u‖L2(∂D;Cq)
= ‖F‖∞. (A.1)

If k = q, we obtain the Banach algebra L∞(∂D;Ck×k). We quote
the following result from Gohberg, Goldberg, and Kaashoek (1993,
Theorem 2.4, p. 569) on the existence of an inverse.

Lemma A.3. L∞(∂D;Ck×k) is a Banach algebra and F ∈ L∞(∂D;
Ck×k) is boundedly invertible if and only if ∃ a γ > 0 such that
{θ | | det(F(ejθ ))| < γ } has measure zero. If F is continuous, then
F ∈ L∞(∂D;Ck×k) is boundedly invertible if and only if det F(ejθ ) 6=
0 for all θ ∈ [0, 2π ].

Elements of L2(∂D,Cq) arise naturally as Fourier transforms of
elements in `2(Cq) = {z = (zr)∞r=−∞, zr ∈ Cq |

∑
∞

r=−∞ ‖zr‖
2
Cq <

∞}.
Definition A.4. The Fourier transform F of an element of z ∈
`2(Cq) is defined by

ž(ejθ ) =
∞∑

r=−∞

zre−jrθ , θ ∈ [0, 2π ], (A.2)

which is precisely the Fourier series representation of an element
ž ∈ L2(∂D;Cq)with the Fourier coefficients

zr =
1
2π

∫ 2π

0
ž(ejθ )ejrθdθ.

Note that an element ž ∈ L2(∂D;Cq) has the inverse Fourier
transform z = (zr)∞r=−∞, zr ∈ Cq, where zr are the Fourier
coefficients of ž. Moreover,ˇ : `2(Cq)→ L2(∂D;Cq) is an isometric
isometry with ‖ž‖L2(∂D;Cq) = ‖z‖`2(Cq).
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