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Adaptive Trajectory Tracking Despite Unknown Input Delay and
Plant Parameters

Delphine Bresch-Pietri and Miroslav Krstic

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

Abstract

In a recent paper we presented the first adaptive control design for an ODE system with a possibly large actuator delay of unknown length.
We achieved global stability under full state feedback. In this paper we generalize the design to the situation where, besides the unknown
delay value, the ODE also has unknown parameters, and where trajectory tracking (rather than equilibrium regulation) is pursued.

1 Introduction

Input delay arises in many forms, from an actual physi-
cal transport delay in various chemical process systems,
hydraulically actuated systems, and combustion systems,
to the problems where computational delay manifests it-
self as being equivalent to input delay. Until recently,
the only results on adaptive control of systems with in-
put delays dealt only with uncertain parameters in the
ODE part of the system (Evesque et al. 2003, Niculescu
and Annaswamy 2003, Ortega and Lozano 1988) but not
with uncertainty in the delay value itself. The impor-
tance of designing adaptive controllers for unknown delay
was recognized in (Kolmanovsky et al. 2001, Krstic and
Banaszuk 2006), however only approximation-based ideas
for limited classes of plants were dealt with. The robust-
ness of adaptive backstepping control for linear ODEs to
dynamic perturbations that include input delay was stud-
ied in (Zhou et al. 2008), however the nominal system
did not involve delay and the delay was not estimated nor
compensated by the controller.

In a recent paper (Bresch-Pietri and Krstic 2009) we pre-
sented the first results on delay-adaptive control for a gen-
eral class of plants, under full state feedback. This result
is global—including being global in the initial delay value
estimate (one can arbitrarily underestimate or overestimate
the delay value initially, and still achieve stabilizationadap-
tively).

However, the result in (Bresch-Pietri and Krstic 2009) con-
tains two limitations, one made for pedagogical reasons and
the other which is fundamental. The limitation for which the
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reason is pedagogical is in assuming that there are no un-
known parameters in the ODE. This limitation is being re-
moved by this paper. This limitation was imposed in (Bresch-
Pietri and Krstic 2009) to prevent the novel ideas on how to
develop global adaptivity in the infinite-dimensional (delay)
context from being buried under standard but nevertheless
complicated details of ODE adaptive control.

The other limitation in (Bresch-Pietri and Krstic 2009),
which is fundamental, is in assuming that the full actuator
state is measured, though the delay value is completely
unknown. The physical meaning of this is that the actuator
delay is modeled as a transport process, to which the con-
trol designer has physical access for measurement but the
speed of propagation of this transport process is completely
unknown. As we explain in (Bresch-Pietri and Krstic 2009),
the problem where the actuator state is not measurable
and the delay value is unknown is not solvable globally,
since the problem is not linearly parametrized. We show
in (Bresch-Pietri and Krstic 2009) how one can solve it
locally, however, this is not a very satisfactory result, since
it is local both in the initial state and in the initial param-
eter error. In other words, the initial delay estimate needs
to be sufficiently close to the true delay. (The delay can be
long, but it needs to be known quite closely.) Under such
an assumption, one might as well use a linear controller
and rely on robustness of the feedback law to small errors
in the assumed delay value.

So, for this reason, in this paper we continue with a full-state
feedback design, specifically assuming the measurement of
the actuator state. In (Bresch-Pietri and Krstic 2009) we dis-
cussed all the possible problems that one can consider with
respect to the availability or unavailability of measurement
of the ODE state, the actuator state, the knowledge (or lack
of knowledge) of the delay value, and the knowledge (or
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lack thereof) of the ODE parameters. There is a total num-
ber of 14 distinct problem combinations. Here we focus on
the most interesting one of them, with both the ODE pa-
rameters and the delay value unknown, but with full state
measurement. An extension to the case where only an out-
put (and not the complete state) of the ODE is available for
measurement is easy (with the method of backstepping and
Kreisselmeier observers). We don’t pursue it here for con-
sistency of concepts—since we must measure the actuator
state, we might as well present a result with full measure-
ment of the ODE state.

As in most of the research on control of unstable plants with
a long actuator delay (Artstein 1982, Evesque et al. 2003, Fi-
agbedzi and Pearson 1986, Gu and Niculescu 2003, Jankovic
2006a, Jankovic 2006b, Jankovic 2008, Klamka 1982, Krstic
2008a, Krstic 2008b, Krstic and Smyshlyaev 2008b, Kwon
and Pearson 1980, Manitius and Olbrot 1979, Michiels and
Niculescu 2003, Michiels and Niculescu 2007, Mirkin 2004,
Mondie and Michiels 2003, Niculescu and Annaswamy
2003, Olbrot 1978, Richard 2003, Tadmor 1996, Watan-
abe and Ito 1996, Watanabe and Ito 1981, Zaccarian
and Nesic 2006, Zhong 2006a, Zhong 2006b, Zhong and
Mirkin 2002), the essence of our approach is “predictor feed-
back,” which we recently showed in (Krstic 2008a, Krstic
and Smyshlyaev 2008b) to be a form of backstepping
boundary control for PDEs (Krstic and Smyshlyaev 2008c)
and extended to nonlinear plants (Krstic 2008b).

In this paper we generalize the design from (Bresch-Pietri
and Krstic 2009) in two major ways: we extend it to ODEs
with unknown parameters and extend it from equilibrium
regulation to trajectory tracking. A significant number of
new technical issues arise in this problem. The estimation
error of the ODE parameters appears in the error models of
both the ODE and of the infinite-dimensional (delay) sub-
system, which is reflected also in the update law. The update
law has to also deal appropriately with ensuring stabilizabil-
ity with the parameter estimates, for which projection is em-
ployed. Finally, our approach for dealing with delay adap-
tation involves normalized Lyapunov-based tuning, a rather
non-standard approach as compared to finite-dimensional
adaptive control. In this framework, we need to bound nu-
merous terms involving parameter adaptation rates (both for
the delay and for the ODE parameters) in the Lyapunov anal-
ysis. Some of these terms are vanishing (when the tracking
error is zero), while the others (which are due to the refer-
ence trajectory) are non-vanishing. These terms receive dif-
ferent treatment though both are bounded by normalization
and their size is controlled with the adaptation gain.

We begin in Section 2 by defining the problem and present
the adaptive control design and the main stability theorem in
Section 3. Simulations results are show in Section 4, which
is then followed by the stability proof in Section 5.

2 Problem Formulation

We consider the following system

Ẋ(t) = A(θ)X(t)+B(θ)U(t−D) (1)
Y(t) =CX(t) , (2)

whereX ∈ R
n is the ODE state,U is the scalar input to

the entire system,D > 0 is an unknown constant delay, the
system matrixA(θ) and the input vectorB(θ) are linearly
parametrized, i.e.,

A(θ) = A0 +
p

∑
i=1

θiAi (3)

B(θ) = B0 +
p

∑
i=1

θiBi , (4)

and θ is an unknown but constant parameter vector that
belongs to the convex set

Π = {θ ∈ R
p|P(θ) ≤ 0} , (5)

where, by assuming that the convex functionP : R
p → R

is smooth, we assure that the boundary∂Π of Π is smooth.

Assumption 1 The setΠ is bounded and known. A constant
D̄ is known such that D∈]0;D̄].

To make stabilization and tracking possible in the presence
of unknown parameters, we make some assumption and il-
lustrate, with the help of an example introduced below, that
these assumptions are reasonable. In the sequel,C0(Π) and
C1(Π) is the usual notation for continuous and continuously
differentiable functions (on the setΠ), respectively.

Assumption 2 We assume that the pair(A(θ),B(θ)) is
completely controllable for eachθ. Furthermore, we as-
sume that there exists a triple of vector/matrix-valued func-
tions (K(θ),P(θ),Q(θ)) such that K∈C1(Π), P∈C1(Π),
Q∈C0(Π), the matrices P(θ) and Q(θ) are positive defi-
nite and symmetric, and the following Lyapunov equation
is satisfied for allθ ∈ Π:

P(θ)(A+BK)(θ)+ (A+BK)(θ)TP(θ) = −Q(θ) . (6)

Example 1 Consider the example of a potentially unstable
plant

Ẋ1(t) = θX1(t)+X2(t) (7)
Ẋ2(t) =U(t −D) (8)
Y(t) = X1(t) , (9)
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where we assumeΠ = [−θ; θ̄] and define

A(θ) = A0 +θA1 =

(

0 1

0 0

)

+θ

(

1 0

0 0

)

(10)

B= B0 =

(

0

1

)

. (11)

Using the backstepping method we construct the triple
(K,P,Q) as

K(θ) =−
(

1+(θ +1)2 θ +2
)

(12)

P(θ) =
1
2

Q(θ) =

(

1+(1+θ)2 1+θ
1+θ 1

)

, (13)

which satisfies the Lyapunov equation (6).

Assumption 3 The quantities

λ = inf
θ∈Π

min{λmin(P(θ)),λmin(Q(θ))} (14)

λ̄ = inf
θ∈Π

λmax(P(θ)) . (15)

exist and are known.

Example 2 (Example 1 continued) One can show that the
eigenvalues ofP(θ) are

λmax(P(θ)) =
2+(θ +1)2+ |θ +1|

√

(θ +1)2+1
2

(16)

λmin(P(θ)) =
1

λmaxP(θ)
, (17)

from whichλ andλ̄ area readily obtained over the setΠ =
[−θ; θ̄].

Assumption 4 For a given smooth function Yr(t), there ex-
ist known functions Xr(t,θ) andUr(t,θ), which are bounded
in t and continuously differentiable in the unknown argu-
mentθ on Π, and which satisfy

Ẋr(t,θ) = A(θ)Xr(t,θ)+B(θ)U r(t,θ) (18)
Yr(t) = CXr(t,θ) . (19)

Example 3 (Example 2 continued) TakeYr(t) = sin(t).
Then, the reference trajectory pair for the state and input is

Xr(t,θ) =

(

sin(t)

cos(t)−θsin(t)

)

(20)

U r(t,θ,D) =−sin(t +D)−θcos(t +D) . (21)

Both functions are bounded int and continuously differen-
tiable inθ.

3 Control Design

To prepare for our adaptive control design, we represent the
plant as

Ẋ(t) = A(θ)X(t)+B(θ)u(0,t) (22)
Y(t) =CX(t) (23)

Dut(x,t) = ux(x,t) , x∈ [0,1) (24)
u(1,t) =U(t) , (25)

where

u(x,t) = U(t +D(x−1)) . (26)

The representation of the pure delay as a transport PDE
allows a linear parameterization in the unknown delayD.

We consider reference trajectoriesXr(t) andU r(t), such as
described in Assumption 4. Let us introduce the following
error variables

X̃(t) = X(t)−Xr(t, θ̂) (27)

Ũ(t) = U(t)−U r(t, θ̂,D̂) (28)

e(x,t) = u(x,t)−ur(x,t, θ̂) , (29)

with an estimateθ̂ of the unknownθ. WhenD andθ are
known, one can show that the control law

U(t) =U r(t)−KXr(t +D)

+K

[

eADX(t)+D
∫ 1

0
eAD(1−y)Bu(y,t)dy

]

(30)

achieves exponential stability of the equilibrium(X̃,e) = 0,
compensating the effects of the delayD.

WhenD andθ are unknown, we employ the control law

U(t) =U r(t, θ̂,D̂)−K(θ̂)Xr(t + D̂, θ̂)

+K(θ̂)
[

eA(θ̂)D̂(t)X(t)

+D̂(t)
∫ 1

0
eA(θ̂)D̂(t)(1−y)B(θ̂)u(y,t)dy

]

, (31)

based on the certainty equivalence principle. The update
laws for the estimateŝD and θ̂ are chosen based on the
Lyapunov analysis (presented in Section 5) as

˙̂D(t) = γ1Proj[0,D̄]{τD(t)} (32)
˙̂θ(t) = γ2ProjΠ{τθ(t)} , (33)

with adaptation gainsγ1 andγ2 chosen as positive and “small
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enough” and with

τD(t) = −

∫ 1
0 (1+x)w(x, t)K(θ̂)eA(θ̂)D̂(t)xdx

1+ X̃(t)TP(θ̂)X̃(t)+b
∫ 1
0 (1+x)w(x, t)2dx

×
(

(A+BK)(θ̂)X̃(t)+B(θ̂)w(0, t)
)

(34)

τθ (t) =
2X̃(t)TP(θ̂)/b−

∫ 1
0 (1+x)w(x, t)K(θ̂)eA(θ̂)D̂(t)xdx

1+ X̃(t)TP(θ̂)X̃(t)+b
∫ 1
0 (1+x)w(x, t)2dx

×(AiX(t)+Biu(0, t))1≤i≤p . (35)

The matrix P is defined in Assumption 2, the standard pro-
jector operators are given by

Proj[0,D̄]{τD} = τD















0, D̂ = 0 andτD < 0

0, D̂ = D̄ andτD > 0

1, else

(36)

ProjΠ{τθ} = τθ



































1, θ̂ ∈ Π̊

or ∇ θ̂PTτ ≤ 0

I −
∇ θ̂P ∇ θPT

∇ θ̂PT ∇ θP
, θ̂ ∈ ∂Π

and∇ θ̂PTτ > 0.

(37)

The transformed state of the actuator is needed in the update
law and is defined as

w(x,t) = e(x,t)− D̂(t)
∫ x

0
K(θ̂)eA(θ̂)D̂(t)(x−y)B(θ̂)e(y,t)dy

−K(θ̂)eA(θ̂)D̂(t)xX̃(t) (38)

and the constant b is chosen such as

b≥ 4 sup
θ̂∈Π

|PB|2(θ̂)
D̄
λ

. (39)

Theorem 1 Let Assumptions 1–4 hold and consider the
closed-loop system consisting of (22)–(25), the control law
(31) and the update laws defined by (32)–(39). There exists
γ∗ > 0 such that for anyγ ∈ [0,γ∗[, there exist positive con-
stants R andρ (independent of the initial conditions) such
that, for all initial conditions satisfying(X0,u0,D̂0,θ0) ∈
R

n×L2(0,1)×]0,D̄]×Π, the following holds:

ϒ(t) ≤ R
(

eρϒ(0)−1
)

, ∀t ≥ 0, (40)

where

ϒ(t) = |X̃(t)|2 +

∫ 1

0
e(x, t)2dx+ D̃(t)2 + θ̃(t)T θ̃(t) . (41)
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Fig. 1. The system respons of the system (1)–(2) with the reference
trajectory (20)–(21) forD = 1, θ = 0.5, θ̂(0) = 0 andD̂(0) = 0.

Furthermore, asymptotic tracking is achieve, i.e.,

lim
t→∞

X̃(t) = 0, lim
t→∞

Ũ(t) = 0. (42)

4 Simulations

We return to the system from Examples 1–3 and present
simulation results for the closed-loop system consisting of
the plant (1)–(2), the control law (31) and the update laws
defined through (32)–(39). We focus on the issues arising
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Fig. 2. The system response of the system (1)–(2) with the ref-
erence trajectory (20)–(21) forD = 1, θ = 0.5, θ̂(0) = 0 and
two dramatically different initial conditions for̂D: D̂(0) = 0 and
D̂(0) = D̄ = 2D = 2. Note that the solid plots in this figure corre-
spond to the same simulation as in Figure 1.

from the large uncertainties inD andθ and from the track-
ing problem with the reference trajectory (20)–(21). We take
D = 1, θ = 0.5, D̄ = 2D = 2, θ = 0, θ̄ = 2θ = 1. We pick
the adaptations gains asγ1 = 10,γ2 = 2.3 and the normaliza-

tion coefficient asb = 4̄|PB|2D̄
λ = 3200. We show simulation

results forX1(0) = X2(0) = 0.5, θ̂(0) = 0, and two different
values ofD̂(0).

Figure 1 shows that, as Theorem 1 predicts, perfect asymp-
totic tracking is achieved (in a single simulation) for the
output, state, and input, despite starting with an initial de-
lay estimate ofD̂(0) = 0, namely, for a large parametric un-
certainty and with no predictor feedback initially. Figure2
shows two distinct simulations, starting from two extreme
initial values for the delay estimate, one at zero, and the other
at twice the true delay value. The dashed simulation starts
with a predictor feedback that initially overcompensates the
delay, but it later adjusts the value of the delay estimate to
obtain a stabilizing value of this parameter in the predictor
feedback.

In Figure 2 we observe that̂θ(t) converges to the trueθ
in both simulations, whereas this is not the case withD̂(t).
This is consistent with the theory. By examining the error
systems (44), (45), with the help of a persistency of excita-
tion argument, we could infer the convergence ofθ̂(t) but
not of D̂(t).

5 Proof of the Main Result

In this section, we prove Theorem 1. We start by considering
the transformation (38) along with its inverse

e(x,t) = w(x,t)+ D̂(t)
∫ x

0
K(θ̂)e(A+BK)(θ̂)D̂(t)(x−y)B(θ̂)

×w(y,t)dy+K(θ̂)e(A+BK)(θ̂)D̂(t)xX̃(t) . (43)

Using these transformations and the models (1) and (18),
the transformed system is written as

˙̃X(t) = (A+BK)(θ̂)X̃(t)+B(θ̂)w(0,t)+A(θ̃)X(t)

+B(θ̃)u(0,t)−
∂Xr

∂ θ̂
(t, θ̂) ˙̂θ(t) (44)

Dwt(x,t) = wx(x,t)− D̃(t)p0(x,t)−D ˙̂D(t)q0(x,t)

−Dθ̃(t)T p(x,t)−D ˙̂θ(t)Tq(x,t) (45)
w(1,t) = 0, (46)

whereD̃(t) = D− D̂(t) is the estimation error of the delay,
the quantities

A(θ̃) =
p

∑
i=1

θ̃iAi =
p

∑
i=1

(θi − θ̂i(t))Ai (47)

B(θ̃) =
p

∑
i=1

θ̃iBi (48)

are linear in the parameter estimation errorθ̃(t) = θ − θ̂(t),
and

p0(x,t) = K(θ̂)eA(θ̂)D̂(t)x((A+BK)(θ̂)X̃(t)

+B(θ̂)w(0,t)) (49)

q0(x,t) =

∫ x

0
K(θ̂)

(

I +A(θ̂)D̂(t)(x−y)
)

eA(θ̂)D̂(t)(x−y)

5



×B(θ̂)e(y,t)dy+K(θ̂)A(θ̂)xeA(θ̂)D̂(t)xX̃(t) (50)

=
∫ x

0
w(y,t)

[

K(θ̂)
(

I +A(θ̂)D̂(t)(x−y)
)

×eA(θ̂)D̂(t)(x−y)B(θ̂)+ D̂(t)
∫ x

y
K(θ̂)

×
(

I +A(θ̂)D̂(t)(x− ξ )
)

eA(θ̂)D̂(t)(x−ξ )BK(θ̂)

×e(A+BK)(θ̂)D̂(t)(ξ−y)B(θ̂)dξ
]

dy+
[

KA(θ̂)x

×eA(θ̂)D̂(t)x +

∫ x

0
K(θ̂)

(

I +A(θ̂)D̂(t)(x−y)
)

×eA(θ̂)D̂(t)(x−y)BK(θ̂)e(A+BK)(θ̂)D̂(t)ydy
]

X̃(t) .(51)

The vector-valued functionsq(x, t) and p(x, t) are defined
through their coefficients as follows, for 1≤ i ≤ p,

pi(x, t) = K(θ̂)eA(θ̂)D̂(t)x(AiX(t)+Biu(0, t)) (52)

= K(θ̂)eA(θ̂)D̂(t)x((Ai +BiK(θ̂))X̃(t)+Biw(0,t)

+AiX
r(t, θ̂)+Biu

r(0, t, θ̂)) (53)

qi(x, t) = D̂(t)
∫ x

0

([

∂K

∂ θ̂i
(θ̂)+K(θ̂)AiD̂(t)(x−y)

]

×eA(θ̂)D̂(t)(x−y)B(θ̂)+K(θ̂)eA(θ̂)D̂(t)(x−y)Bi

)

×e(y,t)dy+

(

∂K

∂ θ̂i
+K(θ̂)AiD̂(t)x

)

eA(θ̂)D̂(t)x

×X̃(t)−K(θ̂)eA(θ̂)D̂(t)x ∂Xr

∂ θ̂i
(t, θ̂)+

∂ur

∂ θ̂i
(x,t, θ̂)

−D̂(t)
∫ x

0
K(θ̂)eA(θ̂)D̂(t)(x−y)B(θ̂)

×
∂ur

∂ θ̂i
(y,t, θ̂)dy (54)

= D̂(t)
∫ x

0
w(y, t)

[(

∂K

∂ θ̂i
(θ̂)+K(θ̂)AiD̂(t)(x−y)

)

×eA(θ̂)D̂(t)(x−y)B(θ̂)+K(θ̂)eA(θ̂)D̂(t)(x−y)Bi

+D̂(t)
∫ x

y

((

∂K

∂ θ̂i
(θ̂)+K(θ̂)AiD̂(t)(x− ξ )

)

×eA(θ̂)D̂(t)(x−ξ )B(θ̂)+K(θ̂)eA(θ̂)D̂(t)(x−ξ )Bi

)

×K(θ̂)e(A+BK)(θ̂)D̂(t)(ξ−y)B(θ̂)dξ
]

dy

+

[(

∂K

∂ θ̂i
(θ̂)+K(θ̂)AiD̂(t)x

)

eA(θ̂)D̂(t)x

+D̂(t)
∫ x

0

[(

∂K

∂ θ̂i
(θ̂)+K(θ̂)AiD̂(t)(x−y)

)

×eA(θ̂)D̂(t)(x−y)B(θ̂)+K(θ̂)eA(θ̂)D̂(t)(x−y)Bi

]

×K(θ̂)e(A+BK)(θ̂)D̂(t)ydy
]

X̃(t)

−K(θ̂)eA(θ̂)D̂(t)x ∂Xr

∂ θ̂i
(t, θ̂)+

∂ur

∂ θ̂i
(x, t, θ̂)

−D̂(t)
∫ x

0
K(θ̂)eA(θ̂)D̂(x−y)B(θ̂)

∂ur

∂ θ̂i
(y, t, θ̂)dy.(55)

Now, we define the following Lyapunov function candidate

V(t) = Dlog(N(t))+
b
γ1

D̃(t)2 +
bD
γ2

θ̃(t)T θ̃(t) , (56)

where

N(t) = 1+ X̃(t)TP(θ̂)X̃(t)+b
∫ 1

0
(1+x)w(x,t)2dx. (57)

Taking a time derivative ofV(t), we obtain

V̇(t) =−
2b
γ1

D̃(t)( ˙̂D(t)−γ1τD(t))

−
2bD
γ2

θ̃(t)T( ˙̂θ(t)−γ2τθ (t))

+
D

N(t)

(

p

∑
i=1

˙̂θi(t)

(

X̃(t)T ∂P

∂ θ̂i
(θ̂)X̃(t)

−X̃(t)TP(θ̂)
∂Xr

∂ θ̂i
(t, θ̂)

)

− X̃(t)TQ(θ̂)X̃(t)

+2X̃(t)TP(θ̂)B(θ̂)w(0,t)−
b
D
‖w‖2−

b
D

w(0,t)2

−2b ˙̂D(t)
∫ 1

0
(1+x)w(x,t)q0(x,t)dx

−2b ˙̂θ(t)T
∫ 1

0
(1+x)w(x,t)q(x,t)dx

)

, (58)

where we have used an integration by parts. Using the as-
sumptions that̂D(0) ∈]0;D̄] andθ̂(0) ∈ Π, the update laws
(32)–(33), and the properties of the projection operator, we
get

V̇(t)≤
D

N(t)

(

p

∑
i=1

˙̂θi(t)

(

X̃(t)T ∂P

∂ θ̂i
(θ̂)X̃(t)

−X̃(t)TP(θ̂)
∂Xr

∂ θ̂i
(t, θ̂)

)

−λmin(Q(θ̂))|X̃(t)|2

+2X̃(t)TP(θ̂)B(θ̂)w(0,t)−
b
D
‖w‖2−

b
D

w(0,t)2

−2b ˙̂D(t)
∫ 1

0
(1+x)w(x,t)q0(x,t)dx

−2b ˙̂θ(t)T
∫ 1

0
(1+x)w(x,t)q(x,t)dx

)

, (59)

and, substituting the expressions of (32) and (33) and using
(39) with the Young inequality, we obtain

V̇(t)≤−
D

2N(t)

(

λmin(Q)|X̃|2 +
b
D
‖w‖2+2

b
D

w(0,t)2
)

+2Dbγ1

∫ 1
0 (1+x)|w(x,t)||p0(x,t)|dx

N(t)

×

∫ 1
0 (1+x)|w(x)||q0(x,t)|dx

N(t)
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+Dγ2

p

∑
i=1

(

∫ 1
0 (1+x)|w(x, t)||pi(x, t)|dx

N(t)

+2|X̃(t)TP(θ̂)/b||AiX(t)+Biu(0, t)|
N(t)

)

×
1

N(t)

(

|X̃(t)T ∂P

∂ θ̂i
(θ̂)X̃(t)|+ |X̃(t)TP(θ̂)

∂Xr

∂ θ̂i
(t, θ̂)|+2b

∫ 1

0
(1+x)|w(x, t)||qi(x, t)|dx

)

.(60)

Fuhermore, each signal depending onθ̂, namelyA,B,K,P,
∂P/∂ θ̂i ,∂Xr/∂ θ̂i and ∂ur/∂ θ̂i , is given as continuous in
θ̂. Sinceθ̂ remains inΠ, a closed and bounded subset of
R

p, each signal is bounded in terms ofθ̂ and admits a fi-
nite upper bound. We denoteMA = sup̂θ∈Π |A(θ̂)| and de-
fineMP,MB,MK ,MA+BK,M∂K/∂ θ̂ similarly. Therefore, using
Cauchy-Schwartz and Young inequalities, along with (49),
(50), (52) and (54), we get

∫ 1

0
(1+x)|w(x,t)||p0(x, t)|dx

≤ M0(|X̃(t)|2 +‖w(t)‖2+w(0, t)2) (61)
∫ 1

0
(1+x)|w(x,t)||q0(x, t)|dx≤ M0(|X̃(t)|2 +‖w(t)‖2)

(62)
(

∫ 1

0
(1+x)|w(x,t)||pi(x, t)|dx+2|X̃(t)TP(θ̂)/b|

× |AiX(t)+Biu(0, t)|

)

≤ Mi(|X̃(t)|2 +‖w(t)‖2+w(0, t)2 +‖w(t)‖) (63)
∫ 1

0
(1+x)|w(x,t)||qi(x, t)|dx

≤ Mi(|X̃(t)|2 +‖w(t)‖2+‖w(t)‖) , (64)

whereM0 andMi (1≤ i ≤ p) are sufficiently large constants
given by

M0 = MK max{MA+BK +MA,2MK((1+MAD̄)

×(MB +MBMK(1+ D̄))+MA)}e(MA+MA+BK)D̄ (65)
Mi = max{|Ai |+ |Bi|MK + |Bi|+2MP/b,

2 sup
(t,θ̂)∈R×Π

(|Ai ||X
r(t, θ̂)|+ |Bi||u

r(0, t, θ̂)|),

2MK sup
(t,θ̂)∈R×Π

∣

∣

∣

∣

∂Xr

∂ θ̂
(t, θ̂)

∣

∣

∣

∣

+2 sup
(t,θ̂)∈R×Π

∣

∣

∣

∣

∂ur

∂ θ̂
(t, θ̂)

∣

∣

∣

∣

×(1+ D̂MKMB),
((

M∂K/∂ θ̂ +MK |Ai|D̄
)

MB + |Ai|MK

)

×(2D̄+2D̄MKMB +MK)}e(MA+MA+BK)D̄ . (66)

Consequently, if we define

M′
P = max

1≤i≤p
sup
θ̂∈Π

∣

∣

∣

∣

∣

∂P(θ̂)

∂ θ̂i

∣

∣

∣

∣

∣

(67)

Mr = max
1≤i≤p

sup
θ̂∈Π,t≥0

∣

∣

∣

∣

∣

∂Xr(t, θ̂)

∂ θ̂i

∣

∣

∣

∣

∣

(68)

using (61)–(64) in (60), we obtain

V̇(t)≤−
D

2N(t)

(

λmin(Q)|X̃|2 +
b
D
‖w‖2+2

b
D

w(0,t)2
)

+2Dbγ1M2
0
|X̃(t)|2 +‖w(t)‖2+w(0,t)2

N(t)

×
|X̃(t)|2 +‖w(t)‖2

N(t)
+Dγ2

p

∑
i=1

Mi

N(t)

(

|X̃(t)|2 +‖w(t)‖2

+w(0,t)2 +‖w(t)‖
) 1

N(t)

(

M′
P|X̃(t)|2 +Mr |P̄||X̃(t)|

+2bMi(|X̃(t)|2 +‖w(t)‖2+‖w(t)‖)
)

. (69)

Bounding the cubic and quadric terms with the help ofN(t),
we arrive at

V̇(t)≤−
D

2N(t)

(

λ |X̃(t)|2 +
b
D
‖w(t)‖2 +2

b
D

w(0,t)2
)

+
2Dbγ1M2

0

min{λ ,b}
|X̃(t)|2 +‖w(t)‖2+w(0,t)2

N(t)

+Dγ2

p

∑
i=1

Mi

(

M′
P(

1
λ

+
1

2min{1,b}
)

+MPMr(
1
2

+
1

2min{1,λ }
)

+2bMi(
1

min{λ ,b}
+

1
2min{1,b}

+1)

)

×
|X̃(t)|2 +‖w(t)‖2+w(0,t)2

N(t)
. (70)

Defining the following constant,

m=
2max

{

bM2
0,∑p

i=1Mi(M′
P +MPMr +3bMi)

}

min{1,λ ,b}
(71)

we finally obtain

V̇(t)≤−
D

2N(t)

(

min

{

λ ,
b
D

}

−2(γ1+γ2)m

)

×(|X̃(t)|2 +‖w(t)‖2+w(0,t)2) . (72)

Consequently, by choosing

γ∗ =
min{λ ,b/D}

4bm
(73)
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and (γ1,γ2) ∈ [0;γ∗[2, we makeV̇(t) negative semidefinite
and hence

V(t) ≤V(0), ∀t ≥ 0. (74)

Starting from this result, we now prove the results stated
in Theorem 1. From the transformation (38) and its inverse
(43), we obtain these two inequalities

‖w(t)‖2 ≤ r1‖e(t)‖2+ r2|X̃(t)|2 (75)

‖e(t)‖2 ≤ s1‖w(t)‖2 +s2|X̃(t)|2 , (76)

where r1, r2,s1,s2 are sufficiently large positive constants
given by

r1 = 3
(

1+ D̄2M2
Ke2MA+BKD̄M2

B

)

(77)

r2 = 3M2
Ke2MA+BKD̄ (78)

s1 = 3
(

1+ D̄2M2
Ke2MAD̄M2

B

)

(79)

s2 = 3M2
Ke2MAD̄ . (80)

Furthermore, from (56) and (76), it follows that

D̃(t)2 + θ̃(t)T θ̃(t)≤
γ1 +γ2

b
V(t) (81)

‖X̃(t)‖2 ≤
1
λ

(eV(t)/D −1) (82)

‖e(t)‖ ≤
s1

b
(eV(t)/D −1)+s2‖X̃(t)‖ . (83)

Thus, from the definition ofϒ(t), it is easy to show that

ϒ(t) ≤

(

1+s2

λ
+

s1

b
+

(γ1 +γ2)D
b

)

(eV(t)/D −1) (84)

Besides, using (75), we also obtain

V(0) ≤

(

D(λ̄ +s2b+2s1b)+b

(

1
γ1

+
1
γ2

))

ϒ(0) . (85)

Finally, if we define

R=
1+s2

λ
+

s1

b
+

(γ1 +γ2)D
b

(86)

ρ = λ̄ +s2b+2s1b+
b
D

(

1
γ1

+
1
γ2

)

, (87)

we obtain the global stability result given in Theorem 1.

We now proove tracking. From (74), we obtain the uniform
boudedness of‖X̃(t)‖, ‖w(t)‖, D̂(t) and‖θ̂(t)‖. From (43),
we obtain that‖e(t)‖ is also uniformly bounded in time.
From (31), we get the uniformly boudedness ofU(t) and
consequently ofŨ(t) for t ≥ 0. Thus, we get thatu(0,t)
ande(0,t) are uniformly bounded fort ≥ D. Besides, from

(33) and (52), we obtain the uniform boundedness of‖ ˙̂θ(t)‖
for t ≥ D. Finally, with (44), we obtain thatdX̃(t)2/dt is
uniformly bounded fort ≥ D. As |X̃(t)| is square integrable,
from (72), we conclude from Barbalat’s Lemma thatX̃(t)→
0 whent → ∞.

Besides, from (72), we get the square integrability of‖w(t)‖.
From (76), we obtain the square integrability of‖e(t)‖. Con-
sequently, with (31), we obtain the square integrability of
Ũ(t). Furthermore,

dŨ(t)2

dt
= 2Ũ(t)

(

K(θ̂)eA(θ̂)D̂(t) ˙̃X(t)+ ˙̂D(t)G0(t)

+
p

∑
i=1

˙̂θi(t)Gi(t)+
D̂
D

H(t)

)

(88)

with

G0(t) = K(θ̂)

[

A(θ̂)eA(θ̂)D̂(t)X̃(t)+
∫ 1

0
(I +A(θ̂)D̂(t)

×(1−y))eA(θ̂)D̂(t)(1−y)B(θ̂)e(y,t)dy
]

(89)

Gi(t) =
∂K

∂ θ̂
(θ̂)

[

eA(θ̂)D̂(t)X̃(t)+ D̂(t)
∫ 1

0
eA(θ̂)D̂(t)(1−y)

×B(θ̂)e(y,t)dy
]

+K(θ̂)
[

AiD̂(t)eA(θ̂)D̂(t)X̃(t)

+D̂(t)
∫ 1

0

[

AiD̂(t)(1−y)eAD̂(t)(1−y)B(θ̂)

+eAD̂(t)(1−y)Bi

]

e(y,t)dy
]

(90)

H(t) = K(θ̂)
[

B(θ̂)Ũ(t)−eA(θ̂)D̂(t)B(θ̂)e(0,t)

+
∫ 1

0
A(θ̂)D̂(t)eA(θ̂)D̂(t)(1−y)B(θ̂)e(y,t)dy

]

. (91)

The signals˙̂D, ˙̂θ1, . . . ,
˙̂θp are uniformly bounded overt ≥ 0,

according to (32)–(33). By using the uniform boundedness
of X̃(t), ˙̃X(t),‖e(t)‖,Ũ(t) overt ≥ 0 and ofe(0,t) for t ≥ D
and the uniform boundedness of all the signals which are
functions ofθ̂ for t ≥ 0, we obtain the uniform boundedness
of dŨ(t)2/dt over t ≥ D. Then, with Barbalat’s lemma, we
conclude thatŨ(t) → 0 whent → ∞.

6 Conclusions

In this paper we presented a result on global adaptive track-
ing for ODEs with unknown parameters and long unknown
actuator delays, with full state feedback. The control design
employs predictor feedback, modified from stabilization to
tracking, whereas adaptation employs our relatively novel
Lyapunov update law design with normalization. A simula-
tion example with a second order linear plant illustrates the
effectiveness of the design.

Future work should focus on systems with simultaneous state
an input delay. The non-adaptive design (Jankovic 2008)
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may be a good starting point for an interesting class of sys-
tems, and the clf tools (Karafyllis and Jiang 2008) for sys-
tems with state delays may be instrumental.
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