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ABSTRACT

Stabilization of uncertain sampled-data strict-feedback systems is addressed. The stability study is carried
out on the Euler approximation of the exact discretized model of the plant. Firstly, a class of state-feedback
controllers is developed that guarantees an input-to-state stability property for the closed-loop system.
Additionally, assuming some hypotheses on the uncertain terms hold, a practical asymptotic stability
property is ensured by designing an appropriate class of controllers.
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1. Introduction

Among the recent literature on nonlinear sampled-data sys-
tems, few papers provide constructive stabilization results.
In NeSi¢ and Griine (2005), a class of trajectory based controllers
(see Griine, Worthmann, and NeSi¢ (2007) for a deeper study of this
type of stabilizer) and sufficient conditions for the design of 'high
gain’ controllers are given that guarantee some practical stability
properties, under some conditions. For an extension of the ‘high
gain’ type stabilizers to the adaptive case, see Postoyan, Ahmed-Ali,
Burlion, and Lamnabhi-Lagarrigue (2008). In Burlion (2007), feed-
forward techniques have been developed for high order approxi-
mations. Backstepping control for the Euler approximate model of
a class of nonlinear sampled-data systems has been investigated
in NeSi¢ and Teel (2006). Although not proved, simulations of sev-
eral examples show that designed discrete-time controllers may
notably enlarge the region of attraction compared to the emula-
tion of the continuous-time control law.

On the other hand, the problem of stabilization of nonlinear
sampled-data systems affected by uncertainties and/or perturba-
tions has not received much attention. For results on ISS and/or
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0SS (input-to-(output-)state Stability) properties for parameter-
ized discrete-time systems, see Laila and NeSi¢ (2002a), Laila and
NeSi¢ (2002b) and Laila and NeSi¢ (2003). In Kellett, Shim, and
Teel (2004), robustness properties of emulated controllers (possi-
bly discontinuous) have been investigated but under severe condi-
tions, notably on the sampling period. In Laila and Astolfi (2005),
semiglobal practical input-to-state stability (SP-ISS) for uncertain
time-varying parameterized discrete-time systems is addressed
and the design of controllers for nonholonomic systems in power
form is realized. For results on singularly perturbed sampled-data
systems, see Barbot, Djemai, Monaco, and Normand-Cyrot (1996)
and references therein.

In this paper, stabilization of sampled-data systems in strict-
feedback form with single input is investigated. Based on the
framework proposed in NeSi¢ and Teel (2004), the stability study
is carried out on the Euler approximation of the exact discretized
system. Firstly, a class of controllers is designed that ensures the
SP-ISS of the exact discrete-time model. Afterwards, attention is
focused on the case where the uncertain terms are known to satisfy
some hypotheses. A class of controllers is then derived that ensures
a semiglobal practical asymptotic stability (SP-AS) objective.
Contrary to (Kellett et al., 2004), where the stabilization via
backstepping techniques of a class of systems using an emulated
controller has been done, controllers are here synthesized on
an approximation of the exact discretized system. In that way,
the obtained controllers are ‘redesigned’ similarly to Monaco and
Normand-Cyrot (2001), NeSi¢ and Griine (2005) and NeSi¢ and Teel
(2006). Moreover, the type of perturbations/uncertainties is larger



here than those allowable in Kellett et al. (2004). Note that this
work can be considered as the robust version of the results in NeSi¢
and Teel (2006).

1.1. Nomenclature and mathematical framework

First some mathematical notations are introduced. Let R =
(=00, 00), Rop = (0, 00), R>g = [0, 00), Ny = N U {0} and let
the Euclidean norm be denoted by | - |. In all this study, the initial
time is chosen to be zero (without loss of generality). A function
y @ Ryg —> Ry is called X if it is continuous, zero at zero,
strictly increasing and of class K if it is unbounded. A continuous
function y : Rso X Rsg —> Ry is of class KL if, for each
t € Rsg, y(-,t) is of class X, and, for each s € Rxq, ¥ (s, ) is
decreasing to zero. For the sake of simplicity, the notations z and
zT, where z is a time-dependent variable, will be used to denote
z(kT), z ((k 4+ 1)T), respectively, where k € Ny, T € R.q. For a
functiond : R>o — R", d[kT] denotes {d(t) : t € [kT, (k+ 1)T)},
k € No,n € N, T € R.g.Itissaid thatd € £ if dis
Lebesgue measurable and there exists r € Rx¢ such that ||d||, =
SUP, e, |d(z)| < r and ||df|lo denotes sup, cir,at1ym) (), k €
No, T € R.p.

Without loss of generality, the sampling period, T € R.o, is
always assumed to be T < 1 (this can be achieved by doing a
rescale transformation of the sampling period if necessary).

1.2. Definitions

Consider the nonlinear systems described by

x(t) = fx(0), u(t), d(t)) (1)

where x € R" is the state vector, u € R™ the input and d € R™
the exogenous disturbance. The function f is locally Lipschitz with
f(0,0,0) = 0.Functiond is Lebesgue measurable and the control u
is sampled at a given constant period T € R. . A sample-and-hold
device is considered. The exact discretized system of (1) is given
by, over [KT, (k + 1)T) for k € Ny,

X((k + 1T) = Fy (x(kT), u(kT), d[KT]). 2)

Definition 1 (Laila & NeSic, 2002a). System (2) is said to be SP-
ISS (semiglobally practically input-to-state stable) if there exists
B € KL and y € XK, such that, for any Ay, Ag, § € R., there
exists T* € R.o such that solutions of system (2) satisfy, for all
ke Ny, T e (0,T"), |xg]| < Ay and d € £ with ||d]| o, < Ag:

x(k, X0, )| = B(Ixol, k) + v (lldlloo) + 8. (3)

In the case where |x(k, xo, d)| < B(|xol, k) + 8, system (2) is said
to be SP-AS (semiglobally practically asymptotically stable).

Definition 2 (Laila & Nesic, 2002a). System (2) is Lyapunov SP-ISS
if there exists a parameterized family of functions Vr : R" — Rxg
such that there exist o; € Ko, i € {1,3},and y € X, and for
any Ay, Ag, 81,8, € R.g there exist T*,L € R.q such that, for
allT € (0,T), |x| < Ayand alld € £, with ||d|| < Ag, the
following holds:

ar(|x]) < Vr(x) < ay(|x]), (4)

1
T [Vr (Fr (x(KT), u(kT), d[kT])) — Vr(x)] < —a3(|x])

+rv(ldr]l) + 81, (5)

and, for all xq, X, z with |[x], z"]"|, |[x, z"]"| € [82, A,] and all
T € (0, T*), |Vr(x1,2) = Vi (X2, 2)| < L|x1 —x2|. Moreover, ifd = 0,
system (2) is said to be Lyapunov SP-AS. The pair (u, Vr) is called
an SP-IS stabilizing (SP-AS) pair.

In the general case where the exogenous signal d is only
Lebesgue measurable, the following Euler-like approximation of
the exact discretized system (2) is considered, for k € Ny:

(k+1T

x((k+ 1)T) = x(kT) + / fx(KT), u(kT), d(s)) ds. (6)

kT
When d is known to be continuously differentiable (like in
Section 3), the Euler approximate model can take the classical form,
for k € Nyp:

x((k+ 1)T) = x(kT) + Tf (x(kT), u(kT), d(kT)). (7)

In both cases, models (6) and (7) are a strong consistent
approximation of (2) (see Laila and NeSi¢ (2002a)). Hence stability
properties for (2) can deduced from the stability analysis of (6)
(or (7)) according to the following theorem, which is a direct
consequence of Theorem 3.2 in Laila and NeSi¢ (2002a).

Theorem 3. If system (6) (or (7)) is Lyapunov SP-ISS (SP-AS) and if
the input u is uniformly locally bounded, then the exact discretized
system (2) is SP-ISS (SP-AS).

Stability properties of the sampled-data system (1) can then be
deduced from those of the exact discretized system under mild
conditions (NeSi¢, Teel, & Sontag, 1999).

1.3. Problem statement

The purpose of this study is to propose control laws that
guarantee some semiglobal practical stability properties for strict-
feedback systems:

n=Ffm+gmé+d (8)
E=u+d,, 9)
where x = [n7,£]", withn € R" and £ € R, is the state vector,
and u € R the control input that is sampled and held at a given
constant period T € R.q. The vector fields f € C'(R", R*) and g €

C!(R™, R) are supposed to be known and f(0) = 0, and the signal

d = [dl, d;]" € £ is unknown and models the uncertainties or
perturbations acting on the system.

It will be shown that the obtained controllers are ‘redesigned’
compared to the emulation of the continuous-time control law (see
Monaco and Normand-Cyrot (2001), NeSi¢ and Griine (2005) and
Nesi¢ and Teel (2006) for other redesigned controllers for nonlinear
sampled-data systems).

2. Semiglobal practical input-to-state stabilization

As mentioned in the Section 1, the Euler approximate model of
the sampled-data system is considered:

nt=n+TE@) +gmé) +di (10)
T =6+ Tutds, (11)
where d; = fk(TkH)T di(s) ds,i € {1, 2}. Before giving the main
result of this section, the following hypothesis is stated.

Hypothesis 4. There exist Te R. o and an SP-ISS pair (§T, Wr) de-

fined foreach T € (0, f) for subsystem (10), with £ € R regarded
as its control. Suppose also that:

(1) ér and Wr are twice differentiable forany T € (0, f);

(2) there exists ¢ € Ko such that |Er ()| < (|n|), for all n € R",
T € (0,T);

(3) for any A > 0 there exists a palr of strictly posmve num-
bers (T Ml) such thateach T € (0, T) and |n| < A, max{|dWT|

il 92 2w il
%2, 2 sT|| 1 |%1P) < ;.




The proof of the following theorem is omitted due to space
limitations. However, it goes along the same lines as the proof of
Theorem 12.

Theorem 5. Assuming Hypothesis 4 holds, defining, with c € R,

Er(ng) — Er(n)
T

ur®) = — (c+1—cT) (€ — &) +

AW T _ 9E 2
- (3—(7‘73) g(n)—(l—cr)(s—sr(n))’ﬁ(ng , (12)
n an

with iy = n+TIf () +gérl ng = n-+TI () +g@m)§], system
(10)-(12) is SP-ISS, and so is the exact discretized system of (8) and
(9) controlled by (12).

Remark 6. The controllers (12) are of the form ur = ucn +
Tuge, where ugy,; corresponds to the emulation of the continuous-
time controller and ug is an additional component that may
allow enlarging the domain of attraction and increasing the speed
convergence compared to the straight emulation, as can be seen in
an example in Section 5.

3. Semiglobal practical asymptotic stabilization

In this section, some information on the uncertain terms is
supposed to be available.

Hypothesis 7. (i) d; € C'([ty, 0) x R™! R") and d, e C!
([ty, 00) x R™1 R).

(ii) There exist known functions p; € C'(R", Rxo) with p1(0) = 0,
02 € CH(R™1, R¢) such that, for all (¢, x) € [ty, 00) x R"™1:
ld1(t, )| < p1(n) and |da(t, X)| = p2(x).

Remark 8. This type of hypothesis is standard when dealing with
perturbed strict-feedback systems (Freeman & Kokotovié¢, 1993).

Since condition (i) in Hypothesis 7 will be assumed to hold,
the following approximate discrete-time model of the exact
discretized system of (8) and (9) is considered, as mentioned in
Section 1.2:

n"=n+TFm) +gmé +d) (13)
EY=6+4+T@Wu+dy). (14)

The following functions will be useful in what follows.
Definition 9. For any ¢, T € R.o, n € N, the function satr, , :

R" — R" is defined as, forz = [z1,...,z:]" € R, satr, n(z) =
[satre,1(z1), . . ., Satre 1(z,)]" with

; . Te
Sath 1(21') = Slgn(zi) if |Zi| > 7
7 p(z) otherwise
wherep : R = R, p(0) = Oand |p| < lover[—%, Ie1, yp(y) > 0
fory € [_Tn_s’ Tn—s], is such that function satr, , is C' over R,

Remark 10. There exist an infinite number of functions p satisfy-
ing Definition 9 (see in Burlion (2007) and Freeman and Kokotovi¢
(1993) for examples).

Hypothesis 11. There exist T e R.o and an SP-AS pair (§T, Wr)
defined for each T € (0, f) for subsystem (10), with & € R re-
garded as its control. Suppose also that:

(1) %’T and Wr are twice differentiable forany T € (0, T)

(2) there exists ¢ € Koo such that |§T(n)| ¢(|n|) for all
neR.T e (0,T);

(3)~f0r~any A > 0 there exists a Eair of strictly positive num-
bers (T, M;) such thateach T € (0,T) and || < A, max{|%|,

il 92
|5T| 15 sT| |f’W|} < M.

Theorem 12. Assuming Hypotheses 7 and 11 hold, defining, with
ce R>0,

Er(ng) — &r(n)

= —c(E — &) +dr + -

9
- (—(no )) g(n) — (ﬁ(no)) di, (15)

with iy = n+ TIf ) + gérl ng = n + TIf () + g(m)&], and

dy = —pasatre (—Er(n)) anddy = pysatren{(E —Er) 5L ()},
with ¢ € R.g, then system (13)—(15) is SP-AS, and so is the exact
discretized system of (8) and (9) controlled by (15).

ur(x)

Proof. Note that, for the sake of clarity, sat functions are called
with no index in the proof. Let A, 8, ¢ € Rog, x = [7, £]T €
R™! with |x| < A. According to Hypothesis 11, there exists

T € R.¢ such that condition (5) holds for T € (0, f) with

%, considering system (13), when & = &r as input. Let A; =

SUP <A Te(0.1) max{|rz+|, Ing |, 17g 1, 1971} that _is well defined
since functionsf g, &r, dq are continuous. Let A = max{A, A}
generate T, My such that mequallty 3in Hypothe51s 11 holds. Let

M = SUP|y< 4, 1e(0, ) Max{I€ — Erl, [ () + g(mé&L, My, |g()], 1,
p2}, which is well defined since all the considered functions are
continuous over the glven compact set. The samplmg period T is

defined as T = min{T, T, 5M L, where M = 10M4 + (12 +

¢)M? + 4M? + 4eM. Let T € (0, T) and define the candidate Lya-
punov function: Vr(x) = Wr(n) + %(%‘ — &r(n))?. Condition (4)
holds here; see NeSi¢ and Teel (2006). Firstly, attention is focused
on verifying that inequality (5) holds:

+ 1 E 2

AVr = Wr(n™) —Wr(n) — 5(5 —&r(n)
1 s
+5($+TuT+sz—$r(n )7 (16)

It can be shown that, using the mean value theorem, with n® =
7™+ To1g(n)(§ — & (), with 6; € (0, 1),

Wr(n™) — Wr(n) = Wr(n™) — Wr(in") + Wr (™) — Wr(n)
- W o\ .

=(Wr@") —wWr(p) + oy (1)) TEE =& ().

In view of (16), denoting AW; = Wr(71) — Wr(n),
W\ .

AVr = AWr + 3—n(ﬂ )) Tg(m)(E —ér(n)

1 z 2 1 Z 2
—5(5 — &) + E(S + Tur + Tdy — &r(n™))

W o\ . 1. -

= AWr + W(ﬂ ) ) Tg(mE —&r(m) — 5(5 — &)

1 _
+3 ((s —&@m)(1 —cT) — Tﬁ(no )'d,

(™t s+ 1+ 0+ E - Fr
T (770) gn) +T(dy +da) +&r(ng) —&r(n™)

9 T _ _
= AW + (W(no)) Tg(n)(E — & () — cT(E — & (n)?

+c2T—2(s—§( 24 (1= D) — Er() A+ 2 A2
5 Tm)"+ (A —cDE —&rm)A+ 5 A%



with

A—sr<n)—sr(n+)+r< (sr 0)}

aw _ \' .
- 3—(770 g +dy+dy ).
n

Thanks to the use of the mean value theorem,

W T
—T(1—cT)(E — & (n) (—(no )) g(m)
aw T _
+ (3—n(n<>)) Tg(n)(§ — & (1))

_ AW W . \' _
STE=&m) | — 0% — —@g) ) g + cT*M°
an an
< (cM + MHT?M?.
Using Definition 9, it can be shown that
(1= cT)(E — & )T (dy + dp) < 2T*Me, (17)

and, by bounding A2 by T2M2(3M + 2)? (using the mean value
theorem),

AVr < AWr — cT(& — &r(n))?
T
+ (1 —cT)(& — & () <§T(’7 ) —Emt) — ( sT )) )
T2M <M(3M 42)% 4+ (cM + MM + 25)

The term (1 — cT)(§ — & (1) (Er(ng) — & (™)) can be written,
using the mean value theorem, as

(1 —cT)(E — &) Er(nd) — Er(nh))

=(1—cT)E —&)T (ﬁ(n )) di,

with n* = n+ T (1) +gn)€) 4+ Th,dq, and 6, € (0, 1). Conse-
quently,

AVr < AW — cT (€ — &r(n))?
+ (1= cDTE — &)

((ﬁ( )) = (ﬁ(no )) a )
472 (1\71(31\71 1+2)% 4+ (cM + MY)M + 25)
< AWr — cT(€ — &r(n)°

+(1=cDTE — &) <( sT(n ))

- (3&( ) d1+(ﬁ(n ) dy
_ (ﬁ(n )) @))

T2 <M(3M 4+2)% 4+ (cM + MM + 25)

< AWr — cT(§ — & (n))?

+T?°(1 = cDE — &)l

25

%Er .,
3—772(77 )| 620 ()

+ (1= DT — &) [(ﬁ(n )) (- al)}

T2 <M(3M+2) +(cM+M2)M+25)

with n** = n+ T(f(n) +g1n)§) + T6,605dq, 05 € (0, 1). Thus, by
definition of d;,

(1= DT (E — & (n) (ﬁ(no )) (dl - &1) < 2T’Me.

Using Hypothesis 11 and the definition of M,
AVr < =Tas(Inl) — cT(§ — &r(m)* +T8.

From Proposition 1in NeSi¢ and Teel (2006), there exists &3 € Koo,
such that

Using the mean value theorem, it can be shown that there exists
L € R., such that, for all x,z € R™! with max{|x|, |z]} < A,
[Vr(x) — Vr(z)| < L|x — z|. Finally,

ér(ﬂg) — &) ’

()

Consequently, system (13)-(15) is SP-AS, and the same property
holds for the exact discretized system (8) and (9), in view of Theo-
rem3. O

lur| < clg —Er(m)| + |dal +

T
4+

9
((no )) llgm! +

<3M>+M(c+1)=M

Note that if perturbation d; is not vanishing, assuming a slightly
modified version of Hypothesis 11, only a é-regulation property
(see Freeman and Kokotovi¢ (1993)) can be achieved.

Remark 13. Virtual controller & cannot use sat functions param-
eterized by T (like in Definition 9) since its derivatives are not uni-
formly bounded w.r.t. T.

Remark 14. Like in Section 2, controllers (15) are redesigned
compared to the emulation. However, here the sampling T appears
not only linearly in the control but also in the definition of the sat
functions.

4. Comments

The application of the proposed techniques to systems of the
form

X1 =%+ fi(x)) +dy
Xy =x3+fo(x1, %) +do

)“n =1u +fn(x) + dm

where x = [x1, ..., x;]T and u € R, is straightforward for
both cases (SP-ISS and SP-AS) by assuming the functions f; to be
sufficiently differentiable, and so will be the virtual controllers
and their associate Lyapunov functions (Krsti¢, Kanellakopoulos, &
Kokotovi¢, 1995). Note that for the SP-A stabilization the functions
di,i € {1,...,n — 1}, have to be vanishing. On the other hand,
the extension of these results to higher order approximations of
the exact discretized model of (8) and (9) will require additional
knowledge about the perturbations terms and their successive
derivatives.
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Fig. 2. Simulation results for n(0) = £(0) = 2and T = 0.015.
5. Illustrative example

Consider the two-dimensional nonlinear system

n=n’+&+dx (18)
£ =u+dy(x), (19)

where d; : x —> (1 + sin(x,))x] is bounded by p; : x —> 2|x;|*
andd, : x —> 1+ cos(x;)x3 by p, : x —> 1+ x2. Taking & =
—n—n%—2n> Hypotheses 7 and 11 are satisfied; thus Theorem 12
applies. A controller of the form (15) has been designed withc = 1
and ¢ = 0.01. Some simulations have been performed in order
to compare controller (15) with the emulation of a continuous-
time one of the ‘hard’-type, like in Freeman and Kokotovi¢ (1993).
The following simulation parameters have been taken: T = 0.005,
n(0) = £(0) = 3. Fig. 1 shows that both controllers ensure the
convergence of the states to a neighbourhood of the origin, but
faster with controller (15). Choosing the sampling period to be
T = 0.015 (and with n(0) = &£(0) = 2), see Fig. 2, it can be

seen that the emulation cannot stabilize the system contrary to
(15). Thus, the redesigned controller has also enlarged the domain
of attraction.

6. Conclusion

The SP-ISS and SP-AS stabilization for the Euler approximate
model of perturbed sampled-data strict-feedback systems has
been addressed. Simulations show that the obtained controllers
may improve some system performances compared to the use of
the emulation.
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