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Abstract

We consider an optimal control problem with a nonlinear continuous inequality constraint. Both the state and the control
are allowed to appear explicitly in this constraint. By discretizing the control space and applying a novel transformation, a
corresponding class of semi-infinite programming problems is derived. A solution of each problem in this class furnishes a
suboptimal control for the original problem. Furthermore, we show that such a solution can be computed efficiently using a
penalty function method. On the basis of these two ideas, an algorithm that computes a sequence of suboptimal controls for
the original problem is proposed. Our main result shows that the cost of these suboptimal controls converges to the minimum
cost. For illustration, an example problem is solved.
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1 Introduction

Many dynamic control processes have requirements that
must be satisfied at every point along a trajectory. Ex-
amples include container cranes (see Sakawa & Shindo
(1982)), batch crystallization processes (see Rehbock &
Livk (2007)), anti-cancer drugs (see Martin (1992)), and
solar-powered vehicles (see Gates & Westcott (1996)).
Computing an optimal control law for such systems is
challenging, as the trajectory requirements give rise to
constraints that are imposed continuously over the en-
tire time horizon in the corresponding optimal control
problem. These types of constraints are called continu-
ous, path, pointwise, or all-time constraints in the litera-
ture, and they differ significantly from standard interior-
point or terminal constraints. In fact, one continuous
constraint is equivalent to an uncountable number of
conventional constraints.
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Several maximum principles have been derived for op-
timal control problems with continuous constraints (see
Hartl, Sethi, & Vickson (1995) for a comprehensive sur-
vey). These principles furnish the necessary conditions
for optimality. The complexity and scale of applied prob-
lems, however, often prohibits the direct use of analytical
results. Thus, many reliable numerical techniques for de-
termining an approximate solution have been proposed
in the literature. These include discretization methods
(Büskens & Maurer (2000), Chen & Vassiliadis (2005),
Gerdts & Kunkel (2008)), non-smooth Newton meth-
ods (Gerdts (2008a), Gerdts (2008b)), feasible direc-
tion methods (Pytlak & Vinter (1998), Pytlak & Vinter
(1999)), and control parametrization methods (Goh &
Teo (1988), Teo & Jennings (1989), Teo, Goh, & Wong
(1991)).

Control parametrization, in particular, is a versatile ap-
proach that has been successfully applied to a wide vari-
ety of practical problems. It involves approximating the
control function by a linear combination of basis func-
tions, so that the original optimal control problem is
approximated by a special type of nonlinear optimiza-
tion problem. If the gradient of the cost function with
respect to each of the decision parameters can be com-
puted, then standard optimization methods, such as se-
quential quadratic programming (see Nocedal & Wright
(1999)), are applicable. For this reason, the derivation of
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appropriate gradient formulae is paramount to the suc-
cessful implementation of the control parametrization
approach. Note though, that since the influence of the
parameters on the cost and constraint functions is not
explicit, deriving such formulae is normally a non-trivial
task.

The first control parametrization method capable of
handling continuous constraints was introduced by Goh
& Teo (1988). This method employs a simple transfor-
mation to convert continuous constraints on the state
and the control into an equivalent conventional con-
straint. The parametrized form of this equivalent con-
straint, however, does not satisfy the usual constraint
qualification condition. Thus, numerical convergence
cannot be guaranteed if standard optimization algo-
rithms are applied. In fact, convergence rarely occurs in
practice, although the method does give good approxi-
mate results.

To overcome this limitation, another algorithm — also
based on control parametrization — was developed by
Teo & Jennings (1989). It is based on a novel approx-
imation scheme, whereby each continuous constraint is
replaced by an approximate inequality constraint. A so-
lution of the original problem is then obtained by solving
a sequence of approximate problems. Powerful conver-
gence analysis is available to justify this approximation
strategy. Nevertheless, these convergence results are only
guaranteed to hold for problems with pure-state contin-
uous constraints; constraints containing the control ex-
plicitly are not allowed. This shortcoming serves as the
motivation for our current work. In this paper, we pro-
pose a new method that is capable of handling more gen-
eral continuous constraints. We prove that the method
has strong convergence properties. Furthermore, it can
be readily implemented using existing optimization soft-
ware. Thus, the greatest virtue of control parametriza-
tion — ease of implementation — is preserved.

2 Problem formulation

Consider the following nonlinear dynamic system:

ẋ(t) = f
(

x(t),u(t)
)

, t ∈ [0, T ], (2.1)

and
x(0) = x0, (2.2)

where T > 0 is a given terminal time; x(t) ∈ R
n is the

system state at time t; x0 ∈ R
n is a given initial state;

u(t) ∈ R
r is the control at time t; and f : R

n ×R
r → R

n

is a given function. Define

Υ :=
{

γ ∈ R
r : αi ≤ γi ≤ βi, i = 1, . . . , r

}

,

where αi and βi, i = 1, . . . , r, are given constants. A
piecewise continuous function u : [0, T ] → R

r such that

u(t) ∈ Υ for almost all t ∈ [0, T ] is called an admissible
control for the dynamic system (2.1)-(2.2). Let U denote
the class of all such admissible controls. We assume that
the following two conditions are satisfied.

Assumption 2.1. The function f is continuously dif-
ferentiable.

Assumption 2.2. There exists a real number L1 > 0
such that

∥

∥f(x,u)
∥

∥ ≤ L1

(

1 + ‖x‖
)

, (x,u) ∈ R
n × Υ.

Hence, for each u ∈ U , there exists a unique absolutely
continuous function x(·|u) satisfying the dynamics (2.1)
almost everywhere and the initial condition (2.2) (see
Theorem 3.3.3 of Ahmed (2006)).

Consider the following continuous inequality constraint:

h
(

x(t|u),u(t)
)

≥ 0, t ∈ [0, T ], (2.3)

where h : R
n × R

r → R is a given function. For sim-
plicity, we assume that there is only one such constraint.
However, the subsequent results can be extended in a
straightforward manner to problems with multiple con-
straints. LetF denote the set of all u ∈ U satisfying (2.3)
almost everywhere. Such controls are called feasible con-
trols. We state our optimal control problem formally as
follows.

Problem P. Choose a feasible control u ∈ F that min-
imizes the cost functional

J(u) := Φ
(

x(T |u)
)

,

where Φ : R
n → R, over F .

Assumption 2.3. The functions h and Φ are continu-
ously differentiable.

3 Problem approximation

In general, Problem P is too complicated to solve ana-
lytically. Thus, in this section, we will derive a class of
simpler approximate problems corresponding to Prob-
lem P. More specifically, the admissible controls will be
restricted to suitable piecewise constant functions, and
this produces a sequence of finite-dimensional optimiza-
tion problems approximating Problem P. Convergence
results linking Problem P with these approximate prob-
lems will be given later.
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Let p ≥ 1 be a fixed integer and define

Γp :=
{

τ ∈ R
p+1 : τ0 = 0; τp = T ;

τi−1 ≤ τi, i = 1, . . . , p
}

.

Moreover, let Ξp be the set of all σ = (σ1, . . . , σp) such
that σi ∈ Υ, i = 1, . . . , p. We consider piecewise con-
stant controls of the form

up(t|σ, τ ) =

p
∑

i=1

σiχIp

i
(τ)(t), t ∈ [0, T ], (3.1)

where σ ∈ Ξp, τ ∈ Γp, Ip
i (τ ) = [τi−1, τi) (or [τi−1, τi]

if i = p), and χI is the characteristic function of the in-
terval I ⊂ R. Clearly, up(·|σ, τ ) ∈ U . The time points τi,
i = 1, . . . , p− 1, are called switching times for the piece-
wise constant control.

If the admissible controls are restricted to those of the
form (3.1), then the dynamics (2.1) become

ẋ(t) =

p
∑

i=1

f
(

x(t), σi
)

χIp

i
(τ)(t), t ∈ [0, T ]. (3.2)

The initial condition (2.2) remains the same. Let
xp(·|σ, τ ) denote the solution of (3.2) and (2.2) corre-
sponding to (σ, τ ) ∈ Ξp × Γp. That is,

xp(·|σ, τ ) = x(·
∣

∣up(·|σ, τ )).

Hence, with the controls restricted to the form specified
by (3.1), the constraint (2.3) becomes

h
(

xp(t|σ, τ ), σi
)

≥ 0, t ∈ Ip
i (τ ), i = 1, . . . , p. (3.3)

Let Ωp denote the set of all pairs (σ, τ ) ∈ Ξp ×Γp satis-
fying the constraint (3.3) everywhere except possibly at
t = T . Note that

Ωp =
{

(σ, τ ) ∈ Ξp × Γp : up(·|σ, τ ) ∈ F
}

. (3.4)

We define an approximate problem as follows.

ProblemPp. Choose a pair (σ, τ ) ∈ Ωp that minimizes
the cost function

Jp(σ, τ ) := J
(

up(·|σ, τ )
)

over Ωp.

Remark 3.1. If (σ∗, τ ∗) is a solution of Problem Pp,
then up(·|σ∗, τ ∗) is a suboptimal control for Problem P.

Remark 3.2. Here, we have used piecewise constant
basis functions to approximate the control. Other basis

functions can be used if a continuous control function is
required (for example, piecewise linear basis functions).

4 Transforming the approximate problems

For each integer p ≥ 1, Problem Pp is an optimization
problem in which the switching times and heights for
an approximate piecewise constant control are decision
variables to be chosen optimally. To solve these problems
using a conventional optimization technique, the gradi-
ent of the cost function is required. It has been shown,
however, that the gradient of the cost function with re-
spect to the switching times is not useful for numerical
computation (Teo, Jennings, Lee, & Rehbock (1998)). It
is also difficult to integrate the system (3.2) and (2.2) ac-
curately if some of the subintervals Ip

i (τ ), i = 1, . . . , p,
are very short. To overcome these two difficulties, a novel
transformation will be applied to Problem Pp.

Let p ≥ 1 be a fixed integer and define the set

Θp :=
{

θ ∈ R
p : θi ≥ 0, i = 1, . . . , p;

θ1 + · · · + θp = T
}

.

For each θ = [θ1, . . . , θp]
T ∈ Θp, define a corresponding

function νp(·|θ) : [0, 1] → R as follows:

νp(s|θ) :=











⌊ps⌋
∑

k=1

θk + θ⌊ps⌋+1

(

ps − ⌊ps⌋
)

, if s ∈ [0, 1),

T, if s = 1,

where ⌊·⌋ denotes the floor function. Note that νp(·|θ) is
continuous and non-decreasing.

Now, for each θ ∈ Θp, define the following vector:

τ p(θ) :=
[

τp
0 (θ), . . . , τp

p (θ)
]T

∈ R
p+1,

where

τp
i (θ) := νp(i/p|θ) =

i
∑

k=1

θk, i = 0, . . . , p. (4.1)

Since νp(·|θ) is non-decreasing, τ p(θ) ∈ Γp. In fact, us-
ing (4.1), it is not difficult to see that

Γp =
{

τ p(θ) : θ ∈ Θp
}

. (4.2)

Furthermore, since νp(·|θ) is continuous as well as mono-
tonic, it constitutes a surjective mapping from [0, 1]
to [0, T ]. On this basis, for each (σ, θ) ∈ Ξp × Θp, we
can define a new state variable

x̃p(s|σ, θ) := xp
(

νp(s|θ)
∣

∣σ, τ p(θ)
)

, s ∈ [0, 1]. (4.3)
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Clearly,

ν̇p(s|θ) = pθi, s ∈ J p
i , i = 1, . . . , p, (4.4)

where

J p
i :=

(

i − 1

p
,
i

p

)

.

Hence, from (2.2), (3.2), and (4.3)-(4.4), we have

˙̃xp(s|σ, θ) = pθif
(

x̃p(s|σ, θ), σi
)

,

s ∈ J p
i , i = 1, . . . , p, (4.5)

with

x̃p(i/p|σ, θ) = lim
s→i/p

x̃p(s|σ, θ), i = 0, . . . , p, (4.6)

and
x̃p(0|σ, θ) = x0. (4.7)

Now, let Λp denote the set of all pairs (σ, θ) ∈ Ξp × Θp

satisfying the following constraints:

θih
(

x̃p(s|σ, θ), σi
)

≥ 0, s ∈ J̄ p
i , i = 1, . . . , p, (4.8)

where the overhead bar denotes set closure. We have the
following important result. Since the proof is tedious, we
relegate it to an appendix.

Theorem 4.1. Let (σ, θ) ∈ Ξp ×Θp. Then (σ, θ) ∈ Λp

if and only if (σ, τ p(θ)) ∈ Ωp.

Now, a new optimization problem is defined as follows.

Problem P̃
p
. Choose (σ, θ) ∈ Λp to minimize the cost

function

J̃p(σ, θ) := Jp(σ, τ p(θ)) = Φ
(

x̃p(1|σ, θ)
)

over Λp.

Remark 4.1. Problems Pp and P̃
p

are equivalent.
Indeed, it can be shown from Theorem 4.1 and equa-

tion (4.2) that (σ∗, θ∗) ∈ Λp is optimal for Problem P̃
p

if
and only if (σ∗, τ p(θ∗)) ∈ Ωp is optimal for Problem Pp.

Remark 4.2. Note that the switching times for the dy-
namic system (4.5)-(4.7) are not decision variables in

Problem P̃
p
, and therefore do not change as the problem

is being solved. In fact, since the sets J̄ p
i , i = 1, . . . , p,

are fixed, Problem P̃
p

is in a form that can be solved
readily using an existing algorithm. This is discussed in
the next section.

Remark 4.3. The idea of transforming the time horizon
of an optimal control problem was originally proposed
by Teo et al. (1998). It has since been applied in sev-
eral other settings, including optimal control problems

involving switched systems (Xu & Antsaklis (2004)), op-
timal discrete-valued control problems (Lee, Teo, Re-
hbock, & Jennings (1999)), and optimal control prob-
lems with non-standard cost and constraint functionals
(Loxton, Teo, & Rehbock (2008)).

Remark 4.4. Suppose that Problem P̃
p

has an op-
timal solution (σ∗, θ∗) ∈ Λp. Then according to Re-
mark 4.1, (σ∗, τ p(θ∗)) ∈ Ωp is optimal for Problem Pp.
The corresponding suboptimal control for Problem P is
up(·|σ∗, τ p(θ∗)) (see Remark 3.1 and equation (3.1)).

5 Solving Problem P̃p

Since (4.8) are continuous inequality constraints, Prob-

lem P̃
p

can be viewed as a semi-infinite programming
problem. An efficient algorithm for solving optimization
problems of this type is discussed by Teo, Rehbock, &
Jennings (1993). We will now briefly discuss the appli-

cation of this algorithm to Problem P̃
p
. First, let p ≥ 1

be fixed, and for each i = 1, . . . , p, define

g̃p
i,ǫ(σ, θ) :=

∫ i
p

i−1

p

φǫ

(

θih
(

x̃p(s|σ, θ), σi
))

ds,

where ǫ > 0 and

φǫ(η) =







η, if η < −ǫ,

−(η − ǫ)2/4ǫ, if −ǫ ≤ η ≤ ǫ,

0, otherwise.

Next, consider the following auxiliary problem.

Problem P̃
p

ǫ,ϑ. Choose a pair (σ, θ) ∈ Ξp ×Θp to min-
imize the cost function

G̃p
ǫ,ϑ(σ, θ) := J̃p(σ, θ) − ϑ

p
∑

i=1

g̃p
i,ǫ(σ, θ),

where ǫ > 0 and ϑ > 0 are fixed, over Ξp × Θp.

Each of these auxiliary problems is a nonlinear optimiza-
tion problem with a single linear equality constraint (re-
call the definition of Θp) and simple bounds on the vari-
ables. Computing the gradient of the linear constraint
is straightforward. Furthermore, the gradient of the cost
function G̃p

ǫ,ϑ can be computed according to the formulae

reported in Teo et al. (1991). Hence, Problem P̃
p

ǫ,ϑ can
be solved efficiently using a gradient-based optimization
technique.

The relationship between Problems P̃
p

ǫ,ϑ and Problem P̃
p

is furnished in the following two theorems. Proofs of
these results are given in Teo et al. (1993).
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Theorem 5.1. For each ǫ > 0, there exists a corre-
sponding ϑ(ǫ) > 0 such that for all ϑ > ϑ(ǫ), the optimal

solution of Problem P̃
p

ǫ,ϑ is feasible for Problem P̃
p
.

Theorem 5.2. Suppose that Problem P̃
p

has an opti-
mal solution (σ∗, θ∗) ∈ Ξp × Θp. For each ǫ > 0, let

(σ∗
ǫ,ϑ, θ∗

ǫ,ϑ) denote the solution of Problem P̃
p

ǫ,ϑ, where

ϑ > 0 is chosen to ensure that (σ∗
ǫ,ϑ, θ∗

ǫ,ϑ) ∈ Λp (Theo-

rem 5.1 guarantees that this can always be done). Then

lim
ǫ→0

J̃p
(

σ∗
ǫ,ϑ, θ∗

ǫ,ϑ

)

= J̃p(σ∗, θ∗).

Theorems 5.1 and 5.2 suggest the following algorithm

for solving Problem P̃
p
. First, choose an initial positive

value for ǫ. Then, repeatedly solve Problem P̃
p

ǫ,ϑ for in-
creasing values of ϑ until the solution obtained is fea-

sible for Problem P̃
p
. According to Theorem 5.1, this

process will eventually terminate after a finite number
of iterations. Next, we decrease ǫ and repeat the above
procedure, using the solution obtained in the previous
step as the new starting point. The algorithm terminates
when ǫ is sufficiently small. It follows from Theorem 5.2

that the solution of Problem P̃
p

ǫ,ϑ at this stage is a good

approximation of the solution of Problem P̃
p
.

Remark 5.1. This procedure solves Problem P̃
p

as a
sequence of linearly-constrained optimization problems.
These problems can be solved efficiently, because the
feasible region is convex and the gradient of the cost
function can be computed. Nevertheless, since the cost
function is not necessarily convex, it may be difficult to
find a global solution. Accordingly, it may be necessary
to employ a specialized global optimization technique
or start the optimization from multiple starting points

when solving Problem P̃
p

ǫ,ϑ.

6 Convergence of the suboptimal controls

For each p ≥ 1, Problem P̃
p

can be solved efficiently
using the penalty function algorithm discussed in the
previous section. Then, a suboptimal control for Prob-
lem P can be constructed according to Remark 4.4. Re-
peating this procedure for increasing values of p yields
a sequence of suboptimal controls. The following ques-
tion arises: Does this sequence converge to an optimal
control in some sense? The following result will play a
crucial role in answering this question.

Theorem 6.1. If u ∈ U , then there exists a se-
quence {(σp, τ p)}∞p=1, where (σp, τ p) ∈ Ξp × Γp for
each p, such that up(·|σp, τ p) → u uniformly almost
everywhere on [0, T ] as p → ∞.

Proof. Let {tq}d
q=0 ⊂ [0, T ], where t0 = 0, td = T ,

and tq−1 < tq, q = 1, . . . , d, be a finite set contain-
ing all points of discontinuity of u ∈ U . Clearly, for
each q = 1, . . . , d, the restriction of u to (tq−1, tq) is uni-
formly continuous. Hence, for each δ > 0, there is a cor-
responding ωδ > 0 such that if q ∈ {1, . . . , d} and

η1, η2 ∈ (tq−1, tq), ‖η1 − η2‖ < ωδ,

then
∥

∥u(η1) − u(η2)
∥

∥ < δ.

Now, let {τ p}∞p=1 be a sequence of vectors with the fol-
lowing properties:

(i) For each p ≥ 1, τ p ∈ Γp and τp
i−1 < τp

i , i = 1, . . . , p;
(ii) If p ≥ d, then for each q = 0, . . . , d, there is an

integer κp,q such that τp
κp,q

= tq; and

(iii) max
1≤i≤p

(τp
i − τp

i−1) → 0 as p → ∞.

It is easy to envisage such a sequence, but cumbersome
to describe it analytically. The important point to note is
that each vector after the first d−1 terms of the sequence
contains the time points tq, q = 0, . . . , d, as components
(see Property (ii)).

We define another sequence as follows: For each p ≥ 1,
let σp := (σp,1, . . . , σp,p),where

σp,i :=
1

τp
i − τp

i−1

∫ τp

i

τp

i−1

u(η)dη, i = 1, . . . , p.

Since u is admissible, each σp,i ∈ Υ, so σp ∈ Ξp. Hence,
(σp, τ p) ∈ Ξp × Γp for every integer p ≥ 1. We will
show that up(·|σp, τ p) → u uniformly almost every-
where on [0, T ] as p → ∞

Let δ > 0 be arbitrary and suppose that t ∈ (tl−1, tl)
for some l ∈ {1, . . . , d}. Then for each p ≥ 1, there is an
integer ip ∈ {1, . . . , p} such that t ∈ Ip

ip
(τ p). Thus, for

each p ≥ 1,

∥

∥up(t|σp, τ p) − u(t)
∥

∥ =
∥

∥σp,ip − u(t)
∥

∥

≤
1

τp
ip
− τp

ip−1

∫ τp

ip

τp

ip−1

∥

∥u(η) − u(t)
∥

∥dη

=
1

τp
ip
− τp

ip−1

∫

I̊p

ip
(τp)

∥

∥u(η) − u(t)
∥

∥dη, (6.1)

where I̊p
ip

(τ p) denotes the interior of Ip
ip

(τ p). Prop-

erty (iii) above implies the existence of an integer p1 ≥ 1,
which depends only on δ, such that

max
1≤i≤p

(τp
i − τp

i−1) < ωδ, p ≥ p1, (6.2)
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where ωδ is as defined previously. If p ≥ max{p1, d},
then it follows from Property (ii) that

I̊p
ip

(τ p) ⊂ (tl−1, tl). (6.3)

Moreover, from (6.2), we have

η ∈ I̊p
ip

(τ p) =⇒ |η − t| ≤ τp
ip
− τp

ip−1 < ωδ. (6.4)

Using (6.3), (6.4), and the definition of ωδ in (6.1), we
obtain

∥

∥up(t|σp, τ p) − u(t)
∥

∥ <
1

τp
ip
− τp

ip−1

∫

I̊p

ip
(τp)

δ = δ.

Since δ was arbitrary, and p was selected independently
of l and t, we have shown that up(·|σp, τ p) → u uni-
formly on [0, T ] \ {t0, . . . , td} as p → ∞.

Recall the following two results from Chapter 6 of Teo
et al. (1991).

Lemma 6.1. There exists a constant L2 > 0 such that

∥

∥x(t|u)
∥

∥ ≤ L2, t ∈ [0, T ], u ∈ U .

Lemma 6.2. Let {up}∞p=1 ⊂ U be a sequence of admis-
sible controls converging to an admissible control u ∈ U
almost everywhere on [0, T ]. Then:

(i) x(·|up) → x(·|u) uniformly on [0, T ] as p → ∞.
(ii) J(up) → J(u) as p → ∞.

For convenience, define the set

Ψ :=
{

x ∈ R
n : ‖x‖ ≤ L2

}

,

where L2 is the constant from Lemma 6.1. Furthermore,
let F̊ denote the class of all admissible control func-
tions u ∈ U with the following property: There exists a
set V of measure zero such that

inf
t∈[0,T ]\V

h
(

x(t|u),u(t)
)

> 0.

Notice that controls in F̊ satisfy the constraints (2.3)

strictly for almost all t ∈ [0, T ]. Hence, F̊ ⊂ F . We as-
sume that the following condition is satisfied.

Assumption 6.1. If u∗ ∈ F is an optimal control for
Problem P, then there exists a ū ∈ F̊ such that

ωū + (1 − ω)u∗ ∈ F̊ , ω ∈ (0, 1].

Similar assumptions are made in Teo & Jennings (1989),
Teo et al. (1991), and Teo et al. (1993). We now derive
the following convergence result.

Theorem 6.2. Suppose that u∗ is an optimal control
for Problem P. For each p ≥ 1, let up,∗ denote the sub-
optimal control constructed from the solution of Prob-
lem Pp according to Remark 3.1. Then

lim
p→∞

J(up,∗) = J(u∗).

Proof. By Assumption 6.1, there exists a ū ∈ F̊ such
that

ūk := u∗ +
1

k
(ū − u∗) ∈ F̊ (6.5)

for every integer k ≥ 1. Hence, for each k ≥ 1, there is
a corresponding constant υk > 0 and a corresponding
set Vk ⊂ [0, T ] of measure zero such that

h
(

x(t|ūk), ūk(t)
)

≥ υk, t ∈ [0, T ] \ Vk. (6.6)

Now, fix k and let {(σ̄k,p, τ̄ k,p)}∞p=1 denote the sequence
from Theorem 6.1 corresponding to the admissible con-
trol ūk. We write ūk,p = up(·|σ̄k,p, τ̄ k,p) for convenience.
Observe the following:

(i) There exists a set Nk ⊂ [0, T ] of measure zero such
that ūk,p(t) ∈ Υ, p ≥ 1, and ūk(t) ∈ Υ for every
t ∈ [0, T ] \ Nk (definition of U);

(ii) There exists a set Gk ⊂ [0, T ] of measure zero such
that ūk,p → ūk uniformly on [0, T ] \ Gk as p → ∞
(Theorem 6.1);

(iii) x(·|ūk,p) → x(·|ūk) uniformly on [0, T ] as p → ∞
(part (i) of Lemma 6.2);

(iv) x(t|ūk,p) ∈ Ψ and x(t|ūk) ∈ Ψ for every t ∈ [0, T ]
(Lemma 6.1); and

(v) h is uniformly continuous on Ψ × Υ (Assump-
tion 2.3).

Statements (i)-(v) above imply the existence of an inte-
ger pk,1 ≥ 1 and a set Mk of measure zero such that

∣

∣h
(

x(t|ūk,p), ūk,p(t)
)

−h
(

x(t|ūk), ūk(t)
)∣

∣ < υk/2,

t ∈ [0, T ] \Mk, (6.7)

for all p ≥ pk,1. Thus, if p ≥ pk,1, then it follows from
inequalities (6.6) and (6.7) that

h
(

x(t|ūk,p), ūk,p(t)
)

>
υk

2
, t ∈ [0, T ]\(Mk∪Vk). (6.8)

Furthermore, part (ii) of Lemma 6.2 ensures that there
exists another positive integer pk,2 ≥ 1 such that

∣

∣J(ūk,p) − J(ūk)
∣

∣ <
1

k
(6.9)
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whenever p ≥ pk,2. Define pk := max{pk,1, pk,2}. Then
since µ(Mk ∪ Vk) = 0, inequality (6.8) shows that
ūk,pk ∈ F . Hence, from (3.4), (σ̄k,pk , τ̄ k,pk) ∈ Ωpk .

Now, let δ > 0 and recall that k ≥ 1 was arbitrary. It is
readily seen from (6.5) that ūk → u∗ pointwise on [0, T ]
as k → ∞. Hence, part (ii) of Lemma 6.2 implies the
existence of an integer k1 such that

∣

∣J(ūk) − J(u∗)
∣

∣ < δ/2 (6.10)

for all k ≥ k1. Choose any k ≥ max{k1, 2/δ}. Then it
follows from (6.9) and (6.10) that

∣

∣Jpk(σ̄k,pk ,τ̄ k,pk ) − J(u∗)
∣

∣ =
∣

∣J(ūk,pk ) − J(u∗)
∣

∣

≤
∣

∣J
(

ūk,pk
)

− J(ūk)
∣

∣ +
∣

∣J(ūk) − J(u∗)
∣

∣

< δ. (6.11)

Now, let p ≥ pk. Then

J(u∗) ≤ J(up,∗)

= Jp(σp,∗, τ p,∗) ≤ Jpk(σpk,∗, τ pk,∗), (6.12)

where (σp,∗, τ p,∗) and (σpk,∗, τ pk,∗) are the optimal so-
lutions for Problems Pp and Ppk , respectively. Since
(σ̄k,pk , τ̄ k,pk ) ∈ Ωpk , inequality (6.12) gives

J(u∗) ≤ J(up,∗) ≤ Jpk(σ̄k,pk , τ̄ k,pk). (6.13)

Finally, applying (6.11) to (6.13) yields

J(u∗) ≤ J(up,∗) ≤ Jpk(σ̄k,pk , τ̄ k,pk) < J(u∗) + δ.

Since this estimate holds for each δ > 0, it is clear that
J(up,∗) → J(u∗) as p → ∞.

Theorem 6.2 shows that the cost of the suboptimal con-
trols converges to the minimum cost as p → ∞. In gen-
eral, however, there is no guarantee that the controls
themselves converge. Nevertheless, we do have the fol-
lowing important result.

Theorem 6.3. Let u∗ and up,∗ be as defined in Theo-
rem 6.2, and suppose that the sequence {up,∗}∞p=1 con-
verges almost everywhere on [0, T ] to a piecewise con-
tinuous function û : [0, T ] → R

r. Then û is an optimal
control for Problem P.

Proof. It is easy to verify that û is an admissible control.
Furthermore, from part (ii) of Lemma 6.2 we have

lim
p→∞

J(up,∗) = J(û).

This combined with Theorem 6.2 gives J(û) = J(u∗).
It remains to show that û is a feasible control. Suppose,

to the contrary, that there is a set C ⊂ [0, T ] of strictly
positive measure such that

h
(

x(t|û), û(t)
)

< 0, t ∈ C. (6.14)

For each integer k ≥ 1, define

Wk :=
{

t ∈ [0, T ] : h
(

x(t|û), û(t)
)

≤ −1/k
}

.

Clearly, {Wk}∞k=1 is an increasing sequence of measur-
able sets. Furthermore, it follows from (6.14) that

C ⊂
∞
⋃

k=1

Wk.

Thus, applying a well-known result in measure theory
(see, for example, Halmos (1974)) yields

µ(C) ≤ lim
k→∞

µ(Wk).

In particular, we can select an integer k1 ≥ 1 so that

h
(

x(t|û), û(t)
)

≤ −1/k1, t ∈ Wk1
, (6.15)

and
0 < µ(C)/2 ≤ µ(Wk1

). (6.16)

Now, by Egoroff’s Theorem, there is a measurable set
D ⊂ [0, T ], with measure µ(D) < µ(Wk1

)/2, such that
up,∗(t) ∈ Υ, p ≥ 1, and û(t) ∈ Υ for each t /∈ D, and
up,∗ → û uniformly on [0, T ]\D as p → ∞. Thus, recall-
ing that h is uniformly continuous on Ψ×Υ and noting
from part (i) of Lemma 6.2 that x(·|up,∗) → x(·|û) uni-
formly on [0, T ] as p → ∞, we deduce the existence of
an integer p1 ≥ 1 such that

∣

∣h
(

x(t|up1,∗),up1,∗(t)
)

−h
(

x(t|û), û(t)
)∣

∣ < 1/(2k1),

t ∈ [0, T ] \ D. (6.17)

Combining (6.15) and (6.17) gives

h
(

x(t|up1,∗),up1,∗(t)
)

< −
1

2k1
, t ∈ Wk1

\ D. (6.18)

Finally, note that

µ(Wk1
\ D) = µ(Wk1

) − µ(Wk1
∩ D)

≥ µ(Wk1
) − µ(D) > µ(Wk1

)/2 > 0,

where the last inequality is a consequence of (6.16).
Since Wk1

\ D is a set of positive measure, inequal-
ity (6.18) contradicts the feasibility of up1,∗. There-
fore, û ∈ F as required.

Remark 6.1. Theorems 6.2 and 6.3 provide the the-
oretical justification for solving Problem P as follows.
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First, choose an initial p ≥ 1 and solve the corresponding

Problem P̃
p

using the procedure developed in Section 5.
Then, increase the value of p and, using the optimal so-
lution from the previous step as the starting point, re-

solve Problem P̃
p
. This process can be repeated until the

change in the optimal value of the cost function is within
a desired tolerance. A suboptimal control for Problem P
can then be constructed according to Remark 4.4.

7 An example—Rayleigh’s problem

The following problem is from [5]: Choose a control func-
tion u : [0, 4.5] → R to minimize

∫ 4.5

0

(

u2(t) + x2
1(t)

)

dt

subject to the dynamics

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)
(

1.4 − 0.14x2
2(t)

)

+ 4u(t),

and

x1(0) = −5,

x2(0) = −5,

and the continuous constraint

−u(t) −
1

6
x1(t) ≥ 0, t ∈ [0, 4.5].

Problems P̃
p

ǫ,ϑ corresponding to this optimal control
problem can be constructed according to the defini-
tions given in Sections 4 and 5. Furthermore, each of
these approximate problems can be solved conveniently
using the software MISER (Jennings, Teo, Fisher, &
Goh (2004)). MISER uses the gradient formulae from
Teo et al. (1991) in conjunction with the nonlinear
programming routine NLPQLP (Schittkowski (2007)) to
solve dynamic optimization problems numerically.

Choosing p = 10 for the number of subintervals, we used

MISER to solve a sequence of Problems P̃
p

ǫ,ϑ. The smooth-
ing and penalty parameters were initially selected as
ǫ = 0.1 and ϑ = 10.0, and then subsequently adjusted
according to the guidelines in Section 5. Recall that for
each value of ǫ, the penalty parameter ϑ is increased un-
til the solution obtained is feasible for the original prob-
lem. The process was terminated when ǫ = 1.0 × 10−6

and ϑ = 1.0×105. It is worth mentioning that in the first
step, a large value of ϑ was required to ensure feasibility.
After that, ϑ hardly changed as ǫ was decreased.

The suboptimal control generated from the final solu-

tion of Problem P̃
p

ǫ,ϑ (see Remark 4.4) is shown along

with its corresponding state trajectory and constraint
profile in Figure 7.1. The important thing to note is that
the control-state constraint is satisfied everywhere. Fur-
thermore, the structure of the suboptimal control agrees
with the results obtained in Gerdts (2008a). The major
difference is that the method from Gerdts (2008a) gives
the optimal control as a continuous function, whereas
ours is based on a piecewise constant approximation.
Note also that only a small improvement (less than 1%)
was obtained by re-solving the problem with p = 20.

Conclusion

In this paper, we have discussed a new computational
method for solving nonlinear optimal control problems
with a continuous inequality constraint. Our method is
a significant generalization of the ǫ-τ algorithm reported
by Teo & Jennings (1989) and Teo et al. (1991). In par-
ticular, it is capable of handling continuous constraints
that include the control function explicitly. The ǫ-τ al-
gorithm is not guaranteed to converge for this case.

Since the constraint functions are potentially discontin-
uous in time, establishing the convergence results of Sec-
tion 6 was difficult. Indeed, continuity with respect to
time was exploited by Teo & Jennings (1989) and Teo et
al. (1991) to prove some important properties of the ǫ-τ
algorithm. Nevertheless, Theorem 6.2 guarantees that
the cost of the suboptimal controls converges to the op-
timal cost. Furthermore, whilst it is not possible to show
that the sequence of suboptimal controls converges to an
admissible control, Theorem 6.3 ensures that if it does,
then the limit function must be an optimal control.

We must point out that the admissible controls here are
restricted to bounded piecewise continuous functions. In
Teo & Jennings (1989) and Teo et al. (1991), the controls
were selected from a larger class consisting of bounded
measurable functions. The arguments used to establish
Theorem6.1 (and therefore Theorem 6.2) are not valid in
this general setting. Nevertheless, almost every realistic
control input is piecewise continuous.

Appendix

Proof of Theorem 4.1. Since (σ, θ) ∈ Ξp × Θp is fixed,
we denote xp(·|σ, τ p(θ)) by xp(·) and x̃p(·|σ, θ) by x̃p(·)
without confusion. Moreover, define the index sets

S1 :=
{

i ∈ {1, . . . , p} : θi > 0
}

and
S2 := {1, . . . , p} \ S1.

From equation (4.1), we see that

τp
i (θ) − τp

i−1(θ) = θi, i = 1, . . . , p.
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Fig. 7.1. The optimal state trajectory, optimal control pro-
file, and the corresponding continuous constraint profile for
Example 7.1.

Therefore,

τp
i (θ) = τp

i−1(θ) ⇐⇒ i ∈ S2. (A.1)

Now, suppose (σ, θ) ∈ Λp. Then

θih
(

x̃p(s), σi
)

≥ 0, s ∈ J̄ p
i , i = 1, . . . , p. (A.2)

First, we consider the case i ∈ S1. Inequalities (A.2) give

h
(

x̃p(s), σi
)

≥ 0, s ∈ J̄ p
i , i ∈ S1. (A.3)

Furthermore, νp,i(·|θ), the restriction of νp(·|θ) to J̄ p
i ,

is a bijective mapping with range Īp
i (τ p(θ)). Conse-

quently, ν−1
p,i (t|θ) ∈ J̄ p

i whenever t ∈ Ip
i (τ p(θ)). This

fact, together with (A.3), implies

h(xp(t), σi) =h
(

x̃p
(

ν−1
p,i (t|θ)

)

, σi
)

≥ 0,

t ∈ Ip
i

(

τ p(θ)
)

, i ∈ S1. (A.4)

Next, consider i ∈ S2. If i = p, then Ip
i (τ p(θ)) = {T }.

Hence, it follows from the definition of Ωp that we only
need to consider i ∈ S2 \ {p}. In this case, it is easy to
see from (A.1) that the constraints

h(xp(t), σi) ≥ 0, t ∈ Ip
i

(

τ p(θ)
)

, i ∈ S2 \ {p}, (A.5)

are satisfied vacuously. Inequalities (A.4) and (A.5) show
that (σ, τ p(θ)) ∈ Ωp.

Conversely, suppose that (σ, τ p(θ)) ∈ Ωp. Then

h
(

xp(t), σi
)

≥ 0, t ∈ Ip
i

(

τ p(θ)
)

, i = 1, . . . , p. (A.6)

Clearly,

θih(x̃p(s), σi) = 0, s ∈ J̄ p
i , i ∈ S2. (A.7)

Furthermore, it follows from (A.1) that Ip
i (τ p(θ)) 6= ∅

for i ∈ S1. Hence, if s ∈ J̄ p
i \ {i/p}, then νp(s|θ) ∈

Ip
i (τ p(θ)). Thus, the inequalities in (A.6) yield

θih
(

x̃p(s), σi
)

= θih
(

xp
(

νp(s|θ)
)

, σi
)

≥ 0,

s ∈ J̄ p
i \ {i/p}, i ∈ S1. (A.8)

Finally, since the functions x̃p(·), and h are continuous,
inequality (A.8) also holds at s = i/p. Hence, (A.7) and
(A.8) imply (σ, θ) ∈ Λp.
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