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Abstract

This paper proposes a solution to the problem of synthesizing distributed decentralized estimators for a formation of agents.
The collected dynamics of the formation are modeled by a discrete LTI system. In the considered estimation structure each
agent of the formation carries an estimate of the entire formation state. Agents of the formation can communicate information
between each other through unidirectional links modeled with a fixed or a stochastic communication topology. The design
procedures are based on a set of convex optimization problems with linear matrix inequalities and result in the suboptimal
choice of estimator gains which stabilize the estimation error dynamics and minimize a norm of the estimation error correlation
matrix.
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1 Introduction

Decentralized and distributed estimation and control
problems have been a research focus for many years due
to the variety of applications which require the use of de-
centralized control architectures with distributed mea-
surements. Amongst the most interesting and challeng-
ing applications are formation control problems, sensor
networks, distributed power systems, and vehicle pla-
toons. Starting from the Witsenhausen (1968) example
these problems have been shown to be challenging and
have demanded the development of new techniques. A
wide variety of papers devoted to the subject considered
different problem formulations, performance require-
ments and constraints. Recent papers have addressed
the issues of communication constraints and their influ-
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ence on the system stability and performance. Fax and
Murray (2004) explicitly related the communication
topology to the formation stability. Tatikonda and Mit-
ter (2004) considered the best achievable performance
of a formation under communication constraints. Smith
and Hadaegh (2007) analyzed the stability properties of
a decentralized estimator and derived the relationship
between the eigenvalues of the estimation error dynam-
ics and the communication topology of a formation.
Yan, Kang, and Bitmead (2005) and Yan and Bitmead
(2003) considered a coordinated control problem for a
formation of vehicles and offered an estimator design
procedure for a class of decoupled linear systems with a
particular communication architecture. Gupta, Hassibi,
and Murray (2005) considered multi-sensor fusion with
packet drops and developed an algorithm for the choice
of transmitted data which optimizes the state estimate.
Xu and Hespanha (2004, 2005) investigated the decen-
tralized estimation problem with multiple smart sensors
which optimally process local measurements and send
data through a network to a remote estimator. Jiang,



Voulgaris, and Neogi (2007) and Yadav, Voulgaris, and
Salapaka (2005) developed techniques for the synthesis
of distributed controllers for decoupled and triangular
systems.

In this paper we focus on the estimation part of the prob-
lem and develop synthesis tools for the design of dis-
tributed estimators able to provide state information to
the decentralized control system. We propose estimator
synthesis procedures for the type of systems represented
by a collection of agents composing a formation and cou-
pled by a common objective function. This type of sys-
temwas considered by Smith andHadaegh (2007), where
the authors solved the stability analysis part of the prob-
lem. The proposed formulation does not impose any as-
sumptions on the structure of the formation system dy-
namics and hence allows us to consider general LTI sys-
tems with arbitrary dynamic coupling between agents.
We consider decentralized and distributed estimation
structures in which each agent of the formation carries an
estimate of the entire formation state. This estimation
architecture requires more computational power from
each agent than other proposed schemes, for example
the one in (Fax and Murray, 2004), but is essential for
decentralized control problems with high-performance
formation-wide objective functions. These include pre-
cise formation-keeping, formation reconfiguration and
collision avoidance without a centralized controller. In
addition, the overall robustness of the formation to faults
and uncertainties may be improved as a result of the re-
dundancy in state estimates. Our work was particularly
motivated by a problem of precisely controlled coordi-
nation for spacecraft formation flying applications. This
type of problem has been described for several formation
flying interferometers (Bik, Visser and Jennrich, 2007),
(Shipley et al., 2002). For these systems the control ob-
jective is specified in terms of the entire formation state
in relative coordinates and requires each agent of the
formation to adjust its actions and monitor the behav-
ior of other agents through the local agent’s formation
state estimate.

Communication was shown to play a central role in defin-
ing stability properties and performance limitations in
formations (Fax andMurray, 2004), (Tatikonda andMit-
ter, 2004). In the presence of distributed and parallel
computation and control it allows agents to reach some
level of consensus and agree on cooperative action. In
this paper we consider formations with arbitrary, but
specified, communication topologies, and hence explic-
itly consider systems with limited communication. From
a graph theoretical point of view each agent’s estimator
is viewed as a node of a directed graph specified by a
Laplacian.

Throughout the paper we consider two models for inter-
agent communication links, and develop in parallel syn-
thesis tools for both models. The first model resembles
an analog communication link where the transmitted in-

formation is corrupted with zero-mean Gaussian noise.
The secondmodel describes a discrete channel which can
deliver transmitted information without any corruption,
but information may be lost. To capture the stochas-
tic nature of the data loss in the discrete channel we
model it with a two-state Markov chain. This results in
a Markov communication topology that can be studied
via the results of Costa and Fragoso (1993) and Costa
and Guerra (2002).

The main results of this paper are two design proce-
dures for the synthesis of the suboptimal gains of the
distributed decentralized estimator. The methods de-
veloped in this paper have been presented in our pre-
liminary work, (Subbotin and Smith, 2007(a)), (Sub-
botin and Smith, 2007(b)). As the performance mea-
sure in the design procedures we use a norm of an es-
timation error correlation matrix. Utilizing the recent
results of de Oliveira, Bernussou, and Geromel (1999)
and de Oliveira, Geromel, and Bernussou (2002), we
propose linear matrix inequality (LMI) based synthesis
methods for the estimator design. Using the results of
de Oliveira et al. makes it possible to impose the struc-
tural constraints induced by the limited communication
on the design variables without imposing conservative
structural constraints on the performance measure ma-
trices. For formations without noise in the communica-
tion signals and no restrictions on the communication
signals’ dimensions we can formulate a convex optimiza-
tion problem. When noise is present in the communica-
tion signals, the design variables appear in the equations
in a way which leads to a bilinear optimization prob-
lem. In both situations the intermediate variables used
to find the estimator gains introduce some conservatism
in the design and result in the suboptimal choice of the
gains even though the individual problems appear to be
convex.

The rest of the paper consists of three main parts. In
Section two we describe the class of systems we con-
sider throughout the paper, introduce the notation and
variables we use, and describe the two communication
models. In Section three we develop the tools necessary
for the estimator design and describe the synthesis pro-
cedures. In the fourth section we present experimental
results for a formation with three agents. Our experi-
ments show how to apply the developed techniques for
a practical system.

Throughout this paper we use the following notation.
Letters i and j are used primarily for indexing vectors
and matrices. The symbol ⊗ is used to denote the Kro-
necker product for matrices. The identity matrix with
dimension n × n is defined as In and a column vec-
tor with the dimension n and all elements equal to 1
is defined as 1n. A block diagonal matrix B with sub-
matrices Bi, i = 1, ..., n on the diagonal is denoted by
B ≡ diag(B1, ..., Bn) or B ≡ diagi(Bi). The matrix B′

is the transpose of B.



2 Problem formulation

We consider discrete LTI systems described by,

x(k + 1) =Ax(k) +Buu(k) +Bvv(k), (1)

where x(k) ∈ IRnx is the system state, u(k) ∈ IRmu is
the actuation input, and v(k) ∈ IRmv is a zero-mean,
Gaussian process noise with covariance Qv. The state
dynamics (1) represent the collected formation dynam-
ics of N vehicles; the agents of the formation. The con-
trol input is composed of individual control inputs of

each agent, u(k) =
∑N

i=1 ui(k), and the ith agent’s con-
trol signal, which corresponds to the control of local ac-
tuators, is defined by ui(k) = Πiu(k) ∈ IRmu , where Πi

is the projection matrix and
∑N

i=1 Πi = I. Each agent
is able to measure the signal, yi(k) = Cix(k) + ni(k),
where yi(k) ∈ IRkyi is the system output available to
agent i, and ni(k) ∈ IRkyi is a zero-mean Gaussian mea-
surement noise with covariance Qni .

We assume that a stabilizing state feedback, u(k) =
−Kx(k), which satisfies a formation-wide objective
function, is given and specifies the desired closed-
loop dynamics of the formation through the matrix
Aclp = A−BuK. Since we focus on the estimation part
of the problem, we do not consider a particular method
for the choice of K. The formation control law is calcu-
lated and implemented by each agent individually using
available measurements and information transmitted
from other agents, resulting in a decentralized and dis-
tributed architecture. Each agent’s control system is a
combination of a full-order formation state estimator
which provides x̂i(k) ∈ IRnx and state feedback for the
calculation of ui(k). As a result, the ith agent’s contribu-
tion to the control input is given by, ui(k) = −ΠiKx̂i(k).
Each agent’s estimate of the system state contains er-
rors and also differs from every other agent’s estimate.
Furthermore each agent updates its estimate of the
system state using, in part, an estimate of every other
agent’s control action. The estimated control actions
also contain errors and this results in a coupling of the
estimation error dynamics of the agents. This coupling
prevents the use of more standard estimator design
methods. See (Smith and Hadaegh, 2007) for a detailed
analysis of this error dynamics coupling.

If we define each agent’s estimation error as, ei(k) ≡
x(k) − x̂i(k), then the closed-loop plant dynamics can
be written as,

x(k + 1) = Ax(k)−Bu

N∑
i=1

ΠiKx̂i(k) +Bvv(k)

= Aclpx(k) +Bu

N∑
i=1

ΠiKei(k) +Bvv(k). (2)

2.1 Fixed communication topology with noise

In this section we consider an analog communication
model, which is described with a fixed communication
topology and additive noise in the signals transmitted
between agents. Here we assume that the information
transferred through an individual unidirectional com-
munication link can be represented by,

tij(k) =Hij x̂j(k) + wij(k), (3)

where tij(k) ∈ IRkij is the signal received by estimator
i from estimator j and wij(k) ∈ IRkij is a zero-mean,
Gaussian communication noise with variance Qwij

. We
assume that the transmitter gainmatrix,Hij , is to be de-
signed, while its row dimension specified by kij is given.
This formulation is motivated by the fact that the num-
ber of channels in an individual communication link may
be limited and the limitation is reflected in kij . Specify-
ing the transmission gains,Hij , as design variables gives
a potentially higher performance network as the trans-
mission gains are chosen with respect to both the com-
munication noise properties and the overall estimation
performance objective. It is easy to modify this formu-
lation to consider more specific communicated informa-
tion. For example: full estimate transmission (Hij = I);
measurement transmission (tij(k) = yj(k− 1)); or actu-
ation transmission (Hij = −ΠjK); giving sub-optimal
but simpler estimator design problems.

The ith agent’s full order formation state estimator up-
dates its estimate according to the following model,

x̂i(k + 1) = Aclpx̂i(k) + Li(yi(k)− Cix̂i(k))

+
∑
j

Fij(tij(k)−Hij x̂i(k)), (4)

where Li is an estimator gain related to the agent’s local
measurements, and Fij is a receiver gain matrix which
corresponds to the transmitter gain matrix Hij and the
sum is taken over all received signals. We consider both
Fij and Hij as design variables in the estimator synthe-
sis problem. This structure for applying the information
communicated from other estimators preserves the sep-
aration between the collected error dynamics and the
closed-loop plant dynamics.

We can now consider the dynamics of this estimation
error. From (2) and (4) we get,

ei(k + 1) = (Aclp − LiCi)ei(k) + Bu

N∑
l=1

ΠlKel(k)

−
∑
j

FijHij(ei(k)− ej(k)) +Bvv(k)

− Lini(k) −
∑
j

Fijwij(k), (5)



where the summations with index j are again taken over
all received signals. We now introduce a graph-theoretic
based notation to simply these summations when con-
sidering the collected estimators’ errors.

To specify the communication links each agent of the
formation is considered to be a node of a graph in a fixed
communication topology. We specify the topology using
Laplacian matrices, Lj ∈ IRN×N , and transmission in-

dicator matrices, Tj ∈ IR
∑N

i=1
kij×

∑N

i=1
kij , j = 1, ..., N .

Each Laplacian, Lj , and transmission indicator matrix,
Tj , specifies communication links between the jth agent
and all other agents of the formation. The Laplacian is
defined as follows: elements lsk of the Laplacian, Lj , sat-
isfy, lsj = −1, lss = 1 if there is a communication link
from agent j to agent s and lsk = 0 otherwise. Simi-
larly the transmission indicator matrix is defined to be
Tj = diag(δ1jIk1j

, δ2jIk2j
, ..., δNjIkNj

) and δij = 1
if there is communication from agent j to agent i, and
δij = 0 otherwise.

To specify the communication topology of the whole for-
mation, we introduce collected matrix variables: the col-
lected Laplacian,

Lf =


L1 ⊗ Inx

L2 ⊗ Inx

...

LN ⊗ Inx

 ∈ IRN2nx×Nnx , (6)

and the collected transmission indicator matrix,

Tf = diag(T1, T2, ..., TN )

∈ IR

∑N

i=1

∑N

j=1
kij×

∑N

i=1

∑N

j=1
kij . (7)

We also introduce the collected receiver gain matrix,

Ff = [F1 F2 ... FN ] ∈ IR
Nnx×

∑N

i=1

∑N

j=1
kij , (8)

where Fj = diag(F1j , F2j , ..., FNj) contains the receiver
gains of agents receiving signals from the jth agent, Fij ∈
IRnx×kij . The final definition required is the collected
transmitter gain matrix,

Hf = diag(H1, H2, ...,HN ) ∈ IR

∑N

i=1

∑N

j=1
kij×N2nx ,

(9)
where Hj = diag(H1j , H2j , ...,HNj) contains the trans-
mitter gains of the jth agent, and Hij ∈ IRkij×nx .

If we collect estimation errors from all estimators—with
each specified by (5)—in one vector we get, e(k) =
[e1(k)

′ e2(k)
′ ... eN (k)′]′ ∈ IRNnx , and we can express

the collected estimation error dynamics as,

e(k + 1) = (AB − LfCf − FfHfLf )e(k)

+ Γv(k)− Lfn(k)− FfTfw(k), (10)

where AB = IN ⊗ Aclp + SN , SN = 1N ⊗ S1, with
S1 = [BuΠ1K ... BuΠNK]. The collected estimatormea-
surement update gains have been defined as,

Lf = diag(L1, ..., LN ), (11)

and the collected measurement matrices are Cf =
diag(C1, ..., CN ). We also collect the noise inputs via

Γ = 1N ⊗ Bv, n(k) = [n1(k)
′ ... nN (k)′]′ ∈ IR

∑N

i=1
kyi ,

and w(k) ∈ IR

∑N

i=1

∑N

j=1
kij is a collected commu-

nication noise with the corresponding covariance,
Qw = cov(w(k)).

Equation (10) gives the estimation error dynamics for all
agents in the formation and allows us to specify separate
transmitter and receiver gain pairs, Hij , Fij , and chan-
nel dimensions for each possible link. To maintain the
simplicity of the equations, if there is no communication
link from agent j to agent i, we assign that link to have a
channel dimension, kij = 1. To ensure that this fictitious
link does not influence the estimation error dynamics,
we also impose the constraints, Fij = 0 ∈ IRnx×1 and
Hij = 0 ∈ IR1×nx . The noise terms associated with fic-
tional links have no influence on the design or analysis
problems as the corresponding Qw will enter the follow-
ing equations as TfQwT ′

f where it is eliminated via mul-
tiplications with zero in Tf .

The collected estimation error dynamics (10) together
with (2) completely specify the closed-loop dynamics for
the formation withN parallel distributed estimators ex-
changing the information between each other according
to a fixed topology defined by Lf and the signal model
represented in (3). From (2) and (10) we can see that
the estimation error dynamics are decoupled from the
closed-loop plant dynamics, while the latter are driven
by the estimation error. While the plant dynamics are
assigned by a particular choice of K, the estimation er-
ror dynamics determined by K and the gains Lf , Hf ,
and Ff .

In the sequel we will pose distributed estimator design
problems with Lf , Hf , and Ff (defined in (11), (9) and
(8)) as the design variables. By definition, these variables
are constrained to have a sparse structure. Additional
structural constraints are imposed in the case where a
link is not present in the communication topology. It will
be seen that these structural constraints can introduce
some conservatism in the design.
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Fig. 1. Two-state Markov chain modeling the communication
link packet loss probability.

2.2 Markov communication topology

In this section we consider an alternative model for the
communication links. Each of the communication link
is able to carry vectors of real numbers without any
corruption, but the information transmitted through
a link can—with a certain probability—be lost. This
type of model is often used in the literature (Hespanha,
Naghshtabrizi, and Xu, 2005) to describe lossy digital
packet communication channel. With this motivation
in mind, we consider the following model for a single
unidirectional communication link used to transmit
information from agent j to agent i,

tij(k) = µij(k)Hij x̂j(k), (12)

where tij(k) ∈ IRkij is the signal received by the es-
timator of the ith agent from the estimator of the jth

agent. Hij ∈ IRkij×nx is the transmitter gain matrix,
and µij(k) is a binary parameter describing the success
of transmission: µij(k) = 1 if the data is successfully
received and µij(k) = 0 if not. The binary parameter
µij(k) modeling success or failure of the transmission can
be defined to be either a stochastic or deterministic vari-
able. The most common and widely accepted method for
specifying µij(k) is modeling it as a stochastic variable
described by either a Bernoulli process or a finite-state
Markov chain (see Gilbert (1960), Elliott (1963) and
Hespanha, Naghshtabrizi, and Xu (2005) and the refer-
ences therein). In this section we consider the Gilbert
model, where µij(k) is described by a two-state Markov
chain represented graphically in Figure 1. State 0 corre-
sponds to a failure in a link and state 1 corresponds to a
successful transmission. Transition probabilities p0ij and

p1ij describe probabilities of staying in state 0 and state 1
correspondingly. Modeling µij(k) with a Bernoulli pro-
cess results in a simpler design problem than the one
considered here.

Assume that there are Nl unidirectional links in the
topology describing communication between agents’ es-
timators in the formation. The fact that each of Nl

agents received or did not receive its corresponding in-
formation at step k can be described by a vector Θ(k) =
[Θ1(k) Θ2(k) ... ΘNl

(k)] ∈ IRNl , where each element of
the vector is equal to the state of theMarkov chain µij(k)
for the corresponding link in the communication topol-
ogy. If the transitions between the states of the Markov
chains for individual links are independent, then Θ(k)

is itself an element of a finite-state Markov chain with
M = 2Nl states, since each element of the Θ(k) vec-
tor can take one of two values, 0 or 1, independently
of other elements of the vector. To define the M -state
Markov chain modeling communication, we introduce a
state θ(k) which takes values in {1, ...,M} and corre-
sponds to one of the M possible states of Θ(k). We also
define πs(k) = P{θ(k) = s}, s = 1, ...,M , a probabil-
ity of being in state s at time k, and P ∈ IRM×M , a
transition probability matrix. The elements of matrix
P, pst, s = 1, ...,M , t = 1, ...,M can be calculated us-
ing the transition probabilities of Markov chains for in-
dividual links, p0ij , p

1
ij , by simply taking the products of

M probabilities describing transition from state θ(k) to
θ(k + 1). For later derivations we define a row vector of
the probability distribution for the states of the chain,
π(k) = [π1(k) π2(k) ... πM (k)] ∈ IRM , and its evolution
is described by,

π(k + 1) = π(k)P. (13)

Using the proposed communication model we derive new
equations for the collected estimation error dynamics.
Each agent of the formation receiving information from
other agents’ estimators updates its formation state esti-
mate according to the following model. For the ith agent
the update equation is:

x̂i(k + 1) = Aclpx̂i(k) + Li(yi(k)− Cix̂i(k))

+
∑
j

µij(k)Fij(tij(k)−Hij x̂i(k)), (14)

where Fij is the receiver gain matrix which corresponds
to the transmitter gain matrix Hij and the sum is taken
over all received signals. After the time interval allo-
cated for the transmission, each ith agent of the forma-
tion knows if it received or did not receive the informa-
tion from the other agents. This fact is reflected in bi-
nary variable µij(k) present in the update equation, so
if agent i did not receive information from agent j, then
µij(k) = 0 and µij(k) = 1 otherwise. Note that no ac-
knowledgment signals are sent, so the transmitting agent
j has no information about µij(k).

The Laplacians Lj and the collected Laplacian Lf are
now stochastic variables described by the states of the
Markov chain, θ(k). To emphasize this fact we further
use the notation Lj{θ(k)} and Lf{θ(k)} for this type of
communication model. So for any given choice of Markov
state, θ(k) = i, i = 1, ...,M , the corresponding collected
Laplacian Lf{θ(k)=i} carries the information about suc-
cessful or failed links in the specified communication
topology.

Using this notation, the collected estimation error dy-



namics equation can be written compactly as,

e(k + 1) = (AB − LfCf − FfHfLf{θ(k)})e(k)

+ Γv(k)− Lfn(k) = Ā{θ(k)}e(k) + B̄ū(k), (15)

where

Ā{θ(k)} = AB − LfCf − FfHfLf{θ(k)}, (16)

B̄ = [Γ−Lf ], and ū(k) = [v(k)′ n(k)′]′. The collected es-
timation error dynamics (15) together with (2) describe
the complete closed-loop dynamics of the formation with
N agents and estimators exchanging the information be-
tween each other through links modeled with the 2-state
Markov chains. In this formulation the estimation er-
ror dynamics are determined by the choice of the design
variables Lf , Ff , Hf , and the Laplacian Lf{θ(k)}.

3 Estimator Design

In this section we develop the tools and procedures for
the synthesis of decentralized distributed estimators. As
a performance measure in the design procedures we use
an estimation error correlation matrix.

3.1 Fixed communication topology with noise

First, we present our results on the synthesis of decen-
tralized estimator for a formation of agents with the com-
munication model described in Section 2.1. With the as-
sumption that estimation error dynamics (10) are stable
we can write the propagation equation for the estima-
tion error correlation as,

P (k+1) ≡ cov(e(k+1)) = E(e(k+1)e(k+1)′) =

(AB − LfCf − FfHfLf )P (k)(AB − LfCf − FfHfLf )
′

+ ΓQvΓ
′ + LfQnL

′
f + FfTfQwT ′

fF
′
f . (17)

The stability assumption on the estimation error dy-
namics is natural, because in our design problem we are
looking for the stabilizing combination of the estimator
gains, Lf , Hf , Ff . We consider the time-invariant case,
which corresponds to the steady-state solution of (17),
P ≡ P (k) = P (k + 1), and should satisfy,

P−(AB−LfCf−FfHfLf )P (AB−LfCf−FfHfLf )
′

− ΓQvΓ
′ − LfQnL

′
f − FfTfQwT ′

fF
′
f = 0. (18)

At this point we can formulate an optimization problem
to find the structured estimator gain matrix,Lf , receiver
and transmitter gain matrices, Ff and Hf , which sta-
bilize the estimation error dynamics (10) and minimize

an upper bound, X, of the estimation error correlation,
X ≥ P . This problem is formulated as follows:

minimize
X,Lf ,Ff ,Hf

∥X∥, subject to:

X = X ′ > 0,

X− (AB−LfCf −FfHfLf )X(AB−LfCf −FfHfLf )
′

− ΓQvΓ
′ − LfQnL

′
f − FfTfQwT ′

fF
′
f > 0, (19)

where Lf satisfies a block-diagonal structural constraint
(given in (11)), and Ff , Hf satisfy the corresponding
structural constraints (given in (8) and (9)).

It is important to mention that some limitation should
be imposed on the available choices of the transmitter
gain, Hf , in the design procedure. The inequality (19)
does not adequately constrain Hf as it only enters as a
product with the Ff design variable. The FfTfQwT ′

fF
′
f

can be made arbitrarily small whileHf is chosen to make
the product HfFf constant. In any practical problem
the transmitter should have a limited power. It is ap-
pealing to apply a direct norm bound to Hf but this
does not allow us to both maintain convexity and use
the structured design results given below. So in order
to incorporate some form of Hf constraint in the design
procedure we introduce an implicit weight for the signals
transmitted between agents.

To this end, we consider the problem of minimizing the
H2 norm of the transfer matrix Tzū(·) for the following
system,

e(k + 1) = Āe(k) + B̄ū(k), (20)

z(k) = C̄e(k),

where Ā = AB−LfCf−FfHfLf , B̄ = [Γ −Lf −FfTf ],
ū(k) = [v(k)′ n(k)′ ω(k)′]′,

C̄ =

[
I

γH̄f

]
,

H̄f = [H ′
1 H ′

2 ... H ′
N ]

′
, and γ > 0 is a positive con-

stant which can be used to add weight on the corre-
sponding part of the output vector. Clearly, (20) rep-
resents a system with the required estimation error dy-
namics (10). The output, z(k), contains the estimation
error, e(k), and is augmented with γH̄fe(k) in order
to weight the transmitter gains, Hj . With this nota-
tion the transfer matrix from ū(k) to z(k) is defined as
Tzū(ζ) = C̄(Iζ − Ā)−1B̄. Minimizing the H2 norm of
Tzū, weighted by the covariances on the noise and dis-
turbance inputs, has the required effect of minimizing a
combination of ∥X∥ and the Hf gains.

An important feature of inequality (19)—and standard
optimization approaches for minimizing ∥Tzū∥2—is that



the unknown design variables, Ff and Hf , enter both
as a product and individually. This prevents us from
formulating this as a standard LMI design for H2 min-
imization. Direct application of the matrix inequality
constraints in this case leads to a biaffine matrix inequal-
ity (BMI). We instead propose an alternative iterative
formulation. This will involve iterating between an H-
problem (minimizing over Hf when Ff and Lf are con-
sidered fixed) and an F-problem (minimizing over Ff and
Lf when Hf is considered fixed).

We now outline the results required to establish the
LMIs to be used in the iterative procedure. The follow-
ing result, due to de Oliveira, Geromel, and Bernussou
(2002), allows the formulation of theH2 normminimiza-
tion problem as an LMI.

Lemma 1 The inequality ∥TzūQ̄
1/2∥22 < µ holds if, and

only if, there exists a matrix G and symmetric matrices
X and W such that, trace(W ) < µ and

X ĀG B̄

G′Ā′ G+G′ −X 0

B̄′ 0 Q̄−1

 > 0, (21)

[
W C̄G

G′C̄ ′ G+G′ −X

]
> 0, (22)

where Q̄ = diag(Qv, Qn, Qw) is the input weighting
matrix.

To motivate the application of Lemma 1 to the design
procedure, we observe that the inequality (19) is equiva-
lent to the LMI (21) by Theorem 1 in deOliveira, Bernus-
sou, and Geromel (1999), and hence, the variable X in
both inequalities represents the upper bound on the es-
timation error correlation matrix, P . As a consequence,
minimizing theH2 norm of Tzū(·)Q̄1/2 (achieved by min-
imizing its bound, µ in Lemma 1), minimizes the trace
ofW and, as a consequence, minimizes a norm of X, the
upper bound on P . The presence of the slack variable
G, allows us to impose structural constraints on the de-
sign variables, Lf , Ff , and Hf , without imposing any
structural constraints on X.

To use the LMIs (21) and (22) for the design of Hf , we
define a structured variable,

G ≡ diag(Ḡ, ..., Ḡ) ∈ IRNnx×Nnx , (23)

and observe that, due to the matching sparsity of Lf and
G, we have HfLfG = EdLf , where,

Ed ≡ diag(E1, ..., EN )

= diag(H1G, ...,HNG) ∈ IR

∑N

i=1

∑N

j=1
kij×N2nx . (24)

Note that the communication topology constraints of
the form Hij = 0 are are now reflected as constraints on
blocks of Ed. Define a new matrix variable,

Ec ≡ [E′
1 ... E′

N ]
′ ∈ IR

∑N

i=1

∑N

j=1
kij×Nnx , (25)

where each Ej has same dimensions and structure as

the correspondingHj , Ej ∈ IR
∑N

i=1
kij×Nnx . With these

variables we rewrite (21) as,
X ĀG B̄

Ā′
G G+G′ −X 0

B̄′ 0 Q̄−1

 > 0, (26)

where ĀG = ABG− LfCfG− FfEdLf , and (22) as, W

[
G

γEc

]
[
G′ γE′

c

]
G+G′ −X

 > 0. (27)

The inequalities (26) and (27) are linear in the variables
X, W , G, and Ej , j = 1, ..., N . If we consider Lf , Ff ,
and γ to be fixed, we can pose the design of the trans-
mitter gains, Hij , as the following convex optimization
problem.

H-problem:

minimize
X,W,G,Ej

µ, subject to:

trace(W ) < µ,

Inequalities (26) and (27),and the structural
constraints on G,Ed, and Ec (given in (23), (24)
and (25)).

The transmitter gains are then calculated via Hj =
EjG

−1.

For the F-problem part of the design procedure we need
LMIs dual to those used in Lemma 1. For this purpose
we state the following lemma.

Lemma 2 There exists a matrix G, and symmetric ma-
trices X and W , such that, trace(W ) < µ and (21), (22)
hold, if and only if, there exists a matrix D, and a sym-
metric matrix Y , such that trace(W ) < µ and

Y Ā′D′ 0

DĀ D +D′ − Y DB̄

0 B̄′D′ Q̄−1

 > 0, (28)



[
W C̄

C̄ ′ Y

]
> 0. (29)

Proof.We prove the necessity part of the lemma; the suf-
ficiency part can be proven in a similar way. Assume that
(21) and (22) are feasible with the matrices X = X ′,
W = W ′, G and trace(W ) < µ. Since (21) is satisfied,
X = X ′ > 0 and G + G′ > X > 0. Hence G is nonsin-
gular and we can define a nonsingular matrix

TG =


0 G−1 0

G−1 0 0

0 0 I

 ,

where the identity matrix, I, has the same dimension as
Q̄. Premultiplying (21) by T ′

G and postmultiplying by
TG, we arrive at,
G−1+G′−1−G′−1XG−1 Ā′G−1 0

G′−1Ā G′−1XG−1 G′−1B̄

0 B̄′G−1 Q̄−1

 > 0.

With new matrix variables Y = Y ′ = G−1 + G′−1 −
G′−1XG−1 and D = G′−1, we observe that the above
inequality is equal to (28). If we define a nonsingular
matrix

TGW =

[
I 0

0 G−1

]
,

and premultiply (22) by T ′
GW and postmultiply it by

TGW , then we arrive at (29) with Y = G−1 + G′−1 −
G′−1XG−1. Hence, the necessity part of the lemma is
proven. 2

Now, we use the LMIs of Lemma 2 to design the esti-
mator gain, Lf , along with the receiver gain, Ff , for the
case when Hf is considered to be fixed. We define the
variables,

D ≡ diag(D̄, ..., D̄) ∈ IRNnx×Nnx , (30)

R ≡ DLf = diag(R1, ..., RN ) ∈ IRNnx×
∑N

i=1
kyi (31)

and

E ≡ DFf

= [E1 E2 ... EN ] ∈ IR
Nnx×

∑N

i=1

∑N

j=1
kij . (32)

Note that communication topology constraints of the
form Fij = 0 are now reflected as block structural con-

straints on E. Using these definitions, rewrite (28) as,
Y ĀD 0

Ā′
D D +D′ − Y B̄D

0 B̄′
D Q̄−1

 > 0, (33)

where ĀD = A′
BD

′−C ′
fR

′−L′
fH

′
fE

′ and B̄D = [DΓ −
R − ETf ]. We also rewrite (29) as, W

[
I

γH̄f

]
[
I γH̄ ′

f

]
Y

 > 0. (34)

In this notation it is clear that (33) and (34) are linear
in the variables Y , W , D, R, and E. If γ and Hf , corre-
spondingly H̄f , are considered to be fixed then we can
pose the following a convex optimization problem for the
design of estimator gains, Lf , and the receiver gains, Fij .

F-problem:

minimize
Y,W,D,R,E

µ, subject to:

trace(W ) < µ,

Inequalities (33) and (34) and the structural
constraints on D,R, and E (given in (30), (31)
and (32)).

The unknown gains are then calculated via Lf = D−1R
and Ff = D−1E.

The H-problem and the F-problem can be combined in
an iteration to give suboptimal choice of Lf ,Hf , and Ff .
To initialize the iteration, we choose a constant weight
γ > 0 and make an initial guess for the matrix con-
taining the transmitter gains, Hf . The initial choice of
Hf should satisfy the previously defined structural con-
straints given in (9), in addition to the Hij = 0 con-
straints imposed if there is no communication from agent
j to agent i. At each step we solve two optimization prob-
lems. First, for the fixed transmitter gain matrix Hf ,
we solve the F-problem and find Ff and Lf . Second, by
holding fixed these values of Ff and Lf , we solve the H-
problem and find a new Hf to be used at the next step
of iteration. This iteration can be repeated a fixed num-
ber of times or until the difference between the costs µ
at the consecutive steps is small.

To guarantee the convergence of the proposed iterative
procedure, we have to show that the cost function does
not increase at each step and feasibility of each con-
straint in F-problem implies feasibility of each constraint
in H-problem and vice versa. The following theorem es-
tablishes the desired result.



Theorem 1 F-problem is feasible with the value of cost
equal to µ, if and only if, H-problem is feasible with the
value of cost equal to µ.

Theorem 1 follows directly from Lemma 2 which estab-
lishes the equivalence of the LMIs used in the formula-
tions of H-problem and F-problem. Note that if G sat-
isfies the structural constraints given in (23) then the
construction used in the proof,D = G′−1, gives aD sat-
isfying the required structural constraints in (30). The
converse also holds. The result of the iterative procedure
outlined above is a suboptimal choice of the estimator
gain, Lf , the transmitter gain,Hf , and the receiver gain,
Ff , which guarantee that the estimation error dynamics
are stable and the estimation error correlation matrix,
P , is bounded from above by X. Once the iteration is
over, we can check if Hf satisfies an additional practical
limitation, a bound on the transmitter power, for exam-
ple, and if not, increase the γ weight accordingly and
repeat the iteration. If we are satisfied with the choice
of Hf , we complete the design by solving the following
optimization problem,

minimize
X,Lf ,Ff

∥X∥, subject to: Inequality (33),

where Y = X−1,R = DLf ,E = DFf , and the new slack
matrix variable D = diag(D1, ..., DN ), Dj ∈ IRnx×nx ,
j = 1, ..., N , does not have identical blocks on the diago-
nal. This problem formulation differs from F-problem in
that we use a less conservative slack matrix,D, and min-
imize the upper bound on the estimation error correla-
tion,P , directly. Once the problem is solved, we calculate
the unknown gains from Lf = D−1R and Ff = D−1E.

3.2 Markov communication topology

In this section we describe the design procedure for the
system with the Markov communication topology de-
scribed in Section 2.2. Observe that the estimation error
dynamics (15) is a description of a discrete-time Markov
jump linear system. To be able to approach our design
problem we use the results of Costa and Fragoso (1993)
and Costa and Guerra (2002), which allow us to formu-
late the design problem as a set of LMIs with their fea-
sibility guaranteeing the mean square stability (MSS) of
system (15).

Following the notational conventions in Costa and
Guerra (2002), we define new vector variables zj(k) ≡
E{e(k) 1θ(k)=j} ∈ IRNnx , j = 1, ...,M , where 1θ(k)=j is
the Dirac measure. Hence zj(k) is the estimation error
expectation depending on the state j of the Markov
chain at time step k. We also define the collected vector,
z(k) ≡ [z1(k)

′ z2(k)
′ ... zM (k)′]′ ∈ IRNnxM , and matrix,

Zj(k) ≡ E{zj(k)zj(k)′} ∈ IRNnx×Nnx , j = 1, ...,M . As

shown in Costa and Fragoso (1993),

Z(k) ≡ E{z(k)z(k)′} = diag(Z1(k), ..., ZM (k)), (35)

Z(k + 1) =

diag
j

(
M∑
i=1

pijĀiZi(k)Ā
′
i + B̄QB̄′

M∑
i=1

πi(k)pij

)
, (36)

where Āi is given in (16) by specifying θ(k) = i, the
collected covariances areQ = diag(Qv, Qn), and we have
used the fact that the input matrix B̄ is independent of
states of the Markov chain. Equation (36) is the update
equation for the augmented estimation error correlation
matrix, Z(k). The estimation error correlation matrix is
then,

P (k) ≡ E{e(k)e(k)′} = E{
M∑
j=1

zj(k)

M∑
j=1

zj(k)
′}

= [I ... I]Z(k)[I ... I]′ =

M∑
j=1

Zj(k).

We would like to design the distributed estimator with
constant gains and for that purpose consider a time-
invariant formulation which corresponds to a steady-
state solution, Z ≡ Z(k) = Z(k + 1), or a long-run av-
erage solution of (36). In equation (36) the probability
distribution, π(k) ∈ IRM , of the states of the Markov
chain is a dynamic variable with an evolution described
by (13). To be able to consider the time-invariant case
we make several observations about the properties of
the Markov chain. First, observe that according to our
definition of the transition probability matrix, P, the
Markov chain describing communication topology can
exhibit both aperiodic and periodic behavior. For the
aperiodic case there exists a steady-state solution of (13),
π = limk→∞ π(k), which generally depends on the ini-
tial value of distribution π(0). In a more specific situa-
tion the Markov chain can be ergodic, then the steady-
state value of π(k) is independent of π(0). In any of these
two situations we can find the steady-state distribution,
π, and consider the steady-state solution of (36) with
Z = Z(k) = Z(k + 1).

In the periodic case when limk→∞ πi(k) does not exist,
we can consider a Cesaro limit, and the long-run average



solution of (36) is given by,

lim
k→∞

1

k

k−1∑
l=0

Z(l + 1) =

lim
k→∞

1

k

k−1∑
l=0

[
diag

j

( M∑
i=1

pijĀiZi(l)Ā
′
i

+ B̄QB̄′
M∑
i=1

πi(l)pij

)]
. (37)

From standard results in Markov chain theory we
know that for a periodic case there exists a limit π ≡
limk→∞(π(0)+π(1)+...+π(k−1))/k and hence the limit
for the last term of the right-hand side of (37) is defined.

For the left-hand side of (37), limk→∞
1
k

∑k−1
l=0 Z(l+1) =

limk→∞
1
k

(∑k−1
l=0 [Z(l)]− Z(0) + Z(k)

)
, and if Z(0)

and Z(k) are bounded, then limk→∞
1
k

∑k−1
l=0 Zi(l+1) =

limk→∞
1
k

∑k−1
l=0 Zi(l), i = 1, ...,M . We assume that

this limit exits, which is true if the system is stable, and

define Zi ≡ limk→∞
1
k

∑k−1
l=0 Zi(l).

With these assumptions the steady state or the long-run
average solution of (36) satisfies,

Z = diag
j

(Zj),

Zj =

M∑
i=1

pijĀiZiĀ
′
i + B̄QB̄′

M∑
i=1

πipij , j = 1, ...,M.

At this point we can consider the problem of designing
a distributed parallel estimator which stabilizes the col-
lected estimation error dynamics (15) and minimizes a
steady-state or a long-run average estimation error cor-

relation matrix, P ≡
∑M

j=1 Zj . We state this optimiza-
tion problem as follows:

minimize
Lf ,Ff ,Hf ,Xj

∥P̄∥, subject to

P̄ = P̄ ′ =

M∑
j=1

Xj > 0, and

Xj −
M∑
i=1

pijĀiXiĀ
′
i − B̄QB̄′

M∑
i=1

πipij > 0,

for all j = 1, ...,M, (38)

where Lf , Ff , and Hf satisfy the structural constraints
in (6), (8) and (9) and those of the form Hij = 0 and
Fij = 0 arising from the communication topology.

In the case of an aperiodic Markov chain, the feasibility
of the matrix inequalities (38) is equivalent to theMSS of

the Markov jump linear system described by (15), due to
the result of Costa and Fragoso (1993). The MSS of the
system (15) implies the existence of e ∈ IRNnx and P ∈
IRNnx×Nnx independent of e(0) such that, ∥E{e(k)} −
e∥ → 0 and ∥E{e(k)e(k)′} − P∥ → 0 as k → ∞.

To be able to use inequalities (38) in the design proce-
dure, we state the following lemma.

Lemma 3 If there exists a matrix G ∈ IRNnx×Nnx and
Y = diag(Y1, ..., YM ) with Yj = Y ′

j > 0, such that for all
j = 1, ...,M ,

Y Â′
jG

′ 0

GÂj G+G′ − Yj
√
σjGB̄

0 B̄′G′√σj Q−1

 > 0, (39)

with σj =
∑M

i=1 πipij and

Âj =
[√

p1jĀ1
√
p2jĀ2 ...

√
pMjĀM

]
,

then Xj = Y −1
j satisfies Xj = X ′

j > 0, j = 1, ...,M and

the M LMI conditions in (38).

The line of argument in the proof of this lemma is similar
to the proof of Theorem 1 in de Oliveira, Bernussou,
and Geromel (1999) and we omit it here due to space
limitations. To use the LMIs in (39) for the design of
the gains Lf , Ff , and Hf , we define a block-diagonal
structured variable,

G ≡ diag(G1, ..., GN ), (40)

with Gi ∈ IRnx×nx , i = 1, ..., N . We also define

R ≡ GLf = diag(R1, ..., RN ) ∈ IRNnx×
∑N

i=1
kyi , (41)

with Ri = GiLi, and

E ≡ GFfHf = [E1 E2 ... EN ] ∈ IRNnx×N2nx , (42)

where Ej = diag(E1j , ..., ENj) and Eij = GiFijHij .
The G, R and E variables in the Markov communica-
tion problem play a similar role to those defined for the
Gaussian noise problem although they are not defined
identically. They do however play an identical role in ex-
pressing structural constraints, including those due the
absence of links in the communication topology.

Note that each GĀi = GAB − RCf − ELf{i} and as a

consequence all GÂj are linear in new variables G, R,
and E. The product GB̄ = [GΓ −R] is also linear in G
and R, and hence all inequalities in (39) are linear in the
matrix variables Yj , j = 1, ...,M , G, R, and E. Now we



can redefine the design problem as a convex optimization
problem with LMIs:

maximize
G,R,E,Yj

γ, subject to:

0 < γI ≤
M∑
j=1

Yj ,

the M LMI constraints in (39), and the structural
constraints on G,R, and E (given in (40), (41)
and (42)).

(43)

When the feasible solution which minimizes the upper
bound on the estimation error correlation matrix P is
found, we can calculate Lf and FfHf from Lf = G−1R
and FfHf = G−1E since G is nonsingular. It is impor-
tant to mention that, even though the above optimiza-
tion problem is convex in the design variables, the struc-
tural constraints on G, R, and E introduce potential
conservatism into design of the estimator gains.

Note that the solution to the proposed optimization
problem gives the transmitter and the receiver matrix
gains as a product, FfHf , which must be factored to
complete the design. Another issue which should be ad-
dressed is the rank constraint on each individual block,
FijHij , of the product FfHf and consequently the vari-
able E. Since the dimension of a transmitter gain ma-
trix, Hij , is kij × nx and FijHij ∈ IRnx×nx , the ranks
of all Nl, where Nl is the number of links in the topol-
ogy, nonzero products FijHij should be less or equal
than the corresponding kij . To tackle this issue we can
use results of Fazel, Hindi, and Boyd (2003) or Orsi,
Helmke, and Moore (2006) and impose additional LMI
constraints on Nl nonzero blocks of the matrix vari-
able E, Eij = GiFijHij . Hence, imposing the rank con-
straints introduces an additional conservatism into the
formulation of the design problem.

Once all the nonzero blocks of Eij in the solution to the
optimization problem satisfy the rank constraints, we
can find Fij and Hij by taking a singular value decom-
position (SVD) of each product FijHij ,

FijHij =
[
U1
ij U2

ij

] [Dij 0

0 0

][
V 1
ij

V 2
ij

]
, (44)

whereDij ∈ IRkij×kij is a diagonal matrix with possibly
some zeros on the diagonal. Then a possible choice of
transmitter and receiver gains is Hij = V 1

ij and Fij =

U1
ijDij . To guarantee that each Hij satisfies a possible

power limitation we simply scale thematrices in the SVD
product.

The absence of communication noise allowed us to for-
mulate the optimization problem for the system with
Markov topology as a convex optimization. At the same
time dealing with the constraints on the dimensions of
the communication signals requires the introduction of
rank constraints which are usually hard to handle. As
an alternative to introducing rank constraints we can
adapt the iterative tools developed in the previous sec-
tion for the design of the gains of the estimator with
Markov topology. The synthesis tools from this section
and Section 3.1 can also be combined in a straightfor-
ward manner to result in the synthesis procedure for the
Markov communication topology with noise. If the de-
sign tools from the both sections are combined, the re-
sulting mathematical formulation can be considered as
the dual to the state feedback design problem presented
in (do Val, Geromel, and Goncalves, 2002).

4 Experimental results

Now we illustrate the design procedure for the system
with the Markov communication topology on an exper-
imental example. The experimental configuration is a
formation with three agents, where each agent is a mo-
tor cart able to move along a track. We use the term
“agent” when referring to the estimator/controller and
the term “cart” when describing the physical system;
Agent 1 corresponds to Cart 1, etc.. The control input
applied to each cart is the motor voltage, while the out-
puts available for measurement are the positions of the
carts on the tracks. This experimental setup was imple-
mented with three Quanser motor-cart modules and one
computer station with an acquisition and control board.
All three controllers, each consisting of a full formation
state estimator and state feedback, were implemented in
Matlab Simulink in a single diagram. The communi-
cation links between estimators—including either Gaus-
sian noise or Markov model packet loss—were also im-
plemented by links on the same Simulink diagram. The
cart position measurements were taken via encoders and
the acquisition and contain sensor noise.

The dynamics of each motor cart can be described by,

p̈i = 3.78ui − 16.88ṗi, i = 1, 2, 3,

where pi is the position of a cart on the track and ui is the
control input: the voltage applied to the cart motor. We
rewrite this system in the state-space form and find its
discrete zero-order-hold equivalent with sampling period
Ts = 0.0005 seconds,

x̄i(k + 1) =Aix̄i(k) +Biui(k).

The full formation dynamics are then described by,

x̄(k + 1) = Āx̄(k) + B̄uu(k) + B̄vv(k), (45)



where x̄(k) = [x̄1(k)
′ x̄2(k)

′ x̄3(k)
′]′ ∈ IR6, u(k) =

[u1(k)
′ u2(k)

′ u3(k)
′]′ ∈ IR3, Ā = diag(A1, A2, A3),

B̄u = diag(B1, B2, B3), and we augment the original
system dynamics with the zero-mean Gaussian process
noise v(k) ∈ IR3 with covariance Qv = 10−6I entering
the system through B̄v = diag(b̄, b̄, b̄), b̄ = [0 1]′.

We define the formation by specifying the relative dis-
tances between agents. The control objective is to guar-
antee that the agents converge to and keep relative dis-
tances specified with a vector d = [d12 d23 d13], where
dij is the distance between Agent i and Agent j. In
the experiment shown we have chosen d12 = 0.2 m,
d23 = 0.2 m, and d13 = 0.4 m as the reference for-
mation. We assume that the measurements available
for the agents are their relative distances to one of the
other agents. In particular, Agent 1 is able to measure
its distance to Agent 2, Agent 2 measures the distance
to Agent 3, and Agent 3 its distance to Agent 1. With
these measurements the three output matrices for each
of the agents in the formation are: C̄1 = [−1 0 1 0 0 0],
C̄2 = [0 0 1 0 − 1 0], C̄3 = [1 0 0 0 − 1 0]. System (45)
with the output matrix C̄ = [C̄ ′

1 C̄ ′
2 C̄ ′

3]
′ is not observ-

able, due to the fact that no absolute cart positions can
be determined from the measured variables. We can re-
duce the dimension of the system (45) by removing the
unobservable part without influencing the relative posi-
tion performance of the formation. To do this we apply
a similarity transformation x(k) = T x̄(k) and truncate
unobservable states of the system to arrive at,

x(k + 1) =Ax(k) +Buu(k) +Bvv(k), (46)

yi(k) =Cix(k) + ni(k), i = 1, 2, 3,

where x(k) ∈ IR4, and ni(k) ∈ IR is the zero-mean Gaus-
sian measurement noise with covariance Qni

= 10−6.

First, we design a stabilizing state feedback, u(k) =
−Kx(k), which renders the closed-loop formation sys-
tem matrix, A − BuK, Hurwitz and guarantees that
the formation control objective is satisfied if the esti-
mation error dynamics are designed to be stable. To
find K, we use a standard LQR design method and first
specify weights Q = diag(100, 10, 100, 10, 100, 10)
and R = diag(0.1, 0.1, 0.1) for the standard quadratic
cost function, J =

∑∞
k=1(x̄(k)

′Qx̄(k) + u(k)′Ru(k)), in
the original formation coordinates x̄(k). These are then
transformed to the reduced system coordinates using
the defined similarity transformation, T , and state trun-
cation. The individual control inputs for each cart are
defined by, ui(k) = −ΠiKx̂i(k). Here x̂i(k) is the esti-
mate of state x(k) at ith agent’s estimator and Πi is the
corresponding projection matrix, Π1 = diag(1, 0, 0),
Π2 = diag(0, 1, 0), Π3 = diag(0, 0, 1).

We assume that the agents of the formation communi-
cate according to the Markov communication topology
model described in Section 2.2. For our experiment we

allow Agent 1 to communicate a function of its estimates
to Agent 2, and Agent 2 to communicate a function of
its estimates to both Agents 1 and 3. We assume that
each agent can transmit signals with four variables, so
k21 = 4, k12 = 4, and k32 = 4, and,

L1 =


0 0 0

−1 1 0

0 0 0

, L2 =


1 −1 0

0 0 0

0 −1 1

, and L3 = 0N .

This communication topology has Nl = 3 links and
we model each link with the two-state Markov chain
as shown in Figure 1, with the same transition prob-
abilities for all links, p021 = p012 = p032 = p0 = 0.1
and p121 = p112 = p132 = p1 = 0.95. Then according
to our definition the result of communication at step
k can be described by the state of the Markov chain
with M = 23 = 8 states: θ(k) = 1 : Θ(k) = [0 0 0],
θ(k) = 2 : Θ(k) = [0 1 0], θ(k) = 3 : Θ(k) = [1 0 0],
θ(k) = 4 : Θ(k) = [1 1 0], θ(k) = 5 : Θ(k) = [0 0 1],
θ(k) = 6 : Θ(k) = [0 1 1], θ(k) = 7 : Θ(k) = [1 0 1],
θ(k) = 8 : Θ(k) = [1 1 1].

This description captures all possible outcomes of com-
munication at step k, where each individual link is
transmitting or failing to transmit information inde-
pendently of all other links. With π(k) ∈ IR8 and the
elements of transition probability matrix calculated
from individual probabilities of each link, for exam-
ple p24 = (1 − p0)p1p0, the Markov chain modeled
with (13) is aperiodic. With π(0) = [0 0 0 0 0 0 0 1]
we found the steady-state solution of (13) to be π =
[0.0001 0.0026 0.0026 0.0472 0.0026 0.0472 0.0472 0.8503]
and used this π in the design calculations. The binary
signals implementing success or failure of the links were
generated by aMarkov chain model fromMatlab and are
shown on Figure 2 for the first second of the experiment.

Using the algorithm described in detail in Section 3.2, we
designed the distributed estimator gains Li, i = 1, 2, 3,
transmitter gains H21, H12, H32, and receiver gains F21,
F12, F32. To find these gains we implemented the pro-
posed synthesis procedure using yalmip (Löfberg, 2004)
in Matlab. The achieved upper bound on the estima-
tion error correlation matrix was ∥P∥2 = 1.22. It is
worthmentioning, that we designed and tested two other
estimators with different communication topologies. In-
creasing the number of communication links in the topol-
ogy, consistently resulted in a lower bound on the esti-
mation error correlation matrix, ∥P∥2, and higher esti-
mator performance during the experiment.

The experimental results for the proposed system archi-
tecture and gains calculated with the transmitter con-
straints ∥Hij∥F ≤ 1 are shown in Figures 3 and 4. Fig-
ure 3 shows the positions of carts along the tracks ver-
sus time. At t = 0 seconds the system was initialized



0

1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

Time [seconds]

Communication link: Agent 2 to Agent 1

Communication link: Agent 1 to Agent 2

Communication link: Agent 2 to Agent 3
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Fig. 3. Positions of carts on the tracks for an experiment
with a Markov communication topology. External forces are
applied to Carts 2 and 3 at the times shown and move the
entire formation.

with carts located at the same point on their respective
tracks. Once the controller was on, they started moving
into formation and by the time t = 4 seconds the forma-
tion was in order. From time t = 5.9 seconds for about
2 seconds, we applied a force to Cart 2, causing the for-
mation to drift in the direction of applied force. At time
t = 11 the formation was arranged again and at time
t = 12 seconds we applied a force to Cart 3 and main-
tained it for about 2 seconds. As a result the formation
drifted in the opposite direction and by the time t = 19
seconds it was in the nominal formation again.

Figure 4 shows the error in the estimates of relative dis-
tances for all three agents during the experiment. The
estimation errors for d12 are shown in the uppermost
sub-plot. Agent 1 (on Cart 1) has access to a direct mea-
surement of d12 and Agent 1’s estimation error decays
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Fig. 4. Estimation errors corresponding to each of the three
measured state variables. Each agent maintains an estimate
of each variable. The time scale corresponds to the first 20
time steps of the experiment.

exponentially due to the dominant contribution of the
measurement. Agents 2 and 3 do not have access to this
measurement and receive information about d12 via the
intermittent communication links and the propagation
of their system models. Analogous comments apply to
the estimate of d23 by Agent 2 and the estimate of d13
by Agent 3. Note that the estimation error dynamics are
several orders of magnitude faster than the control dy-
namics in this system. It is the control actuation satu-
ration levels that limit the overall system performance.

5 Conclusion

Decentralized control structures based on distributed
estimation—in which each agent maintains an estimate
of the state of the entire formation—are beneficial for
control problems with formation-wide objective func-
tions. While keeping the estimate of the formation state
is computationally demanding, it offers the formation
a higher level of autonomy in decision making and
higher robustness with respect to faults and uncertain-
ties. Communication between the agents of the forma-
tion can resolve the stability issues arising from using
agents’ local estimates for global state feedback and can
improve the performance of overall closed-loop system.

We have presented results on the design of distributed
decentralized estimators for a formation of agents. A
time-invariant formulation and two communication
models, describing analog and digital communication
between the agents of the formation, were considered.
For each model we proposed procedures for the synthe-
sis of the suboptimal gains of the distributed estimator
formulated with LMIs. Classical estimator gains as well
as the terms introduced by the communication between



agents were used as the design variables. For formations
with analog communication with additive noise the op-
timization problem was bilinear, while for formations
with digital communication it was convex, but in the
case of channel limitations requires additional rank con-
straints on the design variables. Structural constraints
on the design variables were handled effectively through
the introduction of structured slack variables. To eval-
uate the validity of the proposed methods, they were
applied to the design of distributed estimators for an
experimental formation with three agents. Experimen-
tal results illustrated the performance of estimators and
showed that the design procedures are applicable to
practical systems.

The proposed methods provide tools for the design of
decentralized distributed estimators under the assump-
tion that the formulated design problems are feasible.
This assumption may not hold for a formation described
with a general LTI system and having any specified
topology. The system may have unstable fixed modes
(Tarokh, 1985) or eigenvalues of estimation error dynam-
ics (10), (15) may depend on each other in a restrictive
fashion (Karcanias, Laios, and Giannakopoulos, 1988),
which can prevent from stabilizing the estimation error
through the design variables Lf , Hf , Ff . These issues
are to be considered in our future work.
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