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Abstract

In this paper, the robust fault detection problem is investigated for a class of discrete-time networked systems with unknown
input and multiple state delays. A novel measurement model is utilized to represent both the random measurement delays
and the stochastic data missing phenomenon, which are typically resulted from the limited capacity of the communication
networks. Network status is assumed to vary in a Markovian fashion and its transition probability matrix is uncertain but
reside in a known convex set of a polytopic type. The main purpose of this paper is to design a robust fault detection filter
such that, for all unknown inputs, possible parameter uncertainties as well as incomplete measurements, the error between
residual and fault is made as small as possible. By casting the addressed robust fault detection problem into an auxiliary
robust H∞ filtering problem of a certain Markovian jumping system, a sufficient condition for the existence of the desired
robust fault detection filter is established in terms of linear matrix inequalities. A numerical example is provided to illustrate
the effectiveness and applicability of the proposed technique.

Key words: Fault detection; networked systems; parameter uncertainty; random measurement delay; data missing;
Markovian jumping system.

1 Introduction

Control systems where sensors, controllers, actuators
and other system components communicate over a
communication network are a type of distributed con-
trol systems referred to as networked control systems
(NCSs) [1, 2]. The use of a communication network
offers advantages in terms of reliability, enhanced re-
source utilization, reduced wiring and reconfigurabil-
ity. As such, network-based analysis and designs have
many industrial applications in, for example, automo-
biles, manufacturing plants, aircrafts, and HVAC sys-
tems. However, implementing a control network over a
communication network induces stochastic delays and
packet dropouts that inevitably degrade performance
and could be a source of instability. The problem of
designing NCSs against network-induced communica-
tion delays and packet dropouts has recently attracted
considerable research attention, see [3, 4] for some rep-
resentative works.

Fault detection and isolation (FDI), on the other hand,
has been an active field of research over the past decades
because of the ever increasing demand for higher perfor-
mance, higher safety and reliability standards [5,6]. Gen-
erally speaking, a fault detection process consists of con-
structing a residual signal which can then be compared
with a predefined threshold. When the residual exceeds
the threshold, the fault is detected and an alarm is gen-
erated [7]. In view of the wide usage of the network ca-
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bles in today’s world, a seemingly natural research prob-
lem is to study the FDI problems for networked systems
in the presence of network-induced delays or data miss-
ing, see e.g. [8,9]. Since network-induced delays and data
missing phenomenon are inherently random and time-
varying [10], they have been modeled in various proba-
bilistic ways [11–14]. Very recently, in [15], the network-
induced delay and data dropout problems have been in-
vestigated within a unified framework and the robust
filtering problem with polytopic uncertainties has been
thoroughly studied.
It should be pointed out that, in all the aforementioned
results, it has been implicitly assumed that the delay
or missing characteristics are statistically mutually in-
dependent from transfer to transfer. Obviously, such an
assumption is quite restrictive since network-induced
characteristics are highly related to each other over the
time. One possible way to remove such an assumption
is to describe the residual dynamics by a discrete-time
Markovian jumping system (MJS) [16]. Unfortunately,
exact transition probability matrix can not be obtained
in practice and to the best of the authors’ knowledge,
the robust fault detection problem for networked MJSs
with uncertain transition probability matrices has not
been fully investigated, which constitutes the main focus
of this paper.
In this paper, the robust fault detection problem is stud-
ied for a class of networked systems with unknown in-
put, multiple state delays and data missing. A sequence
varying in a Markovian fashion is employed in the mea-
surement model, and both the measurement delays and
data missing are simultaneously considered. Polytopic-
type uncertainty in the transition probability matrix of
the Markov process is taken into account. The addressed
robust fault detection problem is converted into an aux-
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Fig. 1. Fault detection for networked systems

iliary robust H∞ filtering problem for a certain MJS,
and a sufficient condition for the existence of the desired
robust fault detection filters is established in terms of
linear matrix inequalities (LMIs).

Notations used in the present paper are fairly standard
except where otherwise stated. Pr{e} and E{x} repre-
sent, respectively, the occurrence probability of the event
“e” and the mathematical expectation of the stochastic
variable x. l2[0,∞) is the space of all square-summable
vector functions over [0,∞), and ‖x‖ is the standard l2
norm of x, i.e., ‖x‖ = (xT x)1/2. In symmetric block ma-
trices, “∗” denotes the term that is induced by symme-
try. diag{· · · } stands for a block-diagonal matrix.

2 Problem Formulation and Preliminaries

Consider a class of discrete-time networked systems with
the structure shown in Fig. 1. The plant and the robust
fault detection filter are located at different places and
connected with communication channel, which can be
characterized by the following discrete-time linear sys-
tem model:











xk+1 =
∑q

i=0 Aixk−i + Bwwk + Bffk,

yk =
∑q

i=0 δ(τk, i)Cixk−i + δ̄(τk,−1)Dwk,

xk = ϕk, k = −q,−q + 1, . . . , 0,

(1)

where xk ∈ Rn is the state vector; wk ∈ Rp is the un-
known input belonging to l2[0, ∞); fk ∈ Rl is the fault
signal to be detected; yk ∈ Rm is the measurement,
which may contain both the random communication de-
lays (1 ≤ i ≤ q) and stochastic data missing (q = −1)
induced by the limited capacity of the communication
networks. All system matrices in (1) are assumed to have
appropriate dimensions and ϕk is a given real initial se-
quence on [−q, 0]. δ̄(j, l) = 1 − δ(j, l), and δ(·, ·) is the
Kronecker delta function, i.e.,

δ(a, b) =

{

0, if a 6= b

1, if a = b

τk is a random variable introduced to describe the pos-
sibility of data missing as well as the size of the occurred
delay at time instant k [15]. In the present paper, we
consider the sequence {τk} obeying a discrete-time ho-
mogeneous Markov chain taking values in the following
finite state space

Ξ = {−1, 0, . . . , q} (2)

and Λ = [λij ] is the stationary transition probability
matrix with its entities defined as

λij = Pr{τk+1 = j|τk = i}. (3)

In this paper, we deal with the robust fault detection
problem for system (1) with polytopic uncertainties in
the transition probability matrix Λ of the Markov chain

{τk} [17], namely Λ ∈ Π, where Π is a polytope with u
vertices

Π =

{

Λ | Λ =

u
∑

s=1

βsΛs;

u
∑

s=1

βs = 1, βs ≥ 0

}

, (4)

where Λs = [λ
(s)
ij ] (i, j ∈ Ξ, s = 1, . . . , u) are given tran-

sition probability matrices. It can be directly confirmed
that the convex combination of these transition proba-
bility matrices is also a possible transition probability
matrix.

Consider the following discrete-time full-order fault de-
tection filter
{

x̃k+1 = G(τk)x̃k + K(τk)yk,

rk = L(τk)x̃k + M(τk)yk,
(5)

here, x̃k ∈ Rn is the state of the fault detection filter;
rk ∈ Rl is its output (also called “residual”) that is
compatible with fk. For each τk = i ∈ Ξ, we notate
matrices Gi = G(τk = i), Ki = K(τk = i), Li = L(τk =
i) and Mi = M(τk = i) as G(τk), K(τk), L(τk) and
M(τk), respectively. In our present work, it is intended
to make the error between the residual rk and the fault
signal fk as small as possible in H∞ framework.

Introduce the following new vectors

ζk = [wT
k fT

k ]T , r̃k = rk − f̂k,

x̄k = [xT
k−1 · · · xT

k−q]
T , ηk = [xT

k x̄T
k x̃T

k ]T , (6)

and let matrices Ã(τk), B̃(τk), C̃(τk) and D̃(τk) repre-

sent Ãi = Ã(τk = i), B̃i = B̃(τk = i), C̃i = C̃(τk = i)

and D̃i = D̃(τk = i). The overall fault detection dynam-
ics governed by the following system can be obtained

{

ηk+1 = Ãiηk + B̃iζk,

r̃k = C̃iηk + D̃iζk,
(7)

where

Ãi =

2664 A0 Ad 0

Â21 Â22 0

δ(i, 0)K0C0 KiCiei Gi

3775 ,

B̃i =

2664 Bw Bf

0qn×p 0qn×l

δ̄(i,−1)KiD 0

3775 ,

Â21 =

"
In

0(q−1)n×n

#
, Â22 =

"
0 0

I(q−1)n 0

#
,

Ad =
h

A1 · · · Aq

i
,

ei =
h

δ(i, 1)In · · · δ(i, q)In

i
,

C̃i =
h

δ(i, 0)M0C0 MiCiei Li

i
,

D̃i =
h

δ̄(i,−1)MiD −I

i
. (8)

After the above treatments, the possible communication
delays and data missing introduced by network cable can
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be converted as the jumping parameters of the Marko-
vian jumping system (7) with the same transition prob-
ability matrix Λ in original system (1).

Recall the following definition of mean square stability
for MJSs.

Definition 1 [18,19] System (7) with ζk = 0 is said to
be mean square stable if

E
{

‖ηk‖
2
}

→ 0, as k → ∞

for any initial condition η0 and initial distribution τ0 ∈
Ξ.

Considering the existence of uncertainty in the transition
probability matrix of MJSs, we further introduce the
following definition.

Definition 2 Markovian system (7) with uncertain
transition probability matrix Λ ∈ Π is robustly mean
square stable if (7) is mean square stable for each Λ ∈ Π.

With Definition 2, the original robust fault detection fil-
ter design problem for system (1) can be further con-
verted to a robust H∞ filtering problem [20] for an MJS
(7): Finding a series of filter parameters Gi, Ki, Li and
Mi (i ∈ Ξ) such that the augmented fault detection dy-
namics (7) is robustly mean square stable and the infi-
mum of γ is made as small as possible in the feasibility
of

sup
ζk 6=0

E
{

‖r̃k‖
2/‖ζk‖

2
}

< γ2, γ > 0. (9)

Introduce a residual evaluation function J(k) with a
form of quadratic sum

J(k) =

{

k
∑

h=0

rT
h rh

}1/2

, (10)

and the occurrence of faults can then be alarmed by com-
paring the incremental version of J(k) with a prescribed
threshold Jth, according to the following logic
{

J(k) − J(k − L) > Jth=⇒fault detected,

J(k) − J(k − L) ≤ Jth=⇒no faults,

where

Jth = sup
k∈N+,wk∈l2,fk=0

E
{

J(k + L) − J(k)
}

,

and L is the length of a finite evaluating time horizon.

3 Main Results

In this section we shall discuss the robust fault detec-
tion filter design problem of system (1). The following
Bounded Real Lemma (BRL) will help us in deriving the
main result.

Lemma 3 [19] (Discrete BRL for MJSs) Consider the
MJS (7) with fixed and known transition probability ma-
trix (3). Let γ > 0 be a given scalar. Then the system
(7) is mean square stable with ζk = 0 and, under zero
initial conditions, satisfies (9), if there exist matrices

P̃i ∈ R(q+2)n such that the following LMIs













−Pi ÃT
i P

TSi 0 C̃T
i

∗ −PTSi PTSiB̃i 0

∗ ∗ −γ2I D̃T
i

∗ ∗ ∗ −I













< 0 (11)

hold for any i ∈ Ξ, where Ãi, B̃i, C̃i, D̃i are defined in
(8) and

P =
h

P−1 · · · Pq

iT
,

Si =
h

λi(−1)I(q+2)n · · · λiqI(q+2)n

iT
. (12)

Now, we establish an alternative sufficient condition for
MJS (7) with fixed and known transition probability
matrix from Lemma 3. The proof is similar with that of
Corollary 1 in [15] and is omitted here.

Lemma 4 LMIs (11) are feasible if there exist matrices
Pi ∈ R(q+2)n and Qi ∈ R(q+2)n satisfying













−Pi ÃT
i Q

T
i 0 C̃T

i

∗ Γ̄22 QiB̃i 0

∗ ∗ −γ2I D̃T
i

∗ ∗ ∗ −I













< 0, (13)

where Γ̄22 = PTSi −Qi −QT
i .

Next, we give the following sufficient H∞ filter analysis
condition for MJS (7) with uncertain transition proba-
bility matrix Λ ∈ Π.

Lemma 5 Consider system (1) with uncertain tran-
sition probability matrix Λ ∈ Π. For a given fault de-
tection filter of the form (5), the augmented dynamic
(7) is robustly mean square stable and satisfies the
constraint (9) if there exist matrices Pis ∈ R(q+2)n,

Hi ∈ R(q+2)n×(q+2)2n, Ei ∈ R(q+2)2n×(q+2)2n, Qi ∈
R(q+2)n×(q+2)n such that the following LMIs266666664 −Pis ÃT

i QT
i 0 0 C̃T

i

∗ Υ22 Υ23 QiB̃i 0

∗ ∗ Υ33 0 0

∗ ∗ ∗ −γ2I D̃T
i

∗ ∗ ∗ ∗ −I

377777775 < 0 (14)

hold for all i ∈ Ξ and s = 1, . . . , u, where Ãi, B̃i, C̃i, D̃i

are defined in (8) and

Υ22 = −Qi −Q
T
i + HiSis + S

T
isHT

i ,

Υ23 = −0.5PT
s + Hi + S

T
isEi, Υ33 = Ei + ET

i ,

Ps =
h

P(−1)s · · · Pqs

iT
,

Sis =
h

λ
(s)
i(−1)

I(q+2)n · · · λ
(s)
iq I(q+2)n

iT
. (15)

Proof We firstly consider MJS (7) with an arbitrary
fixed transition probability matrix. By taking into ac-
count (13) in Lemma 4, we further give the following suf-
ficient condition ensuring that system (7) is mean square
stable and satisfies the constraint (9): there exist matri-
ces Pi, Qi, Hi, Ei such that the following LMIs hold for
all i ∈ Ξ.
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266666664 −Pi ÃT
i QT

i 0 0 C̃T
i

∗ Ῡ22 Ῡ23 QiB̃i 0

∗ ∗ Υ33 0 0

∗ ∗ ∗ −γ2I D̃T
i

∗ ∗ ∗ ∗ −I

377777775 < 0 (16)

where Ῡ22 = −Qi − QT
i + HiSi + ST

i HT
i , Ῡ23 =

−0.5PT +Hi +ST
i Ei; Υ33 and P are the same as defined

in (15) and (12), respectively. Pre- and post-multiply
(16) by diag{I, I,−ST

i , I, I} and its transpose, and after
some proper elementary transformation, we can easily
get (13).

For an arbitrary uncertain system with transition prob-
ability matrix Λ ∈ Π, one can always find a set of coef-
ficients βs ≥ 0 (s = 1, . . . , u) such that (4) holds. Notic-
ing that LMIs (14) are affine in the matrices Pis and Sis,
we multiply suitable inequalities of (14) by appropriate
scalars βs and then summing up, it can be readily shown
that (16) hold with matrices Pi(β) =

∑u
s=1 βsPis. Thus,

from (14), we can confirm that (13) holds for any choice
of Λ. Form Lemma 4 and Lemma 3, it follows that sys-
tem (1) is robustly mean square stable and (9) is satis-
fied. This concludes the proof.

Next, we consider the robust fault detection filter design
problem for system (1) with uncertain transition prob-
ability matrix Λ ∈ Π.

Theorem 6 Consider system (1) with uncertain tran-
sition probability matrix Λ ∈ Π and let γ > 0 be a
given scalar. Then there exists a full-order robust fault
detection filter of the form (5) ensuring that the over-
all augmented dynamics (7) is robustly mean square sta-
ble and the constraint (9) is satisfied if, there exist ma-
trices 0 < XT

is = Xis ∈ R(q+2)n×(q+2)n, Si ∈ Rn×n,
Zi ∈ Rn×n, Yi ∈ Rn×n, Ḡi ∈ Rn×n, K̄i ∈ Rn×m,
L̄i ∈ Rl×n, M̄i ∈ Rl×m, Ni ∈ Rqn×qn, 0 < HT

is = His ∈
R(q+2)n×(q+2)n, Eis ∈ R(q+2)n×(q+2)n such that the fol-
lowing LMIs266666664 −Xis Ψ12 0 0 Ψ15

∗ Ψ22 Ψ23 Ψ24 0

∗ ∗ Ψ33 0 0

∗ ∗ ∗ −γ2I D̃T
i

∗ ∗ ∗ ∗ −I

377777775 < 0 (17)

hold for i ∈ Ξ and s = 1, . . . , u, where

Ψ12 =

2664 AT
0 ZT

i Ψ
(12)
12 Ψ

(13)
12

AT
d

ZT
i Ψ

(22)
12 Ψ

(23)
12

AT
0 ZT

i Ψ
(32)
12 Ψ

(33)
12

3775 ,

Ψ15 =
h

δ(i, 0)M̄0C0 + L̄i M̄iCiei δ(i, 0)M̄0C0

iT
,

Ψ22 = His + HT
is −

2664 Ψ
(11)
22 0 Ψ

(13)
22

∗ Ψ
(22)
22 0

∗ ∗ Ψ
(33)
22

3775 ,

Ψ23 = −0.5XsSis + His + Eis,

Ψ24 =

2664 ZiBw ZiBf

0 0

YiBw + δ̄(i,−1)K̄iD YiBf

3775 ,

Ψ33 = Eis + ET
is, Xs =

h
X(−1)s · · · Xqs

iT
,

Ψ
(12)
12 = Ψ

(32)
12 =

h
In 0n×(q−1)n

i
NT

i ,

Ψ
(13)
12 = AT

0 Y T
i + δ(i, 0)CT

0 K̄T
0 + ḠT

i ,

Ψ
(22)
12 =

"
0(q−1)n×n I(q−1)n

0n 0n×(q−1)n

#
NT

i ,

Ψ
(23)
12 = AT

d Y T
i + eT

i CT
i K̄T

i , Ψ
(33)
12 = AT

0 Y T
i + δ(i, 0)CT

0 K̄T
0 ,

Ψ
(11)
22 = Zi + ZT

i , Ψ
(13)
22 = Zi + Y T

i + ST
i ,

Ψ
(22)
22 = Ni + NT

i , Ψ
(33)
22 = Yi + Y T

i .

Ad, D̃i are shown in (8); Sis is the same in (15). More-
over, if (17) is feasible, the parameters of the desired ro-
bust fault detection filter can be given by

Gi = V −1
i ḠiS

−1
i Vi, Ki = V −1

i K̄i,

Li = L̄iS
−1
i Vi, Mi = M̄i, (18)

where Vi ∈ Rn×n is any invertible matrix (for example,
Vi could be set as I).

Proof Consider the augmented parameters in (8), we
take a special structure of Qi into account. Let

QT
i =

[

Qab
i

]

3×3
, (19)

and introduce new matrices

Q̄T
i =

[

Q̄ab
i

]

3×3
(20)

with their entities Q11
i = Yi, Q13

i = Vi, Q22
i = Xi, Q12

i =
Q21

i = Q23
i = Q32

i = 0, Q̄11
i = Z−1

i , Q̄13
i = Ui, Q̄22

i = I,
Q̄12

i = Q̄21
i = Q̄23

i = Q̄32
i = 0 and Q31

i , Q33
i , Q̄31

i , Q̄33
i

are uniquely determined from the following equalities
[

Yi Vi

Q31
i Q33

i

][

Z−1
i Ui

Q̄31
i Q̄33

i

]

= I

[

Z−1
i Ui

Q̄31
i Q̄33

i

][

Yi Vi

Q31
i Q33

i

]

= I (21)

Furthermore, we have the following relationship

QiQ̄i = Q̄iQi = diag{I, Ni, I}. (22)

Define
Ti =

[

T ab
i

]

3×3
,

with T 11
i = ZT

i , T 13
i = Y T

i , T 22
i = I, T 33

i = V T
i and

other entities all zeros, performing congruence transfor-
mations to (14) by diag{Q̄T

i Ti, Q̄
T
i Ti,SisQ̄

T
i Ti, I, I} and

define

Xis = T T
i Q̄iPisQ̄

T
i Ti, His = T T

i Q̄iHiSisQ̄
T
i Ti,

Eis = T T
i Q̄iS

T
isEiSisQ̄

T
i Ti, Ḡi = ViGiU

T
i ZT

i ,

K̄i = ViKi, L̄i = LiU
T
i ZT

i , M̄i = Mi, Si = ViU
T
i ZT

i ,

we can easily obtain that LMIs (17) with constraints (19)
and (20) are sufficient condition for LMIs (14). Hence, if
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there exist matrices Xis > 0, Si, Zi, Yi, Ḡi, K̄i, L̄i, M̄i,
Ni, His > 0 and Eis such that LMIs (17) are feasible,
then the overall fault detection dynamics (7) is robustly
mean square stable and the constraint (9) is satisfied.

Furthermore, from LMIs in (17), we can confirm that
Ψ22 < 0, which fuhrer indicates His + HT

is − Ψ22 > 0
and Zi and Yi are nonsingular. Define W = [I 0 − I],
we have

W
[

His + HT
is − Ψ22

]

WT = −Si − ST
i > 0, (23)

which implies that Si is nonsingular and also ensures the
existence of parameter matrices Gi, Ki, Li and Mi in
(18). The proof is completed.

Remark 7 In Theorem 6, an uncertainty-dependent ro-
bust fault detection filter design result is obtained, which
is less conservative than the uncertainty-independent
ones. In fact, if we impose
Xis = Xi, His = Hi, Eis = Ei,
i ∈ Ξ, s = 1, . . . , u, (24)

to (17), the uncertainty-independent result is recovered.

Remark 8 In most practical cases in NCSs, we are able
to know the size of the measurement delay or whether the
data is missing at a certain time by using the time-stamp
technique, and therefore the jumping parameters of the
transformed MJS are accessible. In this sense, Theorem
6 provides us a network-status-dependent fault detection
filter design result. On the other hand, if the network
status is not accessible, i.e., the jumping parameters of
the transformed MJS are unavailable, a network-status-
independent result can be easily obtained by imposing

Si = S, Vi = V, Ḡi = Ḡ,

K̄i = K̄, L̄i = L̄, M̄i = M̄, i ∈ Ξ, (25)

to Theorem 6.

Note that (17) is a set of LMIs over both the matrix
variables and the prescribed scalar γ2, which gives rise to
the following two conclusions: (1) the robust full-order
fault detection filter can be obtained from the solution
of convex optimization problems in terms of LMIs that
can be solved via efficient interior-point algorithms [21]
and, (2) the scalar γ2 can be also included as one of
the optimization variables for LMIs (17), which makes
it possible to obtain the minimal noise attenuation level
bound for the fault detection dynamics (7). Thus, a sub-
optimal robust fault detection filter can be readily found
by solving the following convex optimization problem.

Problem 1: Consider networked system (1) with multi-
ple state-delays, unknown inputs and uncertain transi-
tion probability matrix Λ ∈ Π, a uncertainty-dependent
sub-optimal robust fault detection filter can be obtained
by solving the following problem:

min
Xis > 0, Si, Zi, Yi, Ni,

Ḡi, K̄i, L̄i, M̄i,His > 0, Eis,

i ∈ Ξ, s = 1, . . . , u

γ2, s.t. (17) holds.

The parameters of the sub-optimal robust fault de-
tection filter can be determined by (18), and the sub-
optimal robust H∞ attenuation level for fault detection

dynamics is given by γ∗ =
√

γ2
opt, where γ2

opt are the

sub-optimal solution of the corresponding convex opti-
mization problem.

4 A Numerical Example

To illustrate the effectiveness of the proposed method,
we provide a numerical example in this section. The pa-
rameters of the discrete-time networked system (1) are
given as the follows:

A0 =

"
0 0.5

0.2 0.2

#
, A1 =

"
0.2 0

0.7 0.1

#
, Bw =

"
0.5

0.3

#
,

Bf =

"
−1

2

#
, C0 = C1 =

"
0.2 0

0 0.5

#
, D =

"
0.2

−0.1

#
.

The initial state values ϕk are set to be ϕ−1 = ϕ0 =
0. Letting q = 1, the state-space of the Markov chain
{τk} can be obtained as Ξ = {−1, 0, 1}. The transition
probability matrix of the Markov process is unknown
but resides in a polytope with the following two vertices:

Λ1 =

2664 0.5 0.4 0.1

0.3 0.4 0.3

0.2 0.3 0.5

3775 , Λ2 =

2664 0.7 0.2 0.1

0.3 0.4 0.3

0.2 0.3 0.5

3775 ,

The initial mode is set to be τ0 = 0. For k = 0, 1, . . . , 300,
the unknown input wk is supposed to be a random noise
uniformly distributed over [−0.5, 0.5], and the fault sig-
nal fk is given as:

fk =

{

0.5, for k = 100, 101, . . . , 200,

0, others.

With the above parameters, after solving Problem 1 by
using the Matlab LMI toolbox [21], we can obtain the
minimal noise attenuation level of the fault detection
dynamic γopt = 1.0000. Furthermore, the parameters of
the sub-optimal fault detection filter in different modes
are given by

G−1 =

"
0.0025 1.2515

0.0857 0.6038

#
, K−1 =

"
0 0

0 0

#
,

L−1 =
h

−0.6317 0.3461
i

, M−1 =
h

0 0
i

,

G0 =

"
−0.1872 0.8228

−0.0576 0.2541

#
, K0 = 10−6

×

"
−1.656 −4.389

−0.772 −1.206

#
,

L0 =
h

0.0734 −0.3254
i

, M0 = 10−6
×

h
1.592 −0.097

i
,

G1 =

"
−0.3622 1.0477

−0.2268 0.6846

#
, K1 = 10−6 ×

"
−3.552 −0.159

−3.246 −0.199

#
,

L1 =
h

−0.3731 0.4892
i

, M1 = 10−6 ×

h
1.534 0.159

i
.

We consider the real transition probability matrix as

Λ(β) =







0.62 0.28 0.1

0.3 0.4 0.3

0.2 0.3 0.5






,

which means β1 = 0.4, β2 = 0.6 in (4). For the sake
of reducing false alarm as well as easy implementation,
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Fig. 3. Evolution of J(k)

we properly adjust the gain of the transfer function, en-
larging the threshold be acceptable in practice. In this
simulation, we multiple K0, M0, K1 and M1 with 107.
Using the resulted fault detection filter, we provide a
time-domain simulation result.

Fig. 2 shows the measurement mode with random delay
and missing phenomenon, where τk = −1 (respectively,
0, 1) means the measurement is missing (transmitted
over the network perfectly, delayed for one-step, respec-
tively).

The evolution function J(k) defined in (10) is presented
in Fig. 3. We set the length of the finite evaluating time
horizon as L = 10 and determine a threshold by us-
ing 400 times Monte Carlo simulation as Jth = 0.0156.
From Fig. 3, we can observe that when k = 107, J(k) >
J(k −L) + Jth for the first time, and the designed fault
detection filter can alarm the fault within 7 time steps
after the fault occurred at k = 100.
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