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Abstract

This paper presents a novel class of resource-constraindtitagent systems for cooperatively estimating an unkmdild of interest

and locating peaks of the field. Each agent is resource @nstt and has limited capabilities in terms of sensing, adatjon, and

communication; hence a centralized approach is not désiaaid not feasible. We propose an algorithm for distribdestning and

cooperative control of a multi-agent system so that a glgbal of the overall system is achieved from locally actingr&tg. The proposed
algorithm is executed by each agent independently to esiana unknown field of interest from noisy measurements armboodinate

multiple agents in a distributed manner to discover peakbeiinknown field. Each mobile agent maintains its own lostiheate of the

field and updates the estimate cooperatively using its owasorements and measurements from nearby agents. Thengsatmeoves
towards peaks of the field using the gradient of its estiméiedd. Agents are coordinated using a distributed rule so tiay avoid

collision while maintaining communication connectivifyhe propose algorithm is based on a recursive spatial esbimef an unknown

field of interest using noisy measurements. We show thatltsed-loop dynamics of the proposed multi-agent systenbeamnansformed
into a form of a stochastic approximation algorithm and prég convergence using the Ljung’s ordinary differentiqgl@ion (ODE)

approach. Our theoretical results are also verified in sitian.

Key words: Cooperative control; Multi-agent systems; Recursive ip&tar estimation

1 Introduction has attracted much attention of environmental scientisds a
control engineers [6,7]. This has numerous applications in
luding environmental monitoring and toxic-chemical pim

In recent years, significant enhancements have been mad . ; ; X vl
racing. An interesting practical application is to tracerh-

in the areas of sensor networks and mobile sensing agents . . ; .
ful algal blooms in a lake. For certain environmental condi-

Emerging technologies have been reported on coordination,. . ; .
of mobile sensing agents [1-5]. Mobile sensing agents form 1NS: rapidly reproducing harmful algal blooms in laked an
an ad-hoc wireless communication network in which each !N 0¢€ans can produce cyanotoxins [8]. Exposure to water

agent is resource constrained, i.e., it operates underra sho ;ﬁgt%rr?rlggj[gdhgvaﬁ?h ﬂ%gtéy?gogomgi s(,:%l:]Sde; dsee”rggse?fgzté
communication range, limited memory, and limited compu- : u v

tational power. To perform various tasks such as explanatio to aquatic life [8,9]. The level of chlorophyll is a measure
surveillance, and environmental monitoring, distributed closely related to harmful algal blooms. Hence, there have

ordination is required for mobile sensing agents to adapt been efforts to generate the_ estimateq fields of chlorophyll
to environments to achieve a global goal. Among challeng- over the areas of concern (Fig. 1). Having had the aforemen-

ing problems in distributed coordination of mobile sensing 1on€d motivation, the objective of our work is to develop

agents, gradient climbing over an unknown field of interest theoretically-sound control aIgo_rlthms _for multi-agegts
tems to trace peaks of a scalar field of interest (for example,

- harmful algal blooms, temperature, pH, salinity, toxinsl a
_* This paper was not presented at any IFAC meeting. Correspond chemical plumes etc.). In general, theses scalar parasneter
ing author Jongeun Choi Tel. +1-517-432-3164. Fax +1-383-3  provide rich information about quality of environmentsisuc

1750. as the air, lakes, and public water systems.
Email addresses choi @qgr . nsu. edu (Jongeun Choi),
songhwai . oh@cner ced. edu (Songhwai Oh),
horowi t z@re. ber kel ey. edu (Roberto Horowitz). The most common approach to this tracing problem has been
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Fig. 2. Left: Trajectories of the proposed multi-agent egst
Fig. 1. The estimated field of chlorophyll a generated by the Right: Trajectories of field estimating agents without conmin
harmful algal blooms observation system [9] by NOAA. (Photo cation and the swarming effort. The estimated field by ageist
courtesy of NOAA). shown as a background in colors. Agéris plotted as a green dot.

Thin contour lines represent the error field between the finie
biologically inspiredchemotaxi§10,11], in which a mobile  and the estimated field. (+) and (o) represent, respectiirgtial
Sensing agent is driven according to a local gradient of a and final chations. Solid .Iines r.epr.esent trgjectoriesgm‘rms. See
field of interest. However, with this approach, the conver- More details about the simulation in Section 5.

gence rate can be slow and the mobile robot may get stuckyt 5 syrveillance region. Hence, agents cannot perform the

in the local maxima of the field. The cooperative network ¢ erage control as shown in [16]. Instead, each agent re-
of agents that performs adaptive gradient climbing in a dis- ¢ejyes measurements from its neighboring agents within its
tributed environment was presented in [6,7]. The cenedliz o mmunication range. Upon receiving cooperative measure-
network can adapt its configuration in response to the sensedpents, each mobile sensing agent will recursively update th
environment in order to optimize its gradient climb. estimate of an unknown static field of interest. The recersiv
. ] o ~_ estimation is based on the nonparametric method ck#éed
This problem of gradient climbing constantly occurs in bi- ne| regressiorin order to represent a wide range of physical
ological species. Aquatic organisms search for favorable r - phenomena. To locate the maximum (or source) of the field,
gions that contain abundant resources for their survival. F  the sensing agent will climb the gradient of its own estirdate
example, it is well-known that fish schools climb gradients field. The proposed cooperative control mimics the individ-
of nutrients to locate the densest source of food. To locate ya| and social behaviors of a distributed pack of animals
resources, fish schools use “taxis”, a behavior in which they communicating locally to search for their densest resaurce
navigate habitats according to local gradients in unaertai in an uncertain environment. The fish school’s efficient per-
environments. Grinbaum [12] showed that schooling behav- formance of climbing nutrient gradients to search food re-
ior can improve the ability of performing taxis to climb gra-  sources and the exceptional geographical mapping capabil-
dients, since the swarming alignment tendency can averagaty of biological creatures have motivated the development
out the stochastic sampling errors of individuals. of our multi-agent systems. Simulation results in Section 5
strongly support our idea and validate the effectiveness of
Tanner [3] and Olfati-Saber [4] presented comprehensive the proposed multi-agent systems with cooperative control
analyses of the flocking algorithm by Reynolds [13]. This as compared to field estimating agents without cooperative
flocking algorithm was originally developed to simulate the control. As shown in Fig. 2, the proposed multi-agent sys-
movements of flocking birds in computer graphics where tem collectively locate the maximum of the unknown field
each artificial bird follows a set of rather simple distribdit ~ rapidly while, without communication and the swarming ef-
rules [13]. A bird in a flock coordinates with the movements fort, only a couple of agents near the maximum point can
of its neighboring flock mates and tries to stay close to its slowly estimate and climb the gradient of the field.
neighbors while avoiding collisions. In general, the colle
tive swarm behaviors of birds/fish/ants/bees are known to beThis paper also presents convergence properties of the
the outcomes of natural optimization [14,15]. proposed distributed learning and cooperative control al-
gorithms by transforming the closed-loop dynamics of a
In this paper, we extend the recent development in multi- multi-agent system into a form of a stochastic approxi-
agent systems [3,4] and develop novel distributed learning mation algorithm. Our theoretical results are based on the
and cooperative control algorithms for multi-agent system ordinary differential equation (ODE) approach [17,18]. We
The learning and control algorithms are performed at eachalso present a set of sufficient conditions for which the
agent using only local information. However, they are de- convergence is guaranteed with probability one.
signed so that agents as a whole exhduliective intelli-
gencei.e., a collection of agents achieves a global goal. In This paper is organized as follows. In Section 2, we briefly
a resource-constrained multi-agent system, the communica introduce the mobile sensing network model, notations re-
tion range of each agent is limited as compared to the sizelated to a graph, and artificial potentials to form a swarming



behavior. A recursive radial basis function learning algo-
rithm for mapping the field of interest is presented in Sec-
tion 3.1. In Section 3.2, cooperatively learning contralés

scribed with a stochastic approximation gain. Section 4 an-

of r, as depicted in Fig. 3. Thereforg, j) € £(¢) if and
onlyif ||¢;(t)—g; (t)|| < r. Forexample, théth agentin Fig.

3 communicates with and collects measurements from all
four neighboring sensing agents in thth agent's commu-

alyzes the convergence properties of the proposed coerdinanication range. We define the neighborhood of agemith
tion algorithm based on the ODE approach. In Section 5, the a configuration of; by N (i,q) := {j € Z|(3,5) € E(q)}-
effectiveness of the proposed multi-agent system is demon-The adjacency matrid := [a;;] of an undirected grapty

strated by simulation results with respect to differentfel
of interest and conditions.

2 Maobile Sensing Agent Network

is a symmetric matrix such that; = k3 € Ry if vertex

i and vertexj are neighbors and;; = 0 otherwise. Notice
that an adjacency matrid can be also defined in a smooth
fashion in terms ofy [4]. The scalar graph Laplaciah =

[l;j] € RN:=*Ns s a matrix defined ag := D4 — A, where
DA is a diagonal matrix whose diagonal entries are row

In this section, we describe the mathematical framework for g ;ms of4, i.e., DA := dia9(2§Vﬁ1 a;;). The2-dimensional

mobile sensing agent networks and explain notations used

in this paper.

Let R,R>¢,Rs0,Z, Z>¢, Z>o denote, respectively, the set
of real, non-negative real, positive real, integer, nogatiee
integer, and positive integer numbers. The positive definit
ness (respectively, semi-definiteness) of a matriis de-
noted byA > 0 (respectivelyA > 0). I,, € R"*" denotes
the identity matrix of size.

2.1 Models for Mobile Sensing Agents

Let N, be the number of sensing agents distributed over

the surveillance regiotm C R?, which is assumed to be

a convex and compact set. The identity of each agent is in-

dexed byZ := {1,2,---, Ns}. Let ¢;(t) € M be the lo-
cation of thei-th sensing agent at time € R>, and let
q := col(q1,q2,--- ,qn.) € R?Ns be the configuration of
the multi-agent system. The discrete time, high-level dy-
namics of agent is modeled by

@it + A¢) = ¢i(t) + Apvs(2), 1)
where ¢;(t) € R? andv;(t) € R? are, respectively, the
position and the control input of agent timet € Rx.
A; € R- o denotes the iteration step size (or sampling time).
We assume that the measuremg(at (¢)) of thei-th sensor
includes the scalar value of the fieldq;(¢)) and sensor
noisew(t), at its positiong;(¢) and a sampled timg

(2)

wherey : M — [0, timaz] 1S @an unknown field of interest.

y(qi(t)) == p(qi(t)) +w(t),

2.2 Graph-Theoretic Representation

The group behavior of mobile sensing agents and their com-

graph Laplacian is defined ds:= L ® I,, where® is the
Kronecker product. For instance, the correspondingl
and L for a graph in Fig. 3 are:

0110 2 -1-10
1010 -1 2 -10
A=ks = ,
1100 -1-1 220
0000 0 0 00
2L, =1, -1, 0

. -1, 21, -1, 0
L=L®I,=ks )

I, =1, 21, 0

0 0 0O

where0 denotes a zero matrix with appropriate dimensions.
Leta state; € R? be associated to ageiforalli € Z under

a topology of an undirected gragh Two agents and; are

said to agree whenever they have the same stategyi-e.,

p;. The quadratic disagreement functig : R — Rx
evaluates the group disagreement in the network of agents:

1
1 > aijllpy —pill%,

(i,.5)€€(q)

Va(p) : €))

wherep := col(py, ps,- -+ ,pn,) € R*N=. A disagreement
function [4,19] can be obtained via the Laplacian
L,

Va(p) 5

4
and hence the gradient & (p) with respect ta is given
by

VU¢(p) = Lp. (5)
The properties shown in (4) and (5) will be used in the

plicated interactions with neighbors are best treated by aconvergence analysis in Section 4.

graph with edges. Lef/(q) := (Z,£(q)) be an undirected
communication graph such that an edge) € £(q) if and
only if agenti can communicate with agerit£ i. We as-

2.3 Swarming Behavior

sume that each agent can communicate with its neighboringA group of agents are coordinated to collect (noisy) samples
agents within a limited transmission range given by a radius from a stationary field at diverse locations for the purpose



Notice thatp varies smoothly froml to 0 as the scalar
input increases. (6), (7), and (8) will produce a continu-
ously differentiable ¢') reaction potential force between
any two agents as depicted in Fig. 4. Parameterd, dy,
andd; will shape the artificial potential function. A typical
way to choose those parameters are explained as follows.
In equations (6), (7), and (8), a non-zero gain factois
introduced to prevent the reaction force from diverging at
rij = la — gj1|* = 0. As illustrated in Fig. 4, this potential
yields a reaction force that is attracting when the agems ar
too far away and repelling when a pair of two agents are too
close. It has an equilibrium point at a distancé af, will be
chosen at the location where the slope of the potential force
first becomes zero (Fig. 4) qgr;; increases from zero. For

gathers measurements from two neighboring sensing agemntd fV Tij > dg’ the bump functlor;]lvwll ﬁhap(; the lth_e p(zj'[gntlal
3 in ar interactive range. Hence, the collective measurements of '10/C€ 10 become zero smoothly when the relative distance

agent2 will be sampled at locations denoted by agehind 3. reaches tal, which is slightly shorter than the radius of the
transmission range. Hence, in general, we configure pa-
of estimating the field of interest. A set of artificial potiaht rameters such that < dy < d; < r, which will force the
functions creates a swarming behavior of agents and pro-gradient of the potential function due to agegrih (8) to be
vides agents with obstacle avoidance capabilities. We usea zero vector before the communication link to ageig
attractive and repulsive potential functions similar teesn  disconnected from agerit In this way, we can construct a
used in [3,4,20] to generate a swarming behavior. To enforcesmooth collective potential force between any two agents in
a group of agents to satisfy a set of algebraic constraintsspite of the limited communication range. We also introduce
llgi — qj|| = d for all j € N(i,q), we introduce a smooth  a potentiall/; to model the environment/, enforces each

Fig. 3. The model of the mobile sensing agent network. Thataye

collective potential function agent to stay inside the closed and connected surveillance
region in M and prevents collisions with obstacles..
Z Z Uii(lgi — q;11?) We construct; such that it is radially unbounded ipi.e.,
t JEN(i,q),571
(6) U. — 00 as — 00. 9
- Uyt 2(9) llall ©9)

b IEN(ia) 37 The condition in (9) can be used for making a Lyapunov

function candidate radially unbounded. Define the total ar-

e s — a2 ' i .
wherer;; := |l¢; — ¢;||°. The pair-wise attractive/repulsive tificial potential by

potential functionl;;(-) in (6) is defined by

o+ d2 Ul(q) := kU4 (q) + kQUg(q), (20)

1 .
Uij("’ij) = 5 <10g(0¢ + Tij) + m) R if Tij < dg,
Y (7) where k, k; € R, are weighting factors. A swarming

otherwise (i.e.r;; > d2), it is defined according to the behavior and an obstacle avoidance capability of each agent

gradient of the potentlal which will be described shortly. will be developed in Section 3.2.
Herea,d € R-o andd < dy. The gradient of the potential

with respect toy; for agenti is given by 3 Distributed Learning and Cooper ative Control

oU 8U1
VUi (q:) == 6q Gi=q Z J r:r»-(qi - ) In this section, we describe distributed learning and coop-
LT Y erative control algorithms. The sensing agent will receive
S (rij—d®)(¢i—q;) if 7. < d2 measurements from its neighboring agents within a limited
= 7 (O‘T’,L,Tijf 022 ” transmission range. Upon receiving measurements, each mo-
2o jziP (dedof) I(la‘fdg)ll (¢i — qj) if rij > d3, bile sensing agent will recursively update the estimatenof a
(8) unknown static field of interest using the distributed |é&agn

algorithm. Based on the estimated field, each agent moves to

wherep : Rso — [0, 1] is the bump function [4] the peak of the field using the cooperative control algorithm

z € 1[0,h); 3.1 Distributed Learning

, 2 € [h,1]; . .y . .
)} | _ ] We introduce a distributed learning algorithm for each mo-
otherwise. bile sensing agent to estimate a static field of interest

—~

p(z) == [1 + cos (7r z2=h)

(1=h)

O = =
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Fig. 4. The reaction force between two agents is generatadeby
potential function in (6), (7), and (8) with respect [fg; — g;||.
Here parameterd = 0.4, dp = 0.648, di = 1.4 andr = 1.6 are
used.

M

Fig. 5. Uniformly distributed Gaussian bases over a suamke
region M.

M — [0, umaz]- Suppose that the scalar fieldv) is gen-
erated by a network of radial basis functidns

p(v) =Y 6;v)0; =¢" ()0, (11)
Jj=1

where¢® (v) and© are defined respectively by

W) = [610) 6:0) -+ 6mv) ]

=0, 0 - 9mre®,

where® C R™ is a compact set. Gaussian radial basis

functions{¢,(v)} are given by

1 —[lv — K;?
¢;(v) = F—jexp (TJ ,

J

(12)

where o; is the width of the Gaussian basis aiy

is a normalizing constant. Centers of basis functions

1 We have considered a fairly simple parameterization for the
field of interest to focus more on the design and the convemsen

analysis of learning agents. See more general models uséaefo
field of interest in [21,22].

{kjlj € {1,---,m}} are uniformly distributed in the
surveillance regionM as shown in Fig. 50 € ® C R™

is the true parameter of the regression model in (11). From
(2), we have observations through sensors at the location
vk, y(vk) = ¢T (vk)© + w(k), wherek is a measurement
sampling index. Based on the observations and regressors
{(y(wr), p(vx))}r_,, our objective is to find® which
minimizes the least-squares error:

> ly(vi) — 6" (i) O (13)
k=1

Remark 1 Our environmental model i(iL1) can be viewed

as a nonparametric approach to model spatial phenomena.
Other popular nonparametric approaches are Gaussian pro-
cesses [23] [24] and kriging models [25]. A dynamigalin
(11)was used to represent a time-varying trend in the space-
time Kalman filter model [26] to model spatio-temporal ran-
dom fields.

Noiseless Measurements

Let us first consider the measurement model (2) without
the sensor noise (k). Similar spatial estimation algorithms
with a known sensor noise level for achieving the minimum
variance of the estimation error can be found in [21,22]. For
aset{(y(vx), #(vi))}r_,, the optimal least-squares estima-
tion solution is well-known [27]:

O(n) = P(n,1)®" (n,1)Y (n,1), (14)
where (for simplicity, we abuse notations by letting:) :=

y(vi) andg(k) = d(vk))

T 1
Y(ns)i= [ y(s) y(s+1) - y(n) | €RVH

T
O(n,s) = [gb(s) gb(n)} e RPsHIxm
P(n,s) := [®T(n,s)®(n,s)]

= lz ¢(k)¢>T(/~f)] e R™™.

k=s

During a time interval between the coordination iteration
indicest andt + A; as in (1), we suppose that a sensing
agent has collected number of samples from itself and its
neighbors. Assume that at the previous iteration, the agent
has already updated the figld-) based on the previous data
set{(y(k), ¢(k))}_;, wheren—s is the total number of past
measurements. Now the sensing agent needs to update the
field i(-) upon receiving cooperatively measuredumber

of points{(y(k), (k) Yo—p— s 41-

We then have the following algorithm. Assume that
®T (t)®(t) is nonsingular for alt. For the collected num-
ber of observations and regressors



{(y(k), &(k))}o—p_s1. cOnsider the recursive algorithm LSE algorithm in (15). Let the estimation error vector be

given as O(n) := ©(n)—©. We also define the error of the estimated
field at the locatiorv € R by

K(n) = P(n — $)® [I, + ®.P(n— s)@7] ", i

P(n) = [Im—K(n)(I)*]P(n—S)’ f1(S, V) = (S, v) — p(v) :¢T(V)®(|S|)7 (19)
N R 15

O(n) = O(n — s) + K(n) [Y* - 2.0(n - 8)} ; (15) where|S| is the cardinality of the se§. The error of the
) = ¢T( ) (n), estimated field at € M is then obtained by

where some abbreviations are defingd:= Y (n,n — s + AS,v) = E((S,v)) + e(S,v), (20)

1) € R, &, = ®(n,n — s+ 1) € R*™, &T'(n) =

37 (n,1) € R™™, Y(n) := Y(n,1) € R* and P(n) :=  Where

P(n,1) € R™*™. Then it is strightforward to see that the

recursive estimation presented in (15) is the least-sguare E(j(S, v)) = ¢7 (v)
estimation that minimizes the error function in (13). ’

P(ISI) Y o) () = I | ©,

v €S
Remark 2 7 (n)®(n) is always singular forn < m. 151
®T (n)®(n) is nonsingular forn > m except for the case e(S,v) = PS> e)w(t) |
where measurements are only taken at a set of measure t=1

zero, for example, a line splitting two Gaussian radial Isasi
functions equally such that;(v) = ¢,(v). In practice, we where|S| is the total number of collective measurements
start the recursive LSE algorithm if15) with initial states for the associated agent. For persistent exciting cootidima
©(0) and P(0) > 0 which corresponds to the situation in ~ Strategies ¢ ®. - 0), the estimator is asymptoticafly
which the parameters have an a priori distribution and keep unbiased
running the recursive algorithm with new measurements.
With these initial values, we have ‘Sl‘lm E(a(S,v)) =0, Vv e M. (21)
-1 . p—1 T

P (n) =P (0) + @7 (n)®(n) - 0. (16) For a large number ofS|, the variance of the estimation

error is given by

In the next subsection, we elaborate on the case of noisy

T _ 4T
observation and the resulting effects on the estimated field (e(S,v)e (S,v)) = o (V)?/I//P(|S|)¢(V)a 22)
and its gradient. = ¢l (v)—= |S| L(S)o(v),

Noisy Measurements . ]
whereR(S) is defined by

Consider the measurement model (2) with the sensor noise

w(k), which is assumed to be a white noise sequence with P
an unknown varianc@’: R(S) = |g| |g| Zes‘b vi)o" (ve) |- (28)
W-0ifk=z Remark 3 From (22), it is straightforward to see that the
E(w(k)) =0, E(wk)w(z)) = , nark ) . gntro
0 if k2 estimation error variance is a function of the evaluated po-
(17) sition v in M, is proportional to the variancé’, and de-

creases at the rate df/|S| and R~1(S). R(S) asymptot-
ically serves as a time average of outer products of basis
functions evaluated at the measurement pointS.imvhich
implies that the error variance is smaller at places where
(18)
the agent has collected more samples.

where £ denotes the expectation operator. Moreover, we
assume that there exisis< co so that

|w(k)| < L with probability one (w.p.1Yk.

Given the measurement data set The gradient of the field of interest is denoted by

ou(x
{y(p)|pe S} whereS={v|1<k<n} Vu(v) = g(x ) . (24)
andthe sensor noige(k) | k € {1,--- ,n}} definedin(17) 2 tis asymptotically unbiased if a priori distribution €f(0) and

and (18), an agent will estimat@(n) using the recursive  P(0) is not available.



From (11), we have

T
Vu(v) = 3¢8;I) 6= ¢'T(1)0 € R**1 (25)
where¢'” (v) € R2*™. Thus, the gradient of the estimated

field based on observatiors:= {v;}7_, and{y(u)}
is given by

pnes

Vi(S,v) = ¢ (1)O(|S]) € R**. (26)
The error of the estimated gradient at the locatioa M
is obtained by

Vi(S,v) = ¢'" (1)O(|S]) — Vu(v) = ¢'" (1)6(|S])
=E(Vi(s, ))+V6(S,V),
(27)
where
E(V[L(S,V)) |S| Z(byk Vk I, ®a
v €S
S|
Ve(S,v) =" (v) [ (IS0 ZM ]

For ®T'®, - 0, the gradient estimator is asymptotically
unbiased

lim E(Vi(S,v)) =0, Vve M.

28

S| 00 28)
The covariance matrig(Ve(S,v)Vel (S,v)) is obtained
by

¢ (V) g RTH(S) (v), (29)

5l

whereR(S) is defined in (23). Now we present our collab-
oratively learning control protocol.

3.2 Cooperative Control

agent; at its positiong;(t) is given by

Ki(t+1) = P(t)®T (I, + &, Pi(1)®T)
Pit+1) = (I — Ki(t + 1)) Pi(t),
Oilt+1) = 0,(t) + Kt + 1) [Vai = 8.,0,(1)]
fui(t, qi(t) = ¢/ (qi(£))Os(t + 1),
(30)

whereVj;(t,v) : Z>o x M — R? denotes the gradient
of the estimated field at based on measurements before
the timet + 1. Y,; and ®,; of agenti are defined in the
same way a¥, and®, are defined in (15)Y; is the col-
lection of collaboratively measured data. From (2), for all
Jj € N(i,q(t)) U {i}, we have

Y = ©,,0 + w; (k) =: 9,0+ '(U*i(t)a (31)

where the sampled time of the measurements can vary
among sensors but we label the time indextbfor any
sampled time contained in a measurement period between
andt + 1. w;(k) is the measurement noise of sengpand

is independently and identically distributed ovee Z. We

also define a new variabte,;(t) as in (31) for later use.

Based on the latest update of the gradient of the estimated
field Vji;(t, ¢:(t)), a distributed controb; (¢ + 1) in (1) for
agent; is proposed by

e+ A _
vi(t+1):= A {mvl(t) +7(t)u1(t)] , (32)
with
Ay
ui(t) = =VU(q(t)) — kdimvi(t)
fO alay (P02 @9

JEN (i,q(t))
+ k4Vﬂi(t, qz(t))a

wherek, € R+ is a gain factor for the estimated gradient
andkg; € R>g is a gain for the velocity feedback. The first
term in the right-hand side of (33) is the gradient of the ar-

Each of mobile agents receives measurements from neightificial potential defined in (10) which attracts agents &hil
bors, then it updates its gradient of the estimated fieldgusin avoiding collisions among them. Also it restricts the move-
© from the recursive algorithm presented in (15). Subse- ments of agents insidaA; appropriate artificial potentials
quently, based on this updated gradient, the control for its can be added t&/(¢;) for agents to avoid obstacles int.
coordination will be decided. Hereafter, we apply a new time The second term in (33) provides damping. The third term
notation used for the coordination, to the recursive LSE al- in (33) is an effort for agentto match its velocity with those

gorithm in (15). In particular, we replaoe— s € Z>o by
t € Z>o andn € Zxo byt +1 € Z> in (15) such that the
resulting recursive algorithm with the new time index for

of neighbors. This term is used for the “velocity consensus”
and serves as a damping force among agents. The gradient
ascent of the estimated field is provided as the last term.



The control for the coordination of sensing agents gradu-
ally decreases for perfect tracking of the maximum of an
unknown field in spite of the estimation based on the noisy

measurements. We have proposed the control protocol in

(32) with a standard adaptive gain sequenge that satis-
fies the following properties

Y(6) >0, D y(t) =00, Y () < oo,
t=1 t=1

- ~ (34)
Jim sup(1/7(t) — 1/7(t — 1)] < oc.

This gain sequence is often used for stochastic approxima-

tion algorithms [17,18] and enables us to apply the ODE
approach [17,28,29] for convergence analysis.

For the convenience of analysis, we change variables. In
particular, we introducg; (¢), a scaled version of the velocity
statew; (t):

pi(t) = —

wherew;(t) is the control input to ageritas defined in (32).
After the change of variables in (35), the resulting dynamic
of agenti is given by

{

where we applied new notations to (1) by replacihg; (¢)
by ’}/(t)pi(t) R AVES RZO byt +1e ZZO andt € Rzo
by te Zzo.

(35)

qi(t+1)=q(t) +

(36)
pi(t +1) = pi(t) +y(Hui(?),

Incorporating the discrete time model in (36) along with the
proposed control in (32) gives

qi(t+1) = qi(t) +v(t)pi(D),
pi(t+1) = pi(t) + W(t){ — VU(q:(t) = kaipi(t)  (37)
—~ VUG(pi(t)) + kao (a:(1)Ou(t + 1)},

whereVU(p;(t)) is the gradient of the disagreement func-
tion (defined in (3) and (5)) with respect tg:

>

FEN (i,q(2))

V¥q(pi(t)) aij (q(t)) (pi(t) = p;(1)).

In the next section, we will transform our multi-agent syste
into a recursive stochastic algorithm with states

x(t) :=col(qr, - ,qn,(t),p1(t), - ,pn. (1)),

and

o(t) == col(©1(t),--- ,On.(1)).

4 Convergence Analysis

In order to analyze the convergence properties of (30), (37)
and (34), we utilize Ljung’s ordinary differential equatio
(ODE) approach developed in [17,28,29]. In particular,
Ljung [17,28] presented an analysis technique of general
recursive stochastic algorithms in the canonical form of

z(t) =zt —1) +y(O)Qx(t — 1),9(t),  (38)
along with the observation process
p(t) = g(t;z(t — 1), (t — 1), e(t)). (39)

In order to use the ODE approach, for this nonlinear obser-
vation process in (39), the following regularity conditiin

[28] need to be satisfied. Lé2r be a subset of the space

in (38), where the regularity conditions hold.

Cl: ||g(z,p,e)|| < C forall ¢, e forall z € Dg.

C2: The functionQ(t, z, ) is continuously differentiable
with respect tar andp for x € Dg. The derivatives are,
for fixed x and, bounded ir¥.

C3: g(t;x, p, €) is continuously differentiable with respect
tozx € Dp.

C4: Defineg(t,z) as

@(tvj) = g(t;i'a gD(t - 17‘%)’ e(t))a 95(0’ CE) =0, (40)

and assume that(-) has the property
16(6:2) — o(t)]| < € max |7~ (k)]

if @(n,T) = ¢(n). This means that small variationsin
in (39) are not amplified to a higher magnitude for the
observations.

C5: Let ¢1(t,z) and @2(t,Z) be solutions of (40) with
?1(s,7) == Y and pa(s, T) := ¢9. Then defineD; as
the set of allz for which the following holds:

161(t, %) — G2(t, 2)|| < C(ed, P2)N (),

wheret > s and A\(z) < 1. This is the region of expo-
nential stability of (39).

C6: lim;—.. EQ(t, %, ¢(t, %)) exists forz € Dg and is
denoted byf(z). The expectation is ovefe(-)}.

C7: ¢(+) is a sequence of independent random variables.

C8 Y2, (t) = 0.

C9: Y2, 7P(t) < oo for somep.

C10: ~(+) is a decreasing sequence.

C11: limy o sup[l/v(t) — 1/7(t — 1)] < oo.

For practical algorithm implementation, the projection or
saturation is often introduced [17,18] to meet the bounded-
ness condition required in the ODE approach [17]. Since



dynamics of agents are given by a single integrator, i.e., th Lemma 5 The algorithmg¢37)and(30)can be transformed
position of the agent can be controlled into the forms of(38) and (39) respectively, using the fol-
lowing definitions;

ai(t+1) = q(t) +v@)pi(t),

q(t) == col(gi(t),--- ,qn, (1)) € R*™,
vv_herepi(t) is the control, we can apply the usual saturation p(t) == col(py(t), -, pw. (t)) € R2N:,
aen Ll #(t) = [¢"(0),p" ()" € RN
(t2(t = 1), (1)) (45)
B ] a@), Q(t)e D
z(t) = [2()]p —{I v owep @Y _ ) |

~VU(q) = (L(q) + Ka)p = VC(,q)

wherex(¢) and2(t) denote the left- and right-hand sides

of (38) respectively, i.e., the projected algorithm update where Ky = diag(kq1,--- ,kan,) ® I > 0. The gradient
only if the updated value belongs 0 otherwise it keeps  of the estimated cost functi(m(i'(go(t)’ q(t — 1)) € R?Ns
the previous state. Our closed-loop system in (37) will be is defined by

converted to the canonical form in (38). Throughout the

paper, we assume that the projection is applied to the szbult — kscol(Via(t —1,q1(t = 1)),-- -,
algorithm in the form of (38). The projection disappears in Vin, (t —1,qn.(t — 1))
the averaged updating directions. Hence, the convergence i °.
properties of the projected algorithm can be studied as if = —kacol(¢" (q1(t —1))O1(t), -,
there was no projection in (38). For more details, see [29,30 &' (qns(t — 1))@1\,5(15)),

and references therein.
For the observation process {i39), we have:

p(t) = g(t;x(t —1),¢(t —1),e(t))
Corollary 4 (Ljung [29]) Consider the algorithni38), (39) =A(t;x(t — 1))t — 1) + B(t;2(t — 1))e(t),
and (41) subject to the regularity condition61-C11 Let (46)
Dpg be an open connected subset/af. Let D in (41) be
the compact subset ddr such that the trajectories of the \yhere
associated ODE

We will then utilize the following corollary reported in [29

P(t) = collBi(t), -, On ())eRmNs,
—a(r) = f(x(r)) (42) At - 1)) —d|ag( Ky(1)®,
— Kn. ()0, ) c RmNsmes
where . ] B(t;xa—l))::dlag<K1<t>,---,KNS<>> e RN X0,
(@)= Jim EQ(t;z, o(t,2)), (t) = Col(war (t — 1), - ,wa, (t — 1)) € RO,

that start in D remain in a closed subsdbr of Dy for ) ) )
7 > 0. Assume that the differential equati¢42) has an where O varies according to the number of collaborative

3

invariant setD, with domain of attractionD 4 O D. measurements at each iteration.
Then either Proof: From (30), notice that:

z(t) — D., with probability one ag — oo,  (43) 0, (t) = [Im — Ki(t)®.i]04(t — 1)+ K;(t)w.; (t—1). (47)
or The rest of the proof is straightforward and so is omitted.

(44) Two lemmas to validate the regularity conditiof4-C11

#(t) — 9D, with probability one ag — oo, will be presented under the following assumptions:

wheredD is the boundary op). M1: Each agent collects > m number of measurements

. : . . . . at location s_. from itself and neighbors so that
The conclusion (44) is possible only if there is a trajectory Steties g

of the differential equation in (42) that leavéxsin (41).

_ _ Zcb(l/k)ebT(Vk) =0
Now we present our main results. The following lemma 1
shows how to transform our coordination and estimation
algorithms to the canonical forms in (38) and (39). wherem is in (11).



M2: The artificial potential force and the adjacency ma-
trix are continuously differentiable with respect¢and
derivatives are bounded.

M3: The projection algorithm (41) is applied to the co-
ordination algorithm (38). LetD in (41) be a convex
and compact set defined by := MY* x M,,, where

Mp = [pmina pmax] N

Remark 6 M1 can be viewed as a persistent excitation con-
dition in adaptive control [27].M2 can be satisfied, for in-
stance, seéB)and [4]. M3 is used to satisfy the boundedness
condition for the ODE approach and it is also very useful to
model the realistic control saturations for mobile vehgle

Lemma 7 LetA;(t) :=
the matrix

A;(t;z(t—1)). UnderM1 andM3,

is a positive definite matrix for all € Z andt € Z~,. All

eigenvalues ofl;(t) in (48)are nonnegative and strictly less
thanl, i.e.,

/\min(Ai(t)) > O, )\max(Ai(t)) < 1.

Hence, the induced matrix two norm 4f(t) is strictly less
than1:

A ()| <1, VieZ,VteZso. (49)
Proof: By the definition ofA;, it is a symmetrical matrix.

Ai(t) = I, — Pi(t)®T (I, + ®.; P;(1)®T) 1 ®,,.

where P;(t) > 0 is a positive definite matrix. From (30),

notice that
Pi(t—1)

— () = 0, PA(t) = APt 1) = 0,

implies P;(t — 1) (I,
Hence, we conclude that< A;(t) = AT (t) < I,,,. More-
over, sinceA;(t) > 0, there exists a square root matiix
so that4;(t) = FTF and F = diagv 1, , V)R
whereR is the orthonormal matrix ankh = Apax(Ai(t)) >
A2 > o0 > Ay = Amin(A4(2)) > 0. Since A;(t) =
FTF < I, implies that \/Anax(FTF) < 1, we have
Amax(Ai(t)) = Amax(FTF) = || F||* < 1 and || 4;(t)|] =
VAmax (AT (1) A (1) < 1. O

— Al(t)) > 0.

Lemma 8 Consider the transformed recursive algorithm af-
ter applying Lemma 5 under assumptiold-M3. Then
the algorithm is subject to the regularity conditioll-
C11, and (M™M= \ Z) x M, C D C Dg, whereM,, =
[Pmin, Pmax)2Y¢ and Z is the set defined by

d(q)0"(q;) £ 0, VieT

(50)

>

Z = {q e MN-
JE{iTUN (i,q)
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Moreover, f(z) in (42) of Corollary 4 is given by

p

7w — (L(q) + Ka)p — VC(q)

. (51
—VU(q) &1

whereC/(q) € R>¢ is the collective performance cost func-
tion defined by

C(q) = ka Y _[ttmaz — p(a:)],

i€l

(52)

hereks € R is a gain factor andu,,.. € Rsg is the
maximum of the fielg.

Proof: Verifications ofC1-Cllare as follows:

e C1:Thisis satisfied by the measurement noise assumption
in (17) and (18) with Lemma 7 undé4l andM3.

e C2: This is satisfied due to the assumptiM2 and
smooth and bounded derivatives of radial basis functions
in VC(¢, q) with respect tay.

e C3: A(t;-) and B(t;+) in (46) are functions of smooth
radial basis functions, therefore, they are smootin

e C4: We take the similar argument used in [31].

Notice that:
(1) = 3(0) = Atz (0 1) — 5t 1)
g '
Pl
a —
8? F(t— 1)( (t—l)_x)

F(t—1)

+Zax

Z(t— 1)
P(t—1)

x(t —1) (HAtUC|th))

where the mean value theorem was used for a smooth
g with respect toz and ¢. [37(s), @T(s%_]T is a point

between [z7(s), ¢T'(s)]T and [z (s), ¢T(s)]*. From
Lemma 7 undeM1 and M3, we have:
At z)|z]| <1—6 <1,V (45)
Therefore we obtain:
_ dg _
lo(®) = 0 < | 5y ot =D =2

+ (T 1A Dl ]| 2 o | X e =) = 2l)
i=2 j=1 —i
t—n
_ syl og -
<>a-9 max |22 max, llo(s) - 7]
1
< 5C max |lo(s) - 2| < € ma |ja(n) — 7]



e C5: For a fixedz, notice that:

pilt.r) = ] Atka)ai(s,2)

k=s+1
+ Z [ H A(k;z) | B(j5;%)e(y), i € {1,2}.
j=s+1 [ k=j+1

UnderM1 andM3, ||A(k; Z)|| < A(z) for all k € {s +
1,---,t}, whereA(z) < 1. Hence we have:

161(t,7) = G2(t, 2)|| < X7 (@)l|1(5,7) — @2(5,7),

forall z € (MN:\ Z) x M, C Dg, whereZ is the set
defined in (50).
e C6: Elements ofQ) in (45) are deterministic functions of

x € Dy except forVC(p(t), ¢). Thanks tavi1 and (28),
for a fixedq, we have

lim E(VC(p(t),q)) = VC(q),

t—o0

which provesC6 and (51) simultaneously.

e C7: This is satisfied due to the measurement noise as-

sumption in (17).
e C8, C9, C10, Cl1These are satisfied by the time varying
gain sequence defined in (34).

Proof: From Lemma 5, Lemma 8 and Corollary 4, the
asymptotic trajectoryz(7) := col(q(7),p(r)) € Dg is
given by the associated ODE

(54)

Taking the derivative ol (z(7)) in (53) with respect tar
and using (54), we obtain

T
LD (Z2) st
_ VU@v»+vcmv»]T
p(7)

p(7)
—VU(q()) — VC(q(7)) — (L(q(r)) + Kd)p(T)]
= —p"(7)(L(q(7)) + Ka)p(r) < 0.

(55)

From (9) and (53), we conclude thaf(z) is radially-
unbounded, i.eV (z) — oo as||z|| — oco. Then

Dy:={z|V(x)<a}

is a bounded set with-V(z) < 0 for all z € Dy4 as in

Finally, the global performance cost that sensing agents to(55), which is a positively invariant set. By LaSalle’s iniva

minimize, is defined as

Z + C(g(r)). (53)

We have the following theorem regarding the convergence

properties of the proposed multi-agent system.

Theorem 9 For any initial state zp = col(qo,po) €

D, where D is a compact set as inf4l), we con-
sider the recursive coordination algorithm obtained
by Lemma 5 under conditions from Lemma 8. Let
Dy :={zeD|V(z)<a} be a level-set of the cost
function in (53). Let D, be the set of all points inD 4,
where-LV (z) = 0. Then every solution starting from 4
approaches the largest invariant sét,; contained inD,
with probability one as — oo, or {z(¢)} has a cluster
point on the boundaryD of D. Moreover, if{z(¢)} does

not have a cluster point o@D and (L(q) + K4) > 0,
Vz € D, then any point* = col(¢*,0) in Dy, is a critical
point of the cost functiof (x), which yields either a (local)
minimum ofV (z) or an inflection point, i.e.,

11

ant principle and Corollary 4(t) approaches the largest
invariant setD,,; contained inD,.. given by

{2(n) [V (@(r)) = =p" (1)(L{a(r)) + Ka)p(r) = 0},
(56)

with probability one ag — oo.

If (L(q)+Ky) > 0V € D, from (56), any point:* in D,

is the form ofz*(t) = col(¢*(¢),0). Moreover, from (51),
we have¢*(t) = 0 and0 = —VU(¢*) — VC(¢*), which

verifies thatc* is a critical point of the cost functiol ().

Hence this completes the proof. Q.E.D.

5 Simulation Results

We applied the proposed multi-agent system to static fields,
which are represented by twenty five radial basis functisns a
depicted in the left side of Fig. 7 (uni-modal) and Fig. 9 (bi-
modal). The estimated field was updated once per iteration
used for the coordination of agents. Twenty five agents were
launched at random positions away from the maximum of
the field in the simulation study. Parameters used for the
numerical evaluation are given in Table 1. Simulation rssul
are evaluated for different parameters and conditions.



Table 1 (@) 40 iterations (b) 200 iterations
Parameters in the simulation.

Parameters Values
Number of agentsV, 25
Number of basis functions: 25
Surveillance region\t [-5,5]?
(d, do,d1) (0.6, 1.5d, 3.5d)
(0.4,1.62d, 3.5d)
Transmission range 4d
Noise levellW 1 °
(ks s ook (01,10,01,01 WO Ay = o, a teration mes — 10 (&) andi = 200
Ky Irn,; 0.1Ixn,; Olan, (b) under the projection algorithm. The estimated field bgrag is
Saturation fmitD  [=5, 5% x [=1, 1™ Thin contour inex represent the error fied between tho fsid
7(0) 0.2 and the estimated field. (+) and (o) represent, respectiirgtial
e(0) O and final locations. Solid lines represent trajectoriesgergs.
P(0) 3l 5

5.1 Standard Conditions

RMS error

We consider the proposed multi-agent system under the stan-0
dard operating conditions (used in Theorem 9), which in-
clude the projection algorithm defined in (41), velocitydee
back (K, > 0 as defined in (45)), and an artificial potential
wall. Fig. 6-(a) shows that the recursively estimated field -5
by agentl at the iteration time = 20 under a noise level
W = 1. The swarming agents have the equilibrium dis- Fig. 7. A uni-modal field of interest (left). The root mean atg!
tance ofd = 0.6 as defined in (7). The estimation error field (RMS) values of the spatially averaged error field achievealb
is also shown with colored contour lines as in Fig. 6-(a). agents with respect to the iteration number (right). Paterseare
Fig. 6-(b) illustrates the estimated field by agénat iter- d=0.6, W =1, andKq = In,, and the projection was used.
ation timet = 200. The true field is illustrated in the left- (a) 40 iterations (b) 200 iterations
side of Fig. 7. As shown in Fig. 6-(b), twenty five swarming 5 -
agents have located the maximum point of the field success-
fully. The right-side of Fig. 7 shows the root mean square
(RMS) values of the spatially averaged error field achieved
by all agents with respect to the iteration time. All agents
managed to bring the RMS values of the estimation error ©
down arouna after150 iterations. With a bit higher damp-
ing coefficients contained i, = I»n., the rate of con-
vergence to the maximum point was slow as shown in the
right-hand side of Fig. 7. Hence, the group of agents does
not show much overshoot and oscillatory behavior around 55—
the maximum point. Agents converge to a configuration near
the maximum point ag — . Fig. 8. (a), (b): The proposed agents are splitting into tnaugs
for multi-modes under standard conditions. The estimatdd by

The proposed multi-agent svstem with a smaller communi- agentl is shown as a background in colors. Thin contour lines
© prop 9 Yy . . . represent the error field between the true field and the estima
cation range and&’y; = 0l»y, is applied to a bi-modal static 4.

field, which is shown in the left-side of Fig. 9. Fig. 8 reminds

of the fact that the proposed agents can split into different as compared to those for the previous case (Fig. 7).

groups according to the configuration of the global network

cost functionV defined in (53). It is straightforward to un-  Fig. 10 illustrates a case without communication and the
derstand that ageftdoes not have information on the other swarming capabilities of agents. Only a couple of agents
mode located at the upper-right side of the surveillance re- manage to approach the maximum point with slow conver-
gion as shown in Fig. 8, which results in higher RMS esti- gence rates as compared to the previous case in Fig. 6. The
mation error values plotted in the right-hand side of Fig. 9 lowest RMS value of the estimation error achieved by agents

RS
50 100 150 200
0 5 iterations
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(a) 60 iterations (b) 300 iterations
5

[
Iy

RMS error
= =
N [ %)

-
|

50 100 150 200

5 0 5 iterations

Fig. 9. A bi-modal field of interest (left). The root mean sgpua
(RMS) values of the spatially averaged error field achievgd b

agentl with respect to the iteration number for the bi-modal field . )
of interest (right). Fig. 11. (a), (b): Trajectories of agents fér= 0.6, W = 1, and
K4 = 0I2n,, and the projection was used.

(a) 40 iterations (b) 200 iterations

Group disagreement

5 0 5 50 100 150 200 250 300
iterations

Fig. 10. (a), (b): Trajectories of agents without commutigaand

the swarming algorithm ford = 0.6, W = 1, and K4 = Ian., Fig. 12. The group disagreement functidn; (p(t)) with respect

and the projection was not used. to the iteration number. Parameters are= 0.6, W = 1, and
K4 = 0I2n,, and the projection was used.

was abouts. This simulation clearly justifies the usage of

the communication network and swarming algorithms in this

our proposed multi-agent system.

(a) 60 iterations (b) 300 iterations

5.2 Without the Velocity Feedback

We consider a case without the velocity feedback (Kg. =
0l2n.,) for the uni-modal field of interest. Without the ve-
locity feedback, there will be no dissipative terms once the
consensus of velocities of agents is achieved, which explai
the oscillatory behavior of agents in Fig. 11. The group dis-
agreement functionc (p(t)) = +pT(t)L(q(t))p(t) with
respect to the iteration number is shown in Fig. 12.

Fig. 13. (a), (b): Trajectories of agents fér= 0.6, W = 1, and

We also consider a case without both the velocity feedback Ka =02y, , and the projection was not used.

and the projection algorithm (i.e., no saturations on both
positions and velocities) for the bi-modal field of interest
In this simulation, agents happened to locate two maximum
points of the bi-modal field as depicted in Figs. 13 and 14.
The group disagreement function and convergence rate of;
the agents are illustrated in Fig. 14. In this simulatiorg, th
artificial potential wall prevents agents from going ouésid
of the compact surveillance regiowt.

terest. In addition, we relocate the maximum of the field at
the boundary of the surveillance region. As can be seen in
Fig. 15, agents withi{; = 0 have located the maximum
point of the field and converge to a configuration around the
boundary of the surveillance region. The projection algo-
rithm ensures that agents stay inside of the compact et

6 Conclusions
5.3 Without the Artificial Potential Wall
This paper presented a novel class of self-organizingsgnsi

Finally, we consider a case without the potential wall and agents that form a swarm and learn through noisy measure-
with the projection algorithm for the uni-modal field of in- ments cooperatively with neighboring agents to estimate an
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to the iteration number (left). The root mean square (RM8)es (1]
of the spatially averaged error field achieved by agenwith
respect to the iteration number (right). Parametersdare 0.6,

J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Cogeraontrol
for mobile sensing networksEEE Transactions on Robotics and
Automation vol. 20, no. 2, pp. 243-255, 2004.

W =1, and K; = 0l>n., and the projection was not used. [2] A. Jadbabie, J. Lin, and A. S. Morse, “Coordination of gps of
mobile autonomuous agents using nearest neighbor rulEEE
{a) 60 iterations (b) 300 iterations Transactions on Automatic Controlol. 48, pp. 988-1001, June

2003.

[3] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stabifitffooking
motion,” technical report, University of Pennsylvania,020

[4] Olfati-Saber, “Flocking for multi-agent dynamic syste: Algorithm
and theory,” IEEE Transactions on Automatic Controlol. 51,
pp. 401-420, March 2006.

[5] W. Ren and R. W. Beard, “Consensus seeking in multiagent
systems under dynamically changing interaction topoRyilEEE
Transactions on Automatic Contralol. 50, pp. 655-661, May 2005.

6] P. 6gren, E. Fiorelli, and N. E. Leonard, “Cooperative contobl
mobile sensor networks: Adaptive gradient climing in aribsted
envrironment,” IEEE Transaction on Automatic Controlol. 49,

Fig. 15. (a), (b): The projection algorithm guarantees #ggnts p. 1292, August 2004.

are inside of the compact surveillance regibh:= [-5, 5]* even [7]1 “DOD/ONR MURI: adaptive sampling and prediction proj&dAlso

without the artificial potential walU> which pushes agents back available atht t p: / / www. pri ncet on. edu/ ~dcsl / asap/ .

into M when they approach the boundary 7t [8] “Center of Excellence for Great Lakes, Harmful Algal Blo Event
. . . . . Response.” Also available dit t p: // www. gl er| . noaa. gov/

unknown field of interest for gradient climbing. The pro- res/ Cent er s/ HABS/ habs. ht i .

pos_ed (_:ooperatively learning C.OntrOI pons_ists of motion co 9] “Harmful Algal BloomS Observing System (HABSOS) by Naial
ordination based on the recursive estimation of an unknown "~ oceanic and Atmospheric Administration (NOAA).".

field of In.tereSt WIFh measurement noise. .Our strategy of the 10] J. Adler, “Chemotaxis in bacteria,Journal of Supramolecular
cooperative learning control can be applied to a large class™  sycture vol. 4, no. 3, pp. 305-317, 1966.

of coordination algorithms for mobile agents in a situation [11] A. Dhariwal, G. S. Sukhatme, and A. A. G. Requicha, “Baitim-
Wh_ere the field of interest is not known a prior and to_ be inspired robots for environmental monitoring,” Rroceedings of the
estimated. We haV_e shown that the closed-loop dynam_lcs of IEEE International Conference on Robotics and Automat2®04.
the proposed multl_-agent Sy_Stem_ can be t_ranSformed into a[12] D. Grunbaum, “Schooling as a strategy for taxis in a sgoi
form of a stochastlc.apprommatlon algorlthm_. Hence, the environment,”Evolutionary Ecologyvol. 12, pp. 503-522, 1998.
convergence prop_erues of the proposed m“'“'age_r?t SyStem[13] C. W. Reynolds, “Flocks, herds and schools: A distdaubehavioral
were analyzed using the ODE app_roach and verified by a model.,” Computer Graphicsvol. 21, no. 4, pp. 25-34, 1987.
SImu'.atlon Stl.de Wl.th respect to different parametgrs and [14] R. C. Eberhart, Y. Shi, and J. Kennedywarm Intelligence The
conditions. S'mm_at'on StUdy (_)n the propose_d multl-agent Morgan Kaufmann Series in Atrtificial Intelligence, Acadeniress,
system and learning agents without communication and the g1,

swarming eﬁort clearly demonstrated th,e advantage of the [15] E. Bonabeau, M. Dorigo, and G. Therauls&gwarm Intelligence:
communication network and the swarming effort. A possi- From Natural to Artificial SystemsSanta Fe Institute Studies on the
ble future work is to_deploy heterogeneous mobile sensing Sciences of Complexity, Oxford University Press, 1999.
agents (each with different parameters) to study how mix- 116 R. Graham and J. Cortes, “Asymptotic optimality of rienter

ture of (_jifferent types of agents can b(_:-' coordinated for sub- voronoi configurations for random field estimatiorstibmitted to

optimality by a consensus type algorithm that enforces all IEEE Transactions on Automatic Contrghugust 2007.

agents converge to the same set of parameters. [17] L. Ljung, “Analysis of recursive stochastic algoritlsth IEEE
Transactions on Automatic Controlol. 22, no. 4, pp. 551-575,
1977.

Acknowledgements [18] H. J. Kushner and G. G. YirStochastic Approximation Algorithms

and Applications Springer, 1997.
The authors would like to thank professor _Lennart LJun_g, [19] C. Godsil and G. RoyleAlgebraic Graph Theoryvol. 207 of
with the department of Automatic Control, Linkdping Insti Graduate Text in MathmaticsSpringer-Verlag, 2001.

14



[20] J. Choi, S. Oh, and R. Horowitz, “Cooperatively leagimobile
agents for gradient climbing,” irProceedings of the 46th IEEE
Confernece on Decision and Contr@007.

[21] J. Choi, J. Lee, and S. Oh, “Swarm Intelligence for Aging the
Global Maximum using Spatio-Temporal Gaussian Procésges,
appear in the 2008 American Control Conference (ACZD08.

[22] 3. Choi, J. Lee, and S. Oh, “Biologically-inspired Ngafion
Strategies for Swarm Intelligence using Spatial Gaussiace3ses,”
to appear in the International Federation of Automatic Goh¢IFAC)
World Congress2008.

[23] C. E. Rasmussen and C. K. |. Wililam§aussian Processes for
Machine Learning The MIT Press, Cambridge, Massachusetts,
London, England, 2006.

[24] D. J. C. MacKay, “Introduction to Gaussian processés,Neural
Networks and Machine Learnin¢C. M. Bishop, ed.), NATO ASI
Series, pp. 133-166, Kluwer, 1998.

[25] N. A. C. Cressie Statistics for Spatial DataA Wiley-Interscience
Publication, John Wiley and Sons, Inc., 1991.

[26] N. Cressie and C. K. WikleEncyclopedia of Environmentsol. 4,
ch. Space-time Kalman filter, pp. 2045-2049. John Wiley aoidsS
Ltd, Chichester, 2002.

[27] K. J. Astrom and B. WittenmarkAdaptive Contral Addison Wesley,
2 ed., 1995.

[28] L. Ljung, “Theorems for the asymptotic analysis of resive,
stochastic algorithms,” technical report 7522, Departmei
Automatic Control, Lund Institute of Technology, 1975.

[29] L. Ljung and T. SoderstromTheory and Practice of Recursive
Identification Cambridge, Massachusetts, London, England: The
MIT Press, 1983.

[30] T. Wigren, “Convergence analysis of recursive idecsifion
algorithms based on the nonlinear wiener mod@&EE Transactions
on Automatic Contrglvol. 39, pp. 2191-2206, November 1994.

[31] L. Brus, “Recursive black-box identification of nordiar state-space
ode models.,” it licentiate theses; 2006-001, Uppsala é&isitet,
2006.

15



