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Abstract

This paper is concerned with the high-performance robust control of discrete-time linear time-invariant (LTI) systems with
semi-algebraic uncertainty regions. It is assumed that a robustly stabilizing static controller is given whose gain depends
polynomially on the uncertain variables. The problem of tuning this parameter-dependent gain with respect to a prescribed
quadratic cost function is formulated as a sum-of-squares (SOS) optimization. This method leads to a near-optimal controller
whose performance is better than that of the initial controller. It is shown that the results derived in the present work
encompass the ones obtained in a recent paper. The efficacy of the results is elucidated by an example.
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1 Introduction

It is known that all physical systems are subject to un-
certainty or parameter perturbation. Robustness analy-
sis for different classes of uncertain control systems has
been extensively studied in the literature (Sekaj and
Vesely, 2005; Bakhilina and Stepanov, 2001; Lin, Wang
and Lee, 2006; Feron, Apkarian and Gahinet, 1996). Ro-
bust stability verification can be envisaged as one of the
most important problems in this area. This problem is
concerned with the conditions under which a controller
designed for a nominal model can also stabilize the corre-
sponding uncertain system. Robust stability verification
has been addressed in the literature for different types
of uncertainties (e.g., structured and unstructured (Foo
and Soh, 1993)) in the past several years. More recently,
the important class of parametric uncertainty has drawn
much attention in this field.

Presently, the most efficient technique for verifying the
robust stability of a system under a nominal controller
is to check the existence of a proper Lyapunov function
for the closed-loop system (Chesi, Garulli, Tesi and
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Vicino, 2005; Lavaei and Aghdam, 2006a; Oliveira and
Peres, 2006). For the sake of computational simplicity,
the (Chesi, Garulli, Tesi and Vicino, 2005; Lavaei and
Aghdam, 2006a; Oliveira and Peres, 2006). For the sake
of computational simplicity, the pioneer works sought
a fixed Lyapunov function. While this method may
work satisfactorily for some systems, it is known that
the corresponding robust stability results can be quite
conservative in general. As an alternative, many of the
recent works consider parameter-dependent Lyapunov
functions in order to achieve less conservative results.
Notice that different types of Lyapunov functions can
be considered here, e.g. sinusoidal, exponential, etc.
Nonetheless, it is shown in Bliman (2004) that the
polynomial-type Lyapunov functions are always capable
of detecting the robust stability of any robustly stable
system.

As the simplest scenario, assume that the region of un-
certainty is polytopic. The works Oliveira and Geromel
(2005) and Kau, Liu, Hong, Lee, Fang and Lee (2005)
search for a Lyapunov function in the form of a first-
order polynomial to determine the robust stability of
the system. These works present relatively simple lin-
ear matrix inequalities (LMI) as sufficient conditions for
stability, which are proved to be very conservative in
various examples. As a more sophisticated but less con-
servative approach, it is shown in Chesi, Garulli, Tesi
and Vicino (2005) that robust stability over a polytope
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is tantamount to the existence of a Lyapunov function
in the form of a homogeneous polynomial with a cer-
tain bound on its degree. Hence, the seminal work Chesi,
Garulli, Tesi and Vicino (2005) properly characterizes
all the essential candidates for the desired Lyapunov
function. A sufficient LMI condition is subsequently de-
rived in Chesi, Garulli, Tesi and Vicino (2005) to check
the robust stability of the system. A method similar to
Chesi, Garulli, Tesi and Vicino (2005) is also proposed
in Oliveira and Peres (2006), which seeks the same type
of Lyapunov function. Nevertheless, the work Oliveira
and Peres (2006) further simplifies the LMI conditions
at the cost of introducing more conservatism.

More recently, it is asserted in Lavaei and Aghdam
(2008) that the robust stability verification of a system
over any semi-algebraic set satisfying a mild condi-
tion is equivalent to checking the existence of a set of
polynomials for which a specific sum-of-squares (SOS)
matrix equation holds. The feasibility of this matrix
equation can be determined systematically as long as
some bounds on the degrees of the above-mentioned
polynomials are known a priori. The work Lavaei and
Aghdam (2008) also presents important results on how
to compute these bounds. It is worth mentioning that
the conditions obtained in Lavaei and Aghdam (2008)
encompass those derived in both Chesi, Garulli, Tesi
and Vicino (2005) and Oliveira and Peres (2006) for the
particular case of polytopic uncertainty.

In addition to the surveyed papers dealing with the ro-
bust stability problem, there have been some other works
concerned with the robust control synthesis and robust
performance analysis (Vesely, 2005; Gao, Lam, Xie and
Wang, 2005; Oliveira, Oliveira, Leite, Montagner and
Peres, 2004; Goncalves, Palhares and Takahashi, 2005;
Shaked, 2003). The latter problem (robust synthesis) is
known to be more sophisticated than the former one (ro-
bust stability), and the available design techniques are
not satisfactory in all respects. For instance, a method is
proposed in Vesely (2005) to design a near-optimal con-
troller for systems with a polytopic uncertainty. How-
ever, due to the complexity of the problem, the controller
presented in the above work may perform poorly in gen-
eral, as it relies on some sufficient LMI conditions. There
are some other results in the literature dealing with H2

or H∞ robust controller design, which normally suffer
from the same weak points, e.g. see Gao, Lam, Xie and
Wang (2005); Shaked (2003).

This work deals with uncertain linear time-invariant
(LTI) discrete-time systems whose uncertainty belongs
to a semi-algebraic set. It is assumed that a robustly
stabilizing static controller is initially available, whose
gain can depend polynomially on the uncertain vari-
ables. The objective is to tune the gain of this controller
so that its performance is improved with respect to a
prescribed quadratic performance index. To this end,
it is shown that the closed-loop Lyapunov matrix is

a rational function, which can be approximated by a
polynomial matrix satisfying an elegant inequality. An
upper bound is also derived in order to determine the
accuracy of this approximation. An SOS method is then
developed to solve the underlying problem. It is worth
noting that the idea of designing a parameter-dependent
static controller has also been used in a number of
other papers; for instance, see Gao, Lam, Xie and Wang
(2005) for the filtering application. The results obtained
here are shown to encompass the ones presented in
Vesely (2005).

This paper is organized as follows. The problem is for-
mulated in Section 2, where some definitions and conve-
nient notations are also introduced. The main results are
provided in Section 3, followed by an illustrative exam-
ple in Section 4. Finally, some concluding remarks are
drawn in Section 5.

2 Problem formulation

Consider an uncertain discrete-time system S(α) with
the state-space representation:

x[κ + 1] = A(α)x[κ] + B(α)u[κ]
y[κ] = C(α)x[κ], κ ∈ Z (1)

where:

• x[κ] ∈ <n, u[κ] ∈ <m and y[κ] ∈ <r are the state,
input and output of S(α), respectively.

• The vector α =
[

α1 α2 · · · αµ

]
denotes the uncer-

tain parameters of the system.
• A(α), B(α) and C(α) are matrix polynomials in

terms of the variable α, and have appropriate dimen-
sions.

Assume that the uncertainty region D associated with
the system S(α) is a semi-algebraic set defined as fol-
lows:

D :=
{

α
∣∣∣ q1(α) ≥ 0, ..., qη(α) ≥ 0

}
(2)

where q1(α), q2(α), ..., qη(α) are given scalar polynomi-
als. Assume also that the initial state of the system is
a random variable with zero mean and the co-variance
matrix X0, i.e., E{x(0)x(0)T } = X0 (note that E{·} rep-
resents the expectation operator).

Definition 1 For every static LTI controller K and un-
certainty vector α ∈ D, define the performance index:

J(α,K) = E
{ ∞∑

κ=0

(
x̃[κ]T Q(α)x̃[κ] + ũ[κ]T Rũ[κ]

)
}

(3)
where:
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• x̃[κ] and ũ[κ] denote the state and input of the resultant
closed-loop system, respectively.

• R is a fixed positive definite matrix.
• Q(α) is a matrix polynomial that is positive definite

over the region D.

Notice that the performance index J(α,K) is defined in
such a way that it penalizes the input of the system by
a constant term R, but balances the state of the system
by a parameter dependent (non-fixed) term Q(α).

Definition 2 Given the system S(α) and a controller
K, define a performance index for the closed-loop system
over the entire uncertainty region D as follows:

J(K) =
∫

D
J(α,K)f(α)dα (4)

where f(α) is a given weighting function specifying the
relative importance of the performance of the system at
different points in the uncertainty region α ∈ D.

Assume that initially a static parameter-dependent con-
troller K0 is given, which robustly stabilizes the system
S over the uncertainty region D. Let this controller be
represented by the control law u[κ] = K0(α)y[κ], where
K0(α) is a matrix polynomial of degree n0. Note that
the robust stability of a control system can be checked
using the existing techniques such as the one given in
Lavaei and Aghdam (2008). The objective is to tune the
coefficients of the polynomial K0(α) in such a way that
the performance index J(K) is reduced in some sense.
More precisely, the purpose of this work is to design a
near-optimal parameter-dependent static controller, us-
ing K0 as the initial point in the optimization procedure.

The following definitions and assumptions are needed
for the development of the main results.

Definition 3 A matrix polynomial C(α) is said to be
sum-of-squares (SOS) if there exists a matrix polynomial
E(α) such that:

C(α) = ET (α)E(α) (5)

Definition 4 For every matrix W , define vec{W} to
be a column vector obtained from W by placing its
columns under each other successively. For example,

vec{eye(2)} =
[

1 0 0 1
]T

.

Notation 1 For the sake of simplicity, the upper block
entries of a symmetric block matrix will be displayed by
the symbol “*” throughout the paper.

Assumption 1 The set D is compact and there exist
SOS scalar polynomials w0(α), w1(α), ..., wη(α), such

that the set of all vectors α satisfying the inequality:

w0(α) + w1(α)q1(α) + · · ·+ wη(α)qη(α) ≥ 0 (6)

is compact, where qi(α), i = 1, 2, ..., η, are given in (2).

3 Near-optimal robust controller

The problem of designing a robustly stabilizing con-
troller Kk that outperforms the initial controller (i.e.,
J(Kk) < J(K0)) will be addressed in the sequel.

Lemma 1 Assume that a controller K with the con-
trol law u[κ] = K(α)y[κ] stabilizes the uncertain system
S(α) over the region D. Then, the performance index
J(K) can be obtained as follows:

J(K) = trace
(

X0

∫

D
G(α)f(α)dα

)
(7)

where G(α) is the solution of the discrete Lyapunov equa-
tion given below:

(
A(α) + B(α)K(α)C(α)

)T
G(α)

(
A(α)+

B(α)K(α)C(α)
)−G(α) + Q(α)

+ C(α)T K(α)T RK(α)C(α) = 0

(8)

Proof : It is well-known that J(α,K) can be expressed as
trace(X0G(α)), where G(α) satisfies the discrete Lya-
punov equation (8) (see Lavaei and Aghdam (2007a) for
more details). Thus, one can write:

J(K) =
∫

D
J(α,K)f(α)dα

= trace
(

X0

∫

D
G(α)f(α)dα

) (9)

This completes the proof. ¥

Lemma 2 Assume that the system S(α) is robustly sta-
ble under a static controller K with the control law u[κ] =
K(α)y[κ]. There exist a matrix polynomial H(α) and a
scalar polynomial h(α) such that the matrix G(α) satis-
fying the equation (8) can be written as G(α) = H(α)

h(α) ,
where both of the polynomials H(α) and h(α) are posi-
tive definite over the region D.

Proof: The matrix equation (8) can be solved for G(α)
using the Kronecker product technique as follows:

vec{G(α)} =M(α)−1vec
{
Q(α)

+ C(α)T K(α)T RK(α)C(α)
} (10)
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where:

M(α) = −(
A(α) + B(α)K(α)C(α)

)T ⊗ (
A(α)

+ B(α)K(α)C(α)
)T + I

(11)

(the symbol⊗ stands for the Kronecker product). Define
now:

h(α) = det(M(α)), H(α) = det(M(α))G(α) (12)

It remains to show that:

i) h(α) and H(α) are both (matrix) polynomials.
ii) h(α) and H(α) are both positive definite over the

region D.

To prove property (i), notice that since M(α) is a matrix
polynomial, its determinant is also a (scalar) polynomial.
Hence, h(α) is a polynomial, and so is H(α) (in light of
equation (10) and (12)). To show the validity of property
(ii), denote the eigenvalues of A(α) + B(α)K(α)C(α)
with λ1(α), λ2(α), ..., λn(α). One can write:

h(α) =
n∏

i=1

n∏

j=1

(1− λi(α)λj(α)) (13)

Since A(α) + B(α)K(α)C(α) is robustly stable, all
eigenvalues λ1(α), ..., λn(α) are inside the unit circle. It
follows from this fact and the above equation that h(α)
is positive over the region D. On the other hand, the
robust stability of the closed-loop system implies that
the matrix G(α) is positive definite over the uncertainty
region. As a result, it follows from (12) that H(α) is
also positive definite over the region D. ¥

Definition 5 Given a positive integer i and a parameter-
dependent static controller K with the polynomial gain
K(α), consider an optimization problem whose objective
is to minimize the function:

trace
(

X0

∫

D
P (α)f(α)dα

)
(14)

subject to the following constraint:

Γ(α) :=




Γ11(α) ∗ ∗
Γ21(α) Γ22(α) ∗
Γ31(α) Γ32(α) −I


 < 0, ∀α ∈ D (15)

with the (symmetric polynomial matrix) variable P (α) ∈
<n×n of degree i, where:

Γ11(α) = −P (α) + Q(α), Γ21(α) = P (α)A(α),
Γ22(α) = −P (α)− P (α)B(α)R−1B(α)T P (α),

Γ31(α) = R
1
2 K(α)C(α), Γ32(α) = R−

1
2 B(α)T P (α)

(16)

Denote the infimum of this minimization problem with
Ji(K).

Theorem 1 Consider a static controller K with the
parameter-dependent gain K(α). Then, the following
statements are true:

i) The infinite sequence J1(K), J2(K), J3(K), ... is non-
increasing.

ii) Ji(K) is always greater than or equal to J(K), for every
natural number i.

Proof: The proof is straightforward. The details are
omitted for brevity. ¥

In the case when the system S(α) is not uncertain and
the matrix polynomials of the system are all of degree 0,
it can be inferred from Cao and Lam (2001) that the
relation Ji(K) = J(K) holds for all positive integers i.
In the general case, however, J(K) is obtained by solv-
ing an integral involving a rational function (i.e. G(α)),
whereas Ji(Kk) is obtained by solving the same integral
after substituting the above-mentioned rational function
with a proper polynomial (i.e. P (α)). This implies that
the equality Ji(K) = J(K) may not be achieved for an
uncertain system even if the index i is arbitrarily large.
This problem will be addressed in the sequel.

Consider h(α) and H(α) introduced in Lemma 2. It
results from the compactness of D that there exist two
positive numbers µ1 and µ2 with the property:

0 < µ1 ≤ h(α) ≤ µ2, ∀α ∈ D (17)

Define ρ(i) := (2i−1)deg(h)+deg(H), for every natural
number i.

Theorem 2 Assume that the system S(α) is robustly
stable under a static controller K with the control law
u[κ] = K(α)y[κ]. The infinite subsequence {Jρ(i)(K)}∞1
of the sequence {Ji(K)}∞1 converges exponentially to
J(K) from above, and also has a known upper bound.
More precisely:

J(K) ≤ Jρ(i)(K) ≤ 1

1−
(
1− µ1

µ2

)2i
J(K) (18)

Proof: Define the following functions:

Pi(α) :=
H(α)
h(α)

×
1−

(
1− h(α)

µ2

)2i

1−
(
1− µ1

µ2

)2i
, i = 1, 2, ... (19)

It is straightforward to show that deg(Pi) = ρ(i),
and that Pi(α) is a polynomial (as opposed to a non-
polynomial rational function) which is positive definite
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over D. Moreover, it can be concluded from (17) that:

1−
(
1− h(α)

µ2

)2i

1−
(
1− µ1

µ2

)2i
≥ 1, ∀α ∈ D (20)

Thus, since G(α) = H(α)
h(α) satisfies the equation (8), one

can write:

(
A(α) + B(α)K(α)C(α)

)T
Pi(α)

(
A(α)

+ B(α)K(α)C(α)
)− Pi(α) + Q(α)

+ C(α)T K(α)T RK(α)C(α)
=

(
Q(α) + C(α)T K(α)T RK(α)C(α)

)

×


1−

1−
(
1− h(α)

µ2

)2i

1−
(
1− µ1

µ2

)2i


 ≤ 0

(21)

for all α ∈ D. By applying the Schur complement for-
mula to the above inequality, it can be verified that the
inequality (15) is satisfied for P (α) = Pi(α). Therefore,
it can be deduced from Definition 5 that:

Jρ(i)(K) ≤ trace
(

X0

∫

D
Pi(α)f(α)dα

)
(22)

On the other hand:

1−
(

1− h(α)
µ2

)2i

≤ 1−
(

1− µ2

µ2

)2i

= 1, ∀α ∈ D
(23)

The inequality (18) follows from the relations (7), (19),
(22) and (23). Moreover, applying the squeezing theo-
rem to the relation (18) yields that limi→+∞ Jρ(i)(K) =
J(K). ¥

Remark 1 In order to investigate the tightness of the
lower bound given in (18), consider the case when the
Lyapunov function H(α)

h(α) turns out to be a polynomial. In
this case, µ1 and µ2 are equal (after cancelling common
factors of H(α) and h(α), if any). Hence, it is concluded
from(18) that J(K) = Jρ(i)(K), ∀i > 0, which together
with the monotone property of the sequence {Ji(K)}∞1
yields that Ji(K) is always equal to J(K). This implies
that the bound obtained is tight in the sense that the equal-
ity can be reached in the special case of polynomial Lya-
punov functions.

Remark 2 The result of Theorem 2 can be interpreted
as follows: consider an optimization problem aiming at
minimizing the cost function (7) subject to the constraint
(8) for a rational variable G(α) and a matrix polynomial
K(α). The rational function G(α) can be replaced by a
polynomial variable P (α), and consequently (8) can be

substituted by (15). This substitution has the following
properties: (i) the solution of the optimization problem
subject to the latter constraint converges from above to
that subject to the former constraint as the degree of P (α)
increases; (ii) this convergence is more or less exponen-
tial. Notice that property (i) could have been deduced from
Bliman (2004), if the constraint (8) were not an equal-
ity (note that although the constraint of the optimization
problem is an inequality, the infimum is reached once the
inequality turns to an equality).

Since the objective function J(K) to be minimized in
this work involves an unknown rational function G(α)
(as a result of Lemma 1), SOS techniques cannot di-
rectly be employed to solve the problem. Hence, the
problem of minimizing the performance index Ji(K) will
be treated at this point for any fixed value of i, as an al-
ternative strategy for addressing the optimal controller
design (i.e., minimizing J(K)). It is worth mentioning
that no matter how small or large the number i is, Ji(K)
is an upper bound for J(K). Minimization of Ji(K) in-
volves two variables K(α) and P (α) with the objective
function (14) subject to the constraint (15). The main
difficulty of this problem is that one of the block entries
of the constraint matrix Γ(α) is a nonlinear function of
the coefficients of the matrix polynomial P (α). To avoid
this difficulty, the celebrated technique of introducing
a slack variable (Cao and Lam, 2001; Lavaei and Agh-
dam, 2007b) can be exploited. This idea is used here to
develop an iterative procedure in order to find a near-
optimal controller Kk based on the initial controller K0,
which requires solving a hierarchy of SOS optimization
problems.

Algorithm 1:

Step 1) Find a Lyapunov polynomial P0(α) for which
there exist a positive scalar ε and SOS matrix polyno-
mials Q0(α), ..., Qη(α) so that the equation (24) holds
for all α ∈ <µ.
Step 2) Set P̄ (α) = P0(α).
Step 3) Choose a natural number i greater than or
equal to deg(P0) (see Remark 6).
Step 4) Solve an LMI optimization problem with the
variables:
· a positive scalar ε;
· a matrix polynomial K(α) of degree n0;
· SOS matrix Polynomials Q0(α), ..., Qη(α);
· a matrix polynomial P (α) of an arbitrary degree i;
to minimize the objective function:

trace
(

X0

∫

D
P (α)f(α)dα

)
(25)

under the SOS constraint:

Γ̄(α) = −Q0(α)−
η∑

j=1

qj(α)Qj(α)− εI (26)

5



[
P0(α) (A(α) + B(α)K0(α)C(α))T

P0(α)

P0(α) (A(α) + B(α)K0(α)C(α)) P0(α)

]
= Q0(α) +

η∑

j=1

qj(α)Qj(α) + εI (24)

where:

Γ̄(α) :=




Γ11(α) ∗ ∗
Γ21(α) Γ̄22(α) ∗
Γ31(α) Γ32(α) −I


 (27)

with:

Γ̄22(α) = −P (α)− P̄ (α)B(α)R−1B(α)T P (α)
− P (α)B(α)R−1B(α)T P̄ (α)
+ P̄ (α)B(α)R−1B(α)T P̄ (α)

(28)
Step 5) If ‖P (α)−P̄ (α)‖e ≤ δ, where δ is a prescribed
error margin (which is chosen in line with the design
specifications), go to Step 7.
Step 6) Set P̄ (α) to P (α), where P (α) is obtained in
Step 4. Go to Step 4.
Step 7) The cost function Ji(Kk) is sufficiently close
to a (local) solution. The polynomial K(α) obtained
corresponds to a static near-optimal robust controller.

Remark 3 The reason why a function P0(α) satisfying
the condition in Step 1 of the above algorithm exists is
thoroughly explained in Lavaei and Aghdam (2008).

Remark 4 Even though the objective function (25) is
associated with the integral operator, it can be written as
a linear combination of the variables being sought. Hence,
after taking the integral of the prescribed monomials over
the regionD, a linear expression in the conventional form
will be attained as the objective function of the underlying
optimization problem.

Remark 5 Algorithm 1 solves the optimization problem
given in Step 4 recursively; therefore, the computational
complexity of the algorithm is directly related to this op-
timization. It can be easily proved that the equality con-
straint of this optimization is in the form of linear SOS.
Moreover, the objective function of this optimization
problem is linear in terms of the coefficients of P (α). As
a result, Step 4 of this algorithm can be easily performed
by using the available software tools (Lofberg, 2004; Pra-
jna, Papachristodoulou, Seiler and Parrilo, 2004). It is
worth mentioning that the degrees of the polynomials in-
volved in this optimization (i.e. Q0(α), ..., Qη(α)) should
be chosen beforehand. In this regard, a fruitful discus-
sion is provided in Lavaei and Aghdam (2008) to obtain
upper bounds on the degrees of the relevant polynomials.

Remark 6 Since Ji(K) is minimized in Algorithm 1 in-
stead of J(K), it may turn out that choosing a very small

value for i improves the control performance insignifi-
cantly (or in an unlikely circumstance, the performance
of the resultant closed-loop system may even degrade).
To overcome this drawback, one can pursue the following
strategy:

• Calculate the initial performance J(K0) numerically.
• Find a proper value of i for which Ji(K0) is reasonably

close to J(K0). This can be achieved by using the bound
given in Theorem 2 and the method discussed in Lavaei
and Aghdam (2008) for finding the required parameters
(e.g. µ1 and µ2).

• Design a controller K using Algorithm 1, and then
evaluate the resultant closed-loop performance Ji(K)
numerically.

• If the performance Ji(K) is close to J(K0), there might
be two possibilities: (i) the difference between Ji(K0)
and J(K0) has not been sufficiently small; (ii) the ini-
tial controller is itself near-optimal. To figure out which
case is true, one can increase i and redo the algorithm
provided Ji(K0) and J(K0) are reasonably far apart.

It is worth mentioning that as shown later in the numeri-
cal example, typically Algorithm 1 leads to a near-optimal
controller efficiently, even by considering a very small
value for i which results in a large deviation Ji(K0) −
J(K0).

3.1 H∞ optimal controller design

Designing a guaranteed H∞ controller for parameter-
dependent systems can be accomplished in line with the
results developed here. In fact, one can start from the
KYP lemma (Dullerud and Paganini, 2005), instead of
Lemma 1, and translate the technicalities of this paper
accordingly for the KYP condition. This will eventually
lead to an SOS formula, which is very similar to the
one obtained here. This means that the procedures for
guaranteed H2 and H∞ optimal controller designs are
analogous. Due to the space restrictions, the counterpart
of Algorithm 1 for H∞ controller design is not delineated
here.

3.2 Comparison with existing works

Let the results of this work be compared with some ex-
isting works in two special cases of deterministic systems
and uncertain polytopic systems. In the former case, the
formulation can be significantly simplified in order to
arrive at the results derived in Cao and Lam (2001). A
more interesting case, namely the polytopic uncertainty,
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is investigated in Vesely (2005). The method developed
therein relies on approximating the rational Lyapunov
function by a first-order polynomial, which in turn may
be extremely conservative. It can be observed that by
making several relaxations in this particular case, the
SOS procedure given here encompasses the algorithm
obtained in Vesely (2005). Therefore, not only does the
result attained here reflect the very general case of un-
certainty, it also encompasses some of the existing works.

4 Numerical example

Let S be an uncertain fourth-order system with the
state-space matrices A = α1α

2
2Ã, B = α1B̃ + α2

2I4 and
C = α2

2C̃ + α1I4, where

Ã =




−0.6957 0.2674 −0.0031 −0.0257

0.6457 −0.3634 0.0019 −0.1042

0.1407 0.5206 −0.8307 −0.2681

0.0797 −0.0139 0.0197 −0.9133




,

B̃ =




0.4518 −0.2859 −0.0059 0.0861

0.8478 −0.6839 −0.0039 0.0889

0.5211 −0.1206 −0.2406 −0.7968

0.2219 −0.1109 −0.1109 0.2407




,

C̃ =




−0.3790 −0.2632 0.0073 0.0076

0.4781 0.6674 0.0224 −0.1912

−0.5010 −0.2988 0.3827 0.2004

0.0076 0.4705 0.0983 −0.3630




(29)

and where α1 and α2 are the uncertain variables belong-
ing to the region D = {(α1, α2)|α2

1 + α2
2 = 1}. It can

be verified that the system S is stable under the unity
feedback controller (this can be deduced from Exam-
ple 1 in Lavaei and Aghdam (2008), after some manipu-
lations). Consider the cost function (4) with the param-
eters X0 = I2, Q(α) = R = I2, f(α) = 1, ∀α ∈ D.
Algorithm 1 is utilized to improve the performance of
the unity feedback controller, by setting the degree of
P (α) to 2. The results obtained are summarized in Ta-
ble 1. One can observe that a noticeable improvement is
achieved after only one iteration, and that the algorithm
converges in 10 iterations, resulting in %57 improvement
in the control performance. The optimal controller ob-
tained is as follows:

u[κ] =




0.1341 −0.0332 0.0048 0.0361

−0.0884 0.0323 0.0341 0.0096

−0.0739 −0.0421 0.1458 0.0837

0.0060 −0.0338 −0.0273 0.1787




y[κ]

(30)

On the other hand, one can employ a grid technique to
calculate the performance indices numerically as follows:

J(K0) = 16.0996, J2(K0) = 20.5719,

J(Kk) = 8.4898, J2(Kk) = 8.8265
(31)

These values point out that although the approximation
of the rational Lyapunov function with a polynomial
of degree 2 is not acceptable for the initial controller,
the algorithm works remarkably well. Note that a static
controller with a constant gain has been designed here,
but in general Algorithm 1 can be used to design any
parameter-dependent gain in the form of a polynomial
with a prescribed degree.

5 Conclusions

This paper deals with the high-performance robust con-
trol synthesis for uncertain discrete-time LTI systems
whose state-space matrices are polynomial functions of
the uncertainty variables. Given a robustly statibilizing
parameter-dependent static controller, it is aimed to
tune the gain of this controller so that a near-optimal
controller is obtained with respect to a prescribed
quadratic cost function. To this end, it is shown that the
underlying problem can be recast as a sum-of-squares
(SOS) optimization. An illustrative example is provided
to shed light on the main contribution of the paper.
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