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a b s t r a c t

The aim of this paper is to show that a recently proposed technique for anti-windup control of expo-
nentially unstable plants can be easily extended to solve the corresponding robust anti-windup problem
for linear parameter varying systems, for which the time varying parameters are measured online. The
proposed technique is minimally conservative with respect to the size of the resulting operating region
(which coincides, up to an arbitrarily small quantity, with the largest set onwhich asymptotic stability can
be guaranteed for the considered plant with the given saturation level and uncertainty characteristics),
and is not limited to plants having only small uncertainties or being open-loop stable.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Input saturation and plant uncertainty are two ubiquitous phe-
nomena in any real design problem. Hence, anti-windup compen-
sation has been proposed to counteract saturation nonlinearities
(see e.g. the surveys (Åström & Rundqwist, 1989; Hanus, 1988) for
background) and robust control to counteract plant uncertainty.
However, as pointed out in Turner, Herrmann and Postlethwaite
(2007), there is a surprising lack of literature about the study of
robustness limitations specifically arising in anti-windup control
systems, as well as about the problem of designing anti-windup
compensators ensuring robust-in-the-large stability (i.e. for any
uncertainty in an a priori assigned, possibly ‘‘large’’, set of uncer-
tainties, so that small gain arguments cannot be easily invoked).
Even in the absence of uncertainty, anti-windup compensation

for exponentially unstable plants is challenging, since the bounds
on the input imply that the null controllable region is bounded,
and then in order to achieve stability the anti-windup compensator
must keep the state of the plant inside the null controllable region.
Anti-windup designs for exponentially unstable linear plants have
been suggested in a number of papers, including (Cao, Lin, &Ward,
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2002; Crawshaw, 2003; Gomes da Silva & Tarbouriech, 2003;Wu&
Lu, 2004). Linear Parameter Varying (LPV) systems can be used to
embed an uncertain, possibly nonlinear, unstable and time varying
plant; hence a robust anti-windup problem can be studied in
this framework (see e.g. Cao & Lin, 2006; Wu, Yang, Packard, &
Becker, 2000 and the references therein). However, in all these
papers the operating region of the anti-windup control system is
not determined by the intrinsic plant limitations, but depends on
the a priori given unconstrained controller; so, especially if this
controller is very aggressive, the proposed solutions lead to unduly
small operating regions.
In this paper, the constructive anti-windup solution in Galeani,

Teel, and Zaccarian (2007) (based on Teel (1999)) for exponen-
tially unstable plants without uncertainties is extended to solve a
robust-in-the-large anti-windup problem for LPV plants. With re-
spect to previously available approaches, the proposed solutionhas
the following advantages:

(1) the operating region is only restricted by the structural limita-
tions of the saturated uncertain plant;

(2) bounded responses are ensured for all references;
(3) no bounds on the rate of variation of parameters are required.

The structurally largest possible operating regions (not achievable
by any previously proposed LPV approach) are obtained bymodify-
ing the construction inGaleani et al. (2007) by the use of polyhedral
Lyapunov functions (Blanchini, 1995; Blanchini & Miani, 2000).
The main conceptual contribution of this paper is that the neces-
sary condition of unsaturated closed-loop robust stability (Galeani
& Teel, 2006; Turner et al., 2007) is also sufficient for LPV anti-
windup, so that no performance-robustness trade-off in the sense
of Galeani and Teel (2006) arises; and that gain scheduling has a
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key role in reducing the anti-windup problem to a constrained ro-
bust stabilization problem, but not in solving this last problem.
The paper is structured as follows: after some notation, the

problem is described in Section 2 and solved in Section 3, where
a design procedure is proposed. A simulation example is shown in
Section 4, and conclusions are drawn in Section 5.
Notation. For w, v ∈ Rp, the inequality w > v means wi > vi
for i = 1, . . . , p. The saturation function of level one has ith
componentσi(v) := min {1,max {−1, vi}}, for i = 1, . . . , p. Signal
q(·) is in Lp if ‖q‖p < ∞, where ‖q‖p :=

(∫
∞

0 ‖q(τ )‖ dτ
)1/p

if p ∈ [1,∞), and ‖q‖p := supτ∈[0,+∞) ‖q(τ )‖ if p = ∞. The
class of piecewise continuous functions is C̄0. A polyhedral set
P ⊂ Rn is defined as P := {v ∈ Rn : Fv ≤ 1̄}, where
1̄ := [1 · · · 1]′ and F is a matrix. A function Ψ : Rn → R≥0 is a
gauge function if it is positive definite (Ψ (x) ≥ 0, ∀x ∈ Rn and
Ψ (0) = 0), homogeneous (Ψ (λx) = λΨ (x), ∀λ ∈ R≥0, ∀x ∈ Rn)
and subadditive (Ψ (x + y) ≤ Ψ (x) + Ψ (y), ∀x, y ∈ Rn). Any
compact, convex polyhedral set P := {x ∈ Rn : Fx ≤ 1̄} is a
sublevel set N̄[Ψ , k] = {x ∈ Rn : Ψ (x) ≤ k} for k = 1 of the gauge
function Ψ (x) = max1≤i≤n(Fix), where Fi denotes the ith row of
matrix F ; conversely, any compact, convex set S induces a gauge
function Ψ (x) = inf{µ ∈ R≥0 : x ∈ µS}.

2. Problem setting

LetD0 be a convex and compact polyhedron, andW0 := {w ∈
Rµ : w ≥ 0,

∑µ

i=1wi = 1}; moreover, define the classes of set
bounded, piecewise continuous disturbances D = {d(·) ∈ C̄0 :
d(t) ∈ D0} and time varying parameters W = {w(·) ∈ C̄0 :
w(t) ∈ W0}. Consider the linear parameter varying (LPV) plant

ẋ = A(w)x+ B(w)u+ Ed, (1a)
z = C1(w)x+ D1(w)u+ G1d, (1b)
y = C2(w)x+ D2(w)u+ G2d, (1c)

where x ∈ Rn is the plant state, u ∈ Rm is the control input, y
is the measured output, z is the performance output and w(·) is a
measured signal. Each matrix of the form M(w) in (1) is defined
in terms of its µ vertex values Mi, i = 1, . . . , µ, according to the
relation M(w) =

∑µ

i=1wi(t)Mi. An a priori fixed unconstrained
controller is available for plant (1), given by

ẋc = Ac(w)xc + Bc(w)uc + Br(w)r, (2a)
yc = Cc(w)xc + Dc(w)uc + Dr(w)r, (2b)

designed assuming an unconstrained interconnection

u = yc, uc = y, (3)

and is such that the unconstrained closed-loop system Σ̄U given by
(1), (2), (3) has a desirable response to external signals r , d, thus
satisfying the following assumption.

Assumption 1. Σ̄U is well-posed and asymptotically stable, ∀w
∈ W .

Remark 1. Assumption 1 (which is a necessary condition for ro-
bust anti-windup compensation; see Galeani and Teel (2006),
Turner et al. (2007)) implies global robust asymptotic stability of
Σ̄U , but otherwise allows plant (1) to be both unstable and affected
by large uncertainties. This is a novelty with respect to previously
available literature on anti-windup, where the plant is only al-
lowed to be either unstable or affected by large uncertainties, but not
both. ©

When (3) is replaced by the saturated interconnection uc = y,
u = σ(yc), the arising saturated closed-loop system Σ̂S exhibits
undesirable behavior; moreover, the global stability properties in
Assumption 1 are lost for Σ̂S if (1) is exponentially unstable (since
under bounded input the null controllability region is bounded
in the exponentially unstable directions). In order to limit this
windup effect, the following anti-windup compensator

ẋaw = A(w)xaw + B(w)[yc − σ(yc + v1)], (4a)
v1 = α(x, x+ xaw, yc, w), (4b)
v2 = C2(w)xaw + D2(w)[yc − σ(yc + v1)], (4c)
uc = y+ v2, u = σ(yc + v1), (4d)

with α(·) yet to be specified, will be considered in this paper. The
arising (saturated) anti-windup closed-loop system Σ̆SAW is given by
(1), (2), (4). Denote respectively by z̄, ū, . . . , by ẑ, û, . . . and by z̆,
ŭ, . . . the responses of Σ̄U , Σ̂S and Σ̆SAW to the same choices of
r(·), d(·) and x(0), xc(0) (with xaw(0) = 0). Let X+ be a compact
and convex subset1 of the null controllable region of (1) under
the available bounded input; moreover, for ε > 0 define X =
(1+ ε)−1X+. When x ∈ X, the anti-windup compensator pushes
the response of Σ̆SAW towards the response of Σ̄U ; when x ∈ X+

but x 6∈ X, it just works to keep the state x inside X+. The set
of (steady state) feasible external signals, containing those pairs of
constant references and disturbances leading to equilibria within
the setX, is defined as follows.

Definition 1. The set RD(w,X) of feasible external signals for w
andX contains all the pairs (r◦, d◦) such that the state response of
Σ̄U to (r(t), d(t)) = (r◦, d◦), ∀t ≥ 0, converges to a steady state
(x∗, x∗c )with x

∗
∈ X. ©

Remark 2. Comparedwith the correspondingdefinition inGaleani
et al. (2007) (where all parameters were fixed and perfectly
known), Definition 1 contains three main differences, all related
to the need for more generality and reduced conservativeness in
the present context (where very little restrictions are imposed on
w by the fact thew ∈ W ). First, convergence of the state response
of Σ̄U is explicitly assumed (though w is not assumed to be con-
stant or converging in Definition 1). Second, the setRD(w,X) of
feasible external signals depends onw (and not only onX). Third,
both r◦ and d◦ are simultaneously accounted for in the definition
of RD(w,X), so that there is a trade-off between the size of r◦
and the size of d◦ in each feasible pair (r◦, d◦) (whereas in Galeani
et al. (2007), d◦ = 0 could always be assumed without any loss of
generality due to the particular structure considered for the plant
dynamics). ©

The following problem will be addressed and solved (the nota-
tion x̄, z̄, ū, . . . , x̆, z̆, ŭ, . . . is defined right after (4)).

Problem 1. Design an augmentation to the controller (2) such that
for any x(0) ∈ X, w(·) ∈ W , d(·) ∈ D and r(·), the following
properties are satisfied:
(α) if σ(ū(t)) = ū(t), x̄(t) ∈ X, ∀t , then z̆(t) = z̄(t), ∀t;
(β) ∀(r◦, d◦) ∈ RD(w,X), if (r(·) − r◦, d(·) − d◦) ∈ Lp then
(z̆ − z̄)(·) ∈ Lp, ∀p ∈ [1,∞];
(γ ) if limt→+∞(x̄(t), x̄c(t)) = (x̄∗, x̄∗c ) and x̄

∗
∈ X, then

limt→+∞(x̆(t), x̆c(t)) = (x̆∗, x̆∗c ) = (x̄∗, x̄∗c ). Moreover, if x̄
∗
6∈ X

and limt→+∞ d(t) = 0, then limt→+∞(x̆(t), x̆c(t)) = (x̆∗, x̆∗c )with
x̆∗ ∈ X.

Remark 3. By item (α), the anti-windup compensator will pre-
serve any trajectory of Σ̄U that never saturates and never leaves
X; by item (β), any unconstrained trajectory which converges (in
an Lp sense) to an admissible set-point will be recovered, even
if saturation cause some transient performance loss (for p = ∞,
this item implies BIBS stability of Σ̆SAW ); finally, by item (γ ) any

1 Since the boundary of the null controllable region is an invariant set, in order
to be able to quickly steer the state x back inside X, some distance between the
boundary of X+ and the boundary of the null controllable region is desirable
(see Barbu, Galeani, Teel and Zaccarian (2005, Remark 5)).
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converging trajectory of Σ̄U will correspond to a converging tra-
jectory of Σ̆SAW , and in particular trajectories converging outsideX
are projected on a restricted set-point, so that the state x remains
inX. ©

3. Anti-windup construction

Since the structure of the anti-windup compensator has already
been described in (4), it only remains to specify how the function
α(·) can be designed. The proposed design procedure (based
on Blanchini (1995), Blanchini and Miani (2000), Galeani et al.
(2007)), is the following.

Procedure 1 (Anti-windup Compensator Design). Step 1. As in Blan-
chini (1995), compute a polyhedral domain of attractionX+ := {x ∈
Rn : Fx ≤ 1̄} and define the associated gauge function ψ(x) :=
maxi(Fix) and the set X := (1+ ε)−1X+ for a small ε > 0.
Step 2. As in Blanchini (1995), compute a homogeneous Lipschitz
control law φ(x)making X+ forward invariant
Step 3. As in Blanchini and Miani (2000), define the pseudo-tracking
control law

Φ(x, x̄, ū) := φ(x̃(x, x̄))Ψ (x, x̄)+ (1− Ψ (x, x̄))ū.

where Ψ (x, x̄) := maxi
Fi(x−x̄)
1−Fi x̄

, x̃(x, x̄) := x̄+ (x−x̄)
Ψ (x,x̄) .

Step 4. Define the anti-windup control law

α(x, xM , yc, w) := −yc + Φ(x, π(xM), πu(yc, w)),

where, defining B(w)] := (B(w)′B(w))−1B(w)′,

π(xM) :=

{
xM , if xM ∈ X,

xM
ψ(xM)(1+ ε)

, if xM 6∈ X,

πu(yc, w) :=
{
yc, if yc ∈U, xM ∈X,

−B(w)]A(w)π(xM), otherwise.

Theorem 1. Under Assumption 1, an anti-windup compensator
designed as in Procedure 1 solves Problem 1.

Theorem1 states the effectiveness of Procedure 1; for lack of space,
just a sketch of its proof is given. In the coordinates (Teel, 1999)
xM := x+ xaw , xc and x, Σ̆SAW appears as the cascade of Σ̄U (with x
replaced by xM ) and

ẋ = A(w)x+ B(w)σ(Φ(x, π(xM), πu(yc, w)))+ Ed. (5)

Since x ∈ ∂X+ impliesΦ(x, x̄, ū) = φ(x),X+ is forward invariant
for (5). Asymptotic stability of the cascade (more precisely, of
any of its steady state equilibria) is ensured by the properties of
the pseudo-tracking control law (Blanchini & Miani, 2000) and
Assumption 1, which guarantee asymptotic stability of the two
systems in the cascade. Functions π(xM) and πu(yc, w) project
unfeasible equilibria to feasible ones that the pseudo-tracking
control law can effectively track. The derivation of the remaining
claims in items (β) and (γ ) parallels the proofs in Galeani et al.
(2007), by a judicious exploitation of the properties in Blanchini
and Miani (2000).

Remark 4. As discussed in Galeani and Teel (2006), without gain
scheduling in (4a) and (4c) the robust-in-the-large stability of Σ̄U
and of the uncertain dynamics (5) do not guarantee robust stability
of Σ̆SAW , unless the anti-windup requirements are suitably weak-
ened (a performance-robustness trade-off). It is worth to point
out that this is not the case for gain-scheduled anti-windup. From
the above sketch of proof, it is apparent that gain scheduling on
w(·) ensures that Σ̆SAW has a cascade structure (in suitable coor-
dinates); however, it does not play any role in ensuring the largest
possible robust basin of attraction for the uncertain dynamics (5)
(cf. Blanchini, 2000; Blanchini & Miani, 2000). Nevertheless, the
cascade structure implies that the domain of attraction of Σ̆SAW ,
as well as its robust-in-the-large stability, is directly determined
by the domains of attraction and robust stability of the two cas-
caded systems; hence, since the pseudo-tracking control law en-
sures the intrinsic largest achievable basin of attraction for (5),
global robust-in-the-large stability of Σ̄U becomes a necessary and
sufficient condition for Σ̆SAW to be robustly-in-the-large stable,
with the intrinsic largest achievable basin of attraction. As dis-
cussed in Galeani and Teel (2006), this is not possible without gain
scheduling in (4a) and (4c), because in such a case the cascade
structure of Σ̆SAW is destroyed. ©

Remark 5. The proposed result is tight for the LPV system (1),
since (up to an arbitrarily small error due to the approximation by
a polyhedral set) the largest domain of attraction under the given
bounds on the control input, the disturbances and the uncertainties
is obtained by Procedure 1 thanks to the algorithms in Blanchini
(1995). However, conservativeness is introduced if the LPV system
is used to ‘‘hide’’ a nonlinear, uncertain system under a ‘‘linear’’
structure, since, for example, in the original nonlinear system some
‘‘parameter variations’’ of the LPV system are not possible (similar
remarks apply with respect to the fact that no bound on the rate
of variation of w(·) is imposed in our analysis). All the above
still holds if, instead of polyhedral functions, a different family of
universal Lyapunov function is used, provided that the pseudo-
tracking control law is accordingly modified; such modifications
allow for extra flexibility in the computation of the domains of
attraction. ©

Remark 6. Since the null controllability region of exponentially
unstable plants with bounded inputs is also bounded in the expo-
nentially unstable directions (Sontag, 1984), the anti-windup com-
pensator must ensure that the ‘‘unstable part’’ of the state is kept
inside its bounded null controllable region at all times. With this
goal in mind, it was assumed in Galeani et al. (2007), Teel (1999)
that suitable coordinates exist such that x := [x′s x

′
u]
′, with the

‘‘unstable part’’ xu measured and unaffected by the ‘‘stable part’’ xs
and the disturbance d. Under these assumptions, the anti-windup
compensator, using a state feedback from xu, needs to restrict xu
as little as possible; otherwise, at the price of introducing an addi-
tional ‘‘safety boundary’’ (and thus restrictingX even more), d can
be allowed to act on xu and an observer can be used to estimate xu.
Parameter variations modify the null controllable region, and then
the robust null controllable region is bounded in all directions, and
then the whole state of the plant must be kept bounded (compare
the example in Avanzini and Galeani (2005) with respect to Barbu
et al. (2005)). As a consequence, the natural adaptation of the as-
sumptions in Galeani et al. (2007), Teel (1999) to the present con-
text requires the whole state x to be measured and subject to the
disturbance d; however, exactly as in Galeani et al. (2007), Teel
(1999), an observer could be used at the price of introducing an
additional safety boundary (and thus restricting X even more) to
cope with estimation errors. ©

4. Simulation examples

Consider the plant described by matrices

A(w1) = w1

[
1.8 −1
−0.2 0.8

]
+ (1− w1)

[
2.2 −1
0.2 1.2

]
B(w2) = w2

[
9.8
−6.8

]
+ (1− w2)

[
10.2
−7.2

]
with C1 =

[
1 1

]
, C2 =

[
1 0
0 1

]
, E = D1 = D2 = 0, and an un-

constrained, a priori given LQR controller, ensuring robust asymp-
totic stability in the absence of saturation, designed for the nominal
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(a) Performance output signal. (b) Control signal.

Fig. 1. Comparison among the closed-loop responses for small reference, large feasible reference, unfeasible reference (for nominal, constant parameter values) and large
feasible reference (for perturbed, time varying parameter values).
plant with R = 1 and Q =
[
1 0
0 1

]
. The proposed design procedure

has been applied with ε = 0.012, and A0, B0 corresponding to the
parameter values (w1, w2) = (0.5, 0.5).
The reported Fig. 1 shows the performance output and control

input for the unconstrained closed-loop system (Σ̄U ), for the
saturated closed-loop system (Σ̂S), and for the saturated anti-
windup system (Σ̆SAW ). In the three upper subplots of each figure,
the nominal parameter values (w1, w2 = 0.5, 0.5) are considered,
and the letters sn, fn and un respectively denote the response to a
small reference, to a feasible reference close to the largest feasible
reference rMAX , and to an unfeasible reference. In the last subplot
(identified by the letters fw), a time varying parameter signalw(·)
is considered, coupled with a large feasible reference close to rMAX .
In each case, the state of Σ̂S leaves the null controllable region

and then the output diverges, whereas the forward invariance of
the setX+ guaranteed by the anti-windup compensator preserves
the response of Σ̆SAW from diverging. Moreover, whenever the
reference is feasible (cases sn and fn), the output of Σ̆SAW converges
to the output of Σ̄U ; when the reference is not feasible (case un),
the output of Σ̆SAW still converges, and reaches a value close to the
output of Σ̄U (but such that the state x remains inside the setX).
Finally, notice also from case fw that, as specified in the anti-

windup problem definition, the output of Σ̆SAW is close to track-
ing the output of Σ̄U during the first seconds, while w(·) keeps
varying; afterw(·) stops varying, the output of Σ̄U eventually con-
verges to a constant value and is reached by the output of Σ̆SAW .

5. Conclusions

The construction of a gain-scheduled anti-windup compensator
for LPV systems has been proposed in this paper; its main feature
consists in the ability of handling exponentially unstable plants
subject to large uncertainties meanwhile ensuring the largest pos-
sible domain of attraction, only dependent on the plant’s intrinsic
limits.
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