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Abstract

This paper describes a new kernel-based approach for linear system identification of stable systems. We model the impulse
response as the realization of a Gaussian process whose statistics, differently from previously adopted priors, include information
not only on smoothness but also on BIBO-stability. The associated autocovariance defines what we call a stable spline
kernel. The corresponding minimum-variance estimate belongs to a reproducing kernel Hilbert space which is spectrally
characterized. Compared to parametric identification techniques, the impulse response of the system is searched for within
an infinite-dimensional space, dense in the space of continuous functions. Overparametrization is avoided by tuning few
hyperparameters via marginal likelihood maximization. The proposed approach may prove particularly useful in the context of
robust identification in order to obtain reduced order models by exploiting a two-step procedure that projects the nonparametric
estimate onto the space of nominal models. The continuous time derivation immediately extends to the discrete time case. On
several continuous and discrete time benchmarks taken from the literature the proposed approach compares very favorably
with existing parametric and nonparametric techniques.

Key words: linear system identification; kernel-based methods; Bayesian estimation; regularization; Gaussian processes;
robust identification; stochastic embedding

1 Introduction

We consider the problem of identifying the impulse
response of a BIBO stable linear and time-invariant
system, fed with a known input, from noisy and dis-
crete output measurements. The usual identification
approaches use finite-dimensional parametric models,
whose order has to be relatively low when identifica-
tion is motivated by robust-control design purposes
[23,36,40]. The standard methods to select the “best”
model order rely on complexity criteria such as Akaike
(AIC), Generalized Cross Validation (GCV) or Mini-
mum Description Length (MDL). In general, not only
the obtained nominal model will be uncertain due to
the variance of its estimated parameters but it will also
be biased due to undermodeling. Robust identification
has to do with the joint assessment of variance and bias
affecting the estimated nominal model. It is well known
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that, in presence of undermodeling, the form of the
input signal may significantly affect the estimate and
the reliability of the model in frequencies relevant to
the intended use. Prefiltering of input and output data
is often adopted as a remedy even if the choice of the
operating frequency range may be nontrivial [50].
In order to characterize the variance and bias error, ro-
bust identification has been developed along three main
directions. Two of them, namely stochastic embedding
[14,15] and model-error modeling [22,41], share a prob-
abilistic background, see also [16] for another statistical
approach. The third approach, namely set-membership
identification [12,13,28,29], relies on a deterministic
worst-case paradigm [27]. The starting point of all these
methods is the identification of a low-order nominal
model by standard techniques such as maximum likeli-
hood or prediction error methods. The subsequent step
is the assessment of bias and variance for the nominal
model. The stochastic embedding approach models the
bias error as the realization of a stochastic process,
e.g. white noise with decreasing variance over the time
domain [15] or a random walk over the frequency do-
main [14]. The model-error modeling approach exploits
residual analysis in order to characterize undermodel-
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ing, whereas set-membership identification determines
the worst-case error associated with the nominal model
[36]. A schematic representation of the identification
scheme common to the three approaches is reported in
Fig. 1a. After a possible prefiltering phase, the data are
passed to a parameter estimation module which yields
the nominal model. The nominal model and the data
are then processed by a model-error estimation module
in order to quantify the bias and variance error.
Even if stochastic embedding has some connection with
Bayesian estimation, only few contributions are avail-
able so far, see e.g. [18,19]. Differently from previous
contributions, in this paper the probabilistic prior is
formulated directly on the unknown impulse response,
rather than on the bias error, and the impulse response
is assumed to be the realization of a Gaussian process.
As such, it belongs to an infinite-dimensional function
space [4,35,39,51]. The prior is defined as an integrated
Wiener process over a suitable transformation of the
time-axis. Such prior prevents overfitting and accounts
for continuity and nonstationarity of the impulse re-
sponse. Moreover, information on BIBO-stability is
incorporated within the prior, whose realizations are
proven to be almost surely BIBO-stable. Connections
with Tikhonov-type regularization [6,34,45,46] and Re-
producing Kernel Hilbert Spaces (RKHS) [3,9,49] are
extensively discussed. Among other things, it is shown
that the estimate belongs to a space which is dense in
the space of continuous functions.
If a low-order model is desired for some specific use, a
two-step procedure can be adopted. First, a low-bias
nonparametric estimate of the impulse response is com-
puted by the proposed method. Then, the desired para-
metric model is obtained by projecting the nonparamet-
ric estimate onto a suitable low-order finite-dimensional
space. A formal proof of optimality of this two-step
procedure is also given (Proposition 4). It is worth not-
ing that such result translates to the Bayesian context
Hyalmarsson’s advice ”always first model as well as
possible” based on the invariance/separation principle,
see Section 4.2 in [17]. The new robust identification
scheme is schematically illustrated in Fig. 1b, where
the output of the nonparametric estimator is fed into a
projection module yielding the nominal model and its
uncertainty. Compared to Fig. 1a, note that prefiltering
is no more needed. Even if schemes (a) and (b) in Fig. 1
share the same common objective of finding a low-order
model suitable for robust control, there is a substantial
difference between them. In fact, the former yields a low
order model whose amount and type of bias depend on
the experimental design, e.g. choice of the input. For
instance, if the system is excited by a low frequency in-
put, bias will be concentrated at high frequencies. The
second procedure, conversely, first uses all the available
information, i.e. data and prior knowledge on impulse
response, to obtain the best possible estimate. Then,
the subsequent projection step is not directly affected
by experimental design conditions.
The paper is organized as follows. In Section 2, the

u
PRE-

FILTERING

y y

u

y

Least squares/PEM/
restricted projection

0M̂PARAMETER
ESTIMATOR

][ yfE
NONPARAMETRIC

ESTIMATOR ]Var[ yf
PROJECTION 

ONTO ℘
MM ∆±0

ˆ

a

b

MODEL 
ERROR

ESTIMATOR

MM ∆±0
ˆ

u

y

u

Fig. 1. (a) Identification scheme common to stochastic em-
bedding, model-error modeling and set membership ap-
proaches. Notation u indicates the system input while output
measurements are y, with their filtered versions denoted by

ū and ȳ, respectively. M̂0 denotes the estimate of the nomi-
nal model while ∆M is uncertainty associated with bias and
variance error (b) New identification scheme proposed in this
paper. E[f |y] and V ar[f |y] denote the posterior mean and
autocovariance of the impulse response, respectively, while
P is the space of nominal models.

identification problem is formulated and regression via
Gaussian processes in RKHS is concisely overviewed. In
Section 3, it is shown how to obtain a nominal model by
projecting the Bayes estimate onto a finite-dimensional
space. In Section 4, we propose a new Gaussian prior
for system identification by defining a suitable Mercer
kernel K. In Section 5, a spectral characterization of
K is provided. It is also shown that realizations from
the new prior are almost surely associated with BIBO-
stable systems and that the RKHS defined byK is dense
in the space of continuous functions. In Section 6, we
use simulated benchmarks taken from the literature to
demonstrate the effectiveness of the proposed approach.
Conclusions end the paper. Proofs are gathered in the
appendix.

2 Preliminaries

We are given a finite set of noisy data sampled from the
output of a continuous-time linear dynamic system fed
with a known input u(t). We will mainly refer to such
continuous-time setting even if the proposed approach
can deal with discrete-time problems just by replacing
integral operators with suitable discrete convolutions. In
the sequel, f represents the unknown impulse response
and N(µ,Σ) denotes a Gaussian density of mean µ and
covariance matrix Σ. Let q(t) denote the noiseless output
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defined as follows

q(t) .= Lu
t [f ] =

∫ t

0

f(t− τ)u(τ)dτ, t ∈ D (1)

where D is an interval on the real line. The associated
measurement model is

yi = Lu
ti

[f ] + vi, i = 1, · · · , n (2)

where ti, i = 1, . . . , n are the sampling instants
while the errors vi, i = 1, . . . , n, are independently
distributed with vi ∼ N(0, σ2) ∀i. In the sequel,
y
.= [y1 y2 . . . yn]T , v .= [v1 v2 . . . vn]T and the short-

hand notation Lu
i is used in place of Lu

ti
.

Adopting a Bayesian viewpoint, it is assumed that there
exists a prior for f which consists of a Gaussian measure
in an infinite-dimensional function space. In particular,
f̃ denotes a zero-mean Gaussian process with autoco-
variance cov( ˜f(ti), ˜f(tj)) = λ2K(ti, tj). Here, λ2 is a
possibly unknown scale factor while K represents a
Mercer kernel, i.e. a mapping K : D ×D 7→ R which is
continuous, symmetric and positive definite.Let In be
the n × n identity matrix. The statistical model for f
reads as follows

f(t) =
d∑

i=1

θiψi(t) + f̃(t), t ∈ D (3)

θ∼N(0, ρId), ρ→ +∞

where θ is independent of f̃ and v, while {ψi}d
i=1 are as-

signed functions that account for components on whose
amplitude no prior knowledge is assumed. In the sequel,
B will denote the subspace spanned by {ψi}. A careful
choice of B helps minimizing the bias when estimating
certain classes of impulse responses, e.g. those with a
dominant pole. For what concerns linear system identi-
fication, this will be extensively discussed in section 4.
Since f and v are assumed jointly normal, the posterior
of f given y is Gaussian as well. Our target estimate is
the minimum variance estimate of f , i.e. the posterior
mean E[f |y]. To define such estimate in rigorous mathe-
matical terms, it is useful to recall that a Mercer Kernel
K can be associated with a unique RKHS H, with norm
‖ · ‖H, containing scalar continuous functions on D, see
[3,49] for details. If the dimension of H is infinite, it can
be proven that realizations from f̃ do not fall in H with
probability one [26,48]. Nevertheless, the following re-
sult points out that, for known y, the minimum variance
estimate of f belongs to the direct sum of H and B (de-
noted as H⊕ B) and can be obtained as the solution of
a Tikhonov-type variational problem. Below, and in the
sequel, it is assumed that Lu

i : H 7→ R is continuous ∀i.

Proposition 1 [48] Assume that f is independent of v.
Let P[g] denote the orthogonal projection of g onto H, in

H ⊕ B and let also γ = σ2/λ2. For known y and γ, the
minimum variance estimate of f is given by

f̂ = arg min
g∈H⊕B

n∑
i=1

(yi − Lu
i [g])2 + γ‖P[g]‖2H (4)

Remark 2 The above proposition states the duality be-
tween Gaussian processes and RKHS [48,26], which will
be further exploited in the sequel. In particular, we will
use f to denote Gaussian processes, with the abbreviated
notation ft often used in place of f(t), while g will indi-
cate deterministic functions and ġ the corresponding first
derivative.

In (4), besides the choice of B, also K and γ will greatly
influence the quality of the estimate. The former reflects
our prior knowledge about f and will determine funda-
mental properties of H such as its capability of approx-
imating a wide class of functions. The latter is the so-
called regularization parameter that controls the balance
between expected regularity of the solution and adher-
ence to experimental data (the so called bias/variance
trade off). The main contribution of the present paper is
the suggestion of a specific choice of B and K for linear
system identification such that, by a proper tuning of λ2

and σ2 (and hence γ), the solution of (4) has favorable
bias and variance properties.
As far asK is concerned, typical choices are Gaussian or
polynomial kernels [39]. In particular, when the signal is
just known to be smooth, the most popular approach is
to model f as an integrated Wiener process with com-
pletely unknown initial conditions. Under these statisti-
cal assumptions, one has that [30]

W (s, τ) .= Cov(f̃(s), f̃(τ)) =

{
s2

2

(
τ − s

3

)
s ≤ τ

τ2

2

(
s− τ

3

)
s > τ

(5)
This kernel underlies also the Bayesian interpretation
of cubic smoothing splines [48]. For the subsequent
derivation, it is useful to focus on the cubic spline kernel
W (s, τ) defined over the domain S×S where S = [0, 1].
Since the RKHS HW associated with the kernel W is a
Sobolev space of functions g with g(0) = ġ(0) = 0 [1,7],
it is convenient to select ψ1 and ψ2 as a constant and a
linear function, respectively. In this way, θ ∈ R2 and

BW = span{1, t} t ∈ S (6)

In the practical application of Gaussian regression, a hi-
erarchical approach is adopted. Few high level param-
eters (called hyperparameters), e.g. λ2 and σ2, are re-
garded as fixed and deterministic in order to obtain
closed form formulas for the estimate f̂ . According to
the so-called Empirical Bayes method, the tuning of the
hyperparameters grounds on statistical criteria based on
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the stochastic interpretation underlying Problem (4), as
described in section 4.

3 Mean-square optimal finite-dimensional ap-
proximation

In this section L indicates the set of all functions 1 map-
ping D into the real line, with generic element denoted
by g. In our context L will represent the set of all possi-
ble models while P ⊂ L will be used to represent the set
of nominal models. For example, P may contain all the
first-order approximations of our dynamic system, i.e.

P =
{
g : g(t) = Ae−at, A ∈ R, a ∈ R+, t ∈ R+

}
Let Γ be an operator mapping the observation vector
y into functions g, i.e. Γ : Rn 7→ L. Furthermore, we
use Γt : Rn 7→ R to represent Γ(y) evaluated at t, i.e.
if Γ : y 7→ g then Γt : y 7→ g(t), t ∈ D. Finally, w(t),
t ∈ D, is a strictly positive weighting function.
The next two results do not require Gaussianity of f .

Proposition 3 Let Γ̂B satisfy

Γ̂B .= arg min
Γ

∫
D

E[(ft − Γt(y))2|y]w(t)dt ∀y

Then,

Γ̂B
t (y) = E[ft|y] =

∫
R
ftpt(ft|y)dft ∀y

where pt(ft, y) is the joint density of ft and y.

It is worth remarking that the above result shows that
when there is no restriction on the range of Γ, the opti-
mal estimate does not depend on the weighting function
w(t). Let instead ΓP be an operator that maps vectors
y into functions g ∈ P, i.e. ΓP : Rn 7→ P. The next
result shows that the optimal estimate of ft restricted
to P is given by a projection, weighted by w, of the
Bayes estimate onto the set P of nominal models. The
result is an extension of that obtained in [52] where f is
restricted to be a Gaussian process.

Proposition 4 Let

Γ̂P .= arg min
ΓP

∫
D

E[(ft − ΓPt (y))2|y]w(t)dt ∀y

Then,

Γ̂P(y) = arg min
g∈P

∫
D

(
Γ̂B

t (y)− g(t)
)2

w(t)dt ∀y

(7)

1 Here, and in the sequel, Lebesgue measurability is implic-
itly assumed.

The above proposition provides a simple way to ap-
proximate the impulse response within a desired finite-
dimensional space. It states that the mean squared error
is minimized by looking for the approximating function
that best fits the Bayes estimate Γ̂B , thus suggesting
a two-stage procedure, i.e. regularized Bayesian estima-
tion followed by projection onto the finite-dimensional
space. It is worth noting that the projection step is just
a continuous least squares problem. The weighting func-
tion w(t) can be used to specify where a more accurate
approximation is needed. The use of frequency weight-
ing, e.g. to obtain a low frequency approximation, is also
easily implementable.

4 System identification using a new Gaussian
prior

4.1 Modeling the unknown impulse response

Regularization methods which rely upon the kernel W
defined in (5) are widely employed in nonparametric
function estimation, see e.g. the extensive literature on
cubic spline regression [48,47,44,43]. However, this ker-
nel is not suitable to reconstruct the impulse response
of a stable dynamic system because of the following lim-
itations:

• The Tikhonov estimator (4), with HW ⊕ BW defin-
ing our hypothesis space, coincides with the cubic
smoothing spline estimator [48]. As such, it is is able
to fit straight lines without bias. However, in system
identification one would better obtain unbiased es-
timates of exponentials on the noncompact domain
X = [0,+∞).

• The variance of the process associated with kernel W
increases over time. But, for stable systems, a priori
impulse response uncertainty is likely to decrease with
time. In particular, a prior is needed on X which in-
corporates the BIBO-stability constraint.

The following definition will prove useful in the deriva-
tion of a new prior specifically suited for system identi-
fication.

Definition 5 A prior on f preserves a family of func-
tions F if there exists n such that, for any distinct times
t1, . . . , tn, n ≥ n, it holds that

E[f |f(t1) = g(t1), . . . , f(tn) = g(tn)] = g, ∀g ∈ F

For instance, if a prior preserves lines, this means that,
given sampled observations of the unknown function, the
Bayes estimator projects lines onto themselves. In other
words, the estimate draws all information on the linear
trend from the data without biasing the estimate to-
wards prior knowledge. It is well known that the Wiener
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prior associated with linear splines preserves constant
functions whereas the integrated Wiener prior associ-
ated with cubic splines preserves lines. However, when
estimating impulse responses, it is convenient to adopt a
prior that preserves exponentials. Below, we will intro-
duce a mapping which converts X into the unit interval
S = [0, 1] such that the prior which preserves exponen-
tials in the old coordinates preserves straight lines in the
new ones. In other words, the time-transformation maps
an exponential, with rate constant β, into a straight line.
It will be also shown that impulse response stability is
guaranteed by imposing that in the new coordinates the
function value at zero is null (Proposition 10).
A prior on S enjoying all the desired features is the in-
tegrated Wiener process with zero initial value and ar-
bitrary first-order derivative at zero. Summarizing, the
desired time-transformation is

τ = e−βt t ∈ X

In the original coordinates, the prior for the unknown
impulse response is thus defined as follows

f(t) =

{
0 if t < 0

θe−βt + f̃(t) if t ∈ X
(8)

where θ ∼ N(0,∞) and f̃(t), independent of θ, is a zero-
mean Gaussian process with autocovariance

Cov(f̃(s), f̃(t)) .= λ2K(s, t;β) (s, t) ∈ X ×X (9)

where

K(s, t;β) .= W (e−βs, e−βt) (s, t) ∈ X ×X (10)

Finally,
BK = span{e−βt} t ∈ X (11)

The kernelK will be hereafter named “stable spline ker-
nel”, given its connection with the cubic spline kernel
and its intrinsic ability, when coupled with the bias space
BK , to preserve a family of stable exponential functions.

Remark 6 For the sake of simplicity, we will restrict
our attention to a bias space which is the span of a single
exponential. However, in principle, BK could be easily
extended to include the span of two or more exponential
functions, although as demonstrated in the example sec-
tion, even the simple model (11) performs very satisfac-
torily in a variety of situations.

Finally, when dealing with discrete-time systems, the
model for f becomes the sampled version of (8), i.e. for
k ∈ Z we have

f(k) =

{
0 if k < 0

θe−βk + f̃(k) for k = 0, 1, 2, 3, ...
(12)

4.2 Estimating hyper-parameters and impulse response

The impulse response estimate is provided by the
Tikhonov estimator (4) with hypothesis space H ⊕ B
replaced by HK ⊕ BK . However, such estimator re-
quires the knowledge of the hyperparameter vector
ξ = [λ, β, σ].
According to the empirical Bayes approach, ξ is ob-
tained by maximizing the marginal likelihood, i.e. the
probability of y obtained by integrating out f from
the joint probability of y and f . In the following, we
give formulas for the computation of the log marginal
likelihood. For this purpose, define

C(ξ) .= (Lu
1 [h] . . . Lu

n[h])T
, h = e−βs

M(ξ) .= V ar[y|θ, ξ]

Note that the (i, j)-entry of M is

M(ξ)|i,j = λ2Lu
i L

u
j [K(·, ·; ξ)] + σ2δij (13)

with δij the Kronecker delta. In (13), Lu
i L

u
j [K] means

that Lu
j is first applied to K(·, ·) as a function of one of

its arguments. This leads to a well defined function in
HK to which the second functional is applied. Ambigu-
ity is avoided by the symmetry of the kernel.
In the following, dependence of C and M on ξ is some-
times omitted to simplify the notation. If θ ∼ N(0, ρ),
using Lemma 19 in [5] we have

det(V ar[y|ξ]) = det(M + ρCCT )
= ρdet(M)(ρ−1 + CTM−1C) (14)

When θ ∼ N(0,∞), one has

b(ξ) .= lim
ρ→∞

ln (det(V ar[y|ξ]))− ln(ρ)

= ln (det(M)) + ln(CTM−1C) (15)

In addition, using eq. (1.5.12) in [48] we also have

A(ξ) .= lim
ρ→∞

(V ar[y|ξ])−1

=M−1(In − C(CTM−1C)−1CTM−1) (16)

Using (15,16), we obtain the following optimization
problem

ξ̂ = arg min
ξ
J(y; ξ) (17)

where the cost function

J(y; ξ) =
1
2
b(ξ) +

1
2
yTA(ξ)y (18)

is equal to the opposite of the asymptotic log-marginal
likelihood apart from terms independent of ξ. Accord-
ing to the empirical Bayes approach the estimate of f
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is obtained through the Tikhonov estimator (4) with
hyperparameters ξ replaced by their maximum likeli-
hood estimate ξ̂. Explicit formulas for the solution of
(4) with the stable spline kernel are reported below, in
eqs. (20,21,22). They are obtained using the so called
representer theorem, see e.g. section 1.1.2 in [49] or also
the proof of Theorem 1.5.3 in [48]. The new identifica-
tion algorithm reads as follows.

Nonparametric system identification algorithm
The input to this algorithm includes the input and
output sequences {uk} and {yk}. The output of this
algorithm is the estimate f̂ of the impulse response of
the system.

• Determine the estimate of the hyperparameter vector
ξ and θ as follows

ξ̂ = arg min
ξ
J(y; ξ) (19)

θ̂=
C(ξ̂)TM(ξ̂)−1y

C(ξ̂)TM(ξ̂)−1C(ξ̂)
(20)

where

J(y; ξ) =
1
2
b(ξ) +

1
2
yTA(ξ)y

b(ξ) = ln (det(M)) + ln(CTM−1C)
A(ξ) =M−1(In − C(CTM−1C)−1CTM−1)

C(ξ) = (Lu
1 [h] . . . Lu

n[h])T
, h = e−βs

M(ξ)|i,j = λ2Lu
i L

u
j [K(·, ·; ξ)] + σ2δij

• Calculate the estimate of the system impulse response
according to the formula

f̂(t) = θ̂e−β̂t + λ̂2
n∑

i=1

ciL
u
i

[
K(·, t; β̂)

]
(21)

where {ci} are the elements of vector c ∈ Rn given by

c = (M(ξ̂))−1(y − C(ξ̂)θ̂) (22)

Needless to say, in a discrete-time context the same ap-
proach can be followed provided that integral operators
are replaced by their discrete counterparts.

4.3 Computing confidence intervals

Assume that hyper-parameters λ, β and σ are known or
set to their maximum likelihood estimates. Our first aim
is to compute the autocovariance of the noiseless output
q, conditional on y, sampled on an arbitrarily dense grid
Ω = {si}N

i=1 which contains the sampling grid {ti}n
i=1.

By omitting the dependence on ξ, to simplify notation,
the noiseless output q(t) can be written as

q(t) = θa(t) + b(t)

where

a(t) := Lu
t [e−β(·)], b(t) := Lu

t [f̃(·)]
Cov[b(s), b(t)] = λ2Lu

sL
u
t [K(·, ·)]

Given a function g(t), its sampled version on Ω is

gΩ = [g(s1) g(s2) . . . g(sN )]T

This allows us to write

qΩ = [aΩ IN ]

[
θ

bΩ

]
.= Q

[
θ

bΩ

]

y = P

[
θ

bΩ

]
+ v

where P ∈ Rn×(N+1) is obtained fromQ by keeping only
rows associated with actual output observations in y.
Using standard properties of Gaussian random variables,
see e.g. [2], we finally obtain

V ar [qΩ|y] = Q
(
σ−2PTP + V

)−1
QT

where, since the prior variance of θ is infinite,

V
.=

(
V ar

[
θ

bΩ

])−1

=

(
0 01×N

0N×1 (V ar [bΩ])−1

)

with 01×N the 1×N matrix with zero entries. 2

Once the posterior autocovariance of q has been com-
puted, confidence intervals for linear transformations
of q can be easily obtained. For instance, when confi-
dence intervals over the frequency domain are needed, let
F (jω) denote the Fourier transform of f withRe[F (jω)]
and Im[F (jω)] indicating its real and imaginary part,
respectively. The problem amounts now to computing
V ar

[
(Re[F (jω)] Im[F (jω)])T |y

]
for any given ω. Let-

ting

zω
R : q 7→ Re[F (jω)], zω

I : q 7→ Im[F (jω)]

2 Existence of the inverse of matrix σ−2P T P + V can be
established by the same arguments as in the proof of Propo-
sition 4 in [30]
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(corresponding to composition of the Fourier transform
with the inverse of Lu

t ) one has

V ar

[
Re[F (jω)]

Im[F (jω)]
|y

]

=

(
zω

Rzω
R

[
Ky

q (·, ·)
]

zω
Rzω

I

[
Ky

q (·, ·)
]

zω
Rzω

I

[
Ky

q (·, ·)
]

zω
I zω

I

[
Ky

q (·, ·)
] )

where
Ky

q (s, t) .= Cov [q(s), q(t)|y]

5 Stable spline kernel: spectral analysis

In this section, we report a complete spectral analysis of
the stable spline kernel K defined by (10). The scope of
the section is twofold. First, it is shown that realizations
drawn from the new prior are almost surely the impulse
response of a BIBO-stable system (Proposition 10). Sec-
ond, a spectral characterization of the RKHS associated
with the stable spline kernel K is derived (Proposition
11). We start with some definitions and a proposition
which can be derived from results contained in [9,11,31].

Definition 7 Define the sequence {λi}, with λi+1 ≤ λi,
as

λi = (1/αi)4 i = 1, 2, ... (23)

where αi denotes the solution of

1/ cosh(α) + cos(α) = 0 (24)

which is closest to (i− 1/2)π.
In addition, define functions {φi} and {ρi} as follows

φi(t;αi) =C1(αi) cos(αit) + C2(αi) sin(αit) (25)
+C3(αi)e−αi(1−t) + C4(αi)e−αit t ∈ S

ρi(τ ;αi) = φi(e−βτ ;αi) τ ∈ X (26)

where {Ck} are scalars satisfying

C4(α) = (
∫

S

[C1(1) cos(αt) + C2(1) sin(αt)

+C3(1)e−α(1−t) + e−αt]2dt)−1/2

C3(C4) =C4(α)
[

2
1 + e−2α

− 1
]
/ sin(α)

C2(C4) =C4(α)− C3(C4)e−α

C1(C4) =−C4(α)− C3(C4)e−α

Below, L2(S) denotes the classical Lebesgue space on S
equipped with the inner product < ·, · >2.

Proposition 8 [9] Let W be defined by (5). Then, it
holds that

< φj , φk >2 =

{
1 if j = k

0 otherwise

λjφj(s) =
∫

S

W (s, t)φj(t)dt

W (s, t) =
∞∑

j=1

λjφj(s)φj(t)

where the above sum converges uniformly with respect to
(s, t) ∈ S × S. In addition, letting HW be the RKHS
associated with the cubic spline kernel W

HW =

g ∈ L2(S) | g =
∞∑

j=1

ajφj ,
∞∑

j=1

a2
j

λj
<∞


(27)

Hereafter, L2
ν(X) is used to indicate the space of square

integrable functions on X where the (probability) mea-
sure ν admits the density βe−βt (β > 0 and t ≥ 0)
with respect to Lebesgue measure. The inner product on
L2

ν(X) is denoted as < ., . >ν .

Proposition 9 The integral operator on L2
ν(X) associ-

ated with the kernel K in (10) and defined by∫
X

K(x, τ)f(τ)dν(τ) x ∈ X

is a bounded, compact and positive trace-class (nuclear)
integral operator mapping L2

ν(X) into C(X). We also
have

< ρj , ρk >ν =

{
1 if j = k

0 otherwise
(28)

λjρj(s) =
∫

X

K(s, t)ρj(t)dν(t) (29)

K(s, t) =
∞∑

j=1

λjρj(s)ρj(t) (30)

where {ρj} are defined by (26) and the sum above con-
verges uniformly with respect to (s, t) ∈ X1×X2,X1 and
X2 being any compact subset of X.

The next result highlights the nature of the proposed
prior on the impulse response of the system.

Proposition 10 Let Lp(X) denote the classical
Lebesgue space of p-power integrable functions on X.
Let f̃(t), with t ∈ X, be a zero-mean Gaussian process
with stable spline autocovariance K. Then, realizations

7



from f̃(t) belong to Lp(X), with p ≥ 1, almost surely,
i.e. realizations from f̃(t) are almost surely the impulse
response of a BIBO linear system.

Recalling (8), it is immediate to see that stability with
probability one of realizations of f̃(t) implies that of re-
alizations of f(t).
As already mentioned, the optimal estimate given the
data belongs to HK ⊕ BK . The next proposition char-
acterizes such hypothesis space showing that within the
RKHSHK any continuous-time impulse response can be
approximated arbitrarily well in the uniform topology.

Proposition 11 It holds that

HK =

g ∈ L2
ν(X) | g =

∞∑
j=1

ajρj ,
∞∑

j=1

a2
j

λj
<∞


(31)

Further, HK is dense in the space of continuous func-
tions defined on any compact subset of X, i.e. given any
continuous function g on the compact X1 ⊂ X and any
scalar ε > 0, there exists gε ∈ HK such that

sup
τ∈X1

|g(τ)− gε(τ)| < ε

The eigenfunctions associated with some of the largest
eigenvalues of HW and HK (with β set to 1) are dis-
played in Fig. 2. They give an interesting insight into the
nature of the hypothesis space chosen for system iden-
tification. In fact the unknown impulse response is seen
as the linear combination of eigenfunctions through in-
dependent weights with decreasing variance.

6 Examples

6.1 Discrete-time test functions

The proposed nonparametric identification scheme is
first applied to the identification of discrete-time dy-
namic systems from noisy output data. In particular, as
a benchmark we consider 5 simulated impulse responses
displayed in the left (and right) panels of Fig. 3 (solid
line). They are listed below, where all, but the third one,
are given in the z-transform domain

Fig. 2. Eigenfunctions {φj} of the standard cubic spline ker-
nel W (left) and eigenfunctions {ρj} of the novel stable spline
kernel K (right) for j=1,2,3,5,10

F1(z) =
0.0355z2 + 0.02465z
z3 − 1.273z + 0.333

F2(z) =
0.36z

5(z2 + 0.24 + 0.36)

f3(k) = e−
k2
100 /

√
2π, k = 1, 2, . . .

F4(z) =
0.01z4 + 0.0074z3 + 0.000924z2 − 0.000017642z
z5 − 2.14z4 + 1.5549z3 − 0.4387z2 + 0.042025z

F5(z) =
z3 + 0.5z2

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225

The first two represent second-order systems taken from
[15], while the third one is proportional to a normal
density with support only on the positive axis. The last
two impulse responses are a fifth- and a fourth-order
model, taken from Example 5.1 in [50] and Section 8.6

8
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Fig. 3. Discrete-time test functions (Section 6.1). Results
from Monte Carlo simulation using white noise as system
input: true impulse response (solid line) and 99% variability
bands of the estimates (dashed lines) obtained modeling the
unknown function using the classical cubic spline kernel W
(left) and the stable spline kernel K (right)

of [22], respectively. The system input is white noise
of unit intensity. System identification has to be per-
formed starting from 100 output noisy samples. In par-
ticular, system initial conditions are null at instant 0
and the forcing input is applied starting from instant 1.
Measurement noise is white and normal with standard
deviation set to 5% of the maximum absolute value of
the generated noiseless output samples. Measurements
are collected at instants k = 1, 2, . . . , 100.
We consider 5 Monte Carlo (MC) studies, one for any
test function, consisting of 300 runs with independent
noise realizations. The prior model of the system im-
pulse response is the sampled version of either the cubic
spline prior with unknown initial conditions or the
new stable spline prior. The number of reconstructed
impulse response coefficients is equal to 100. Noise stan-
dard deviation σ and parameters λ, β are unknown and

estimated from data.
In the left panels of Fig. 3, results obtained by using
the cubic spline kernel W are depicted (left column).
The true function (solid line) and the 99% variability
bands (dashed lines) of the 300 estimates are visible. It
is apparent that variability bands are rather wide. Re-
constructed curves suffer from oscillations in the final
part of the experiment because the prior model does
not include asymptotic information on system stability.
In the right panels of Fig. 3 we display results obtained
by exploiting the stable spline kernel K (right column).
In addition to the improved quality of the estimates,
variability bands are much narrower and always close to
the true function. Comparing these results with those
reported in Section 7 of [15], one can notice that the
second-order impulse responses are much better esti-
mated. Furthermore, we have used far fewer output
measurements (100 in place of 1000). In particular, the
proposed regularization method removes the oscilla-
tions, due to ill-conditioning, which instead affect the
estimates reported in Fig. 5, 6 and 7 of [15].

Given an estimate of f obtained at the j-th run, namely
f̂j , the reconstruction error and the average reconstruc-
tion error are denoted by errj andErr, respectively, and
defined by

errj =
∞∑

k=1

√
(fj(k)− f̂j(k))2, Err =

∑300
j=1 errj

300
(32)

In addition to the cubic and stable spline methods, Table
1 compares Err values obtained in the same MC studies
described above by two other nonparametric approaches
and two parametric ones. In particular, employed esti-
mators are

(1) empirical transfer function estimation (ETFE) as
implemented in the etfe.m function of the MAT-
LAB System Identification Toolbox [24]. The
smoothing parameter is chosen by an ”oracle”, i.e.
setting the value to that minimizing Err at any
monte Carlo study (this is an ideal tuning yield-
ing a lower bound on the realistically achievable
performance)

(2) regularized impulse response estimation using the
standard cubic spline kernel W with hyperparam-
eters tuned via maximum likelihood (already dis-
cussed)

(3) the same with a Gaussian kernel G defined by (see
e.g. [35])

G(j, k) = λ2e
(j−k)2

$2 , j, k = 1, 2, . . .

with λ and the kernel width $ estimated via max-
imum likelihood
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MC study ETFE + oracle W G K PEM + AIC PEM + oracle

#1 3.4e-2 17e-2 4e-2 0.82e-2 1.9e-2 0.47e-2

#2 2.7e-1 24e-1 4.3e-1 1.3e-1 2.3e-1 0.38e-1

#3 17e-2 31e-2 24e-2 4e-2 15e-2 3.5e-2

#4 2e-2 12.1e-2 6.1e-2 0.67e-2 2.5e-2 0.53e-2

#5 1.6 9.1 1.9 0.73 1.1 0.3

Table 1
Discrete-time test functions (Section 6.1). Results from Monte Carlo simulation using white noise as system input: Err using
ETFE with oracle (first column), classical cubic spline kernel W (second column), the Gaussian kernel (third column), the
new stable spline kernel K (fourth column), PEM with Akaike (fifth column) and with oracle (sixth column).

MC study ETFE + oracle W G K PEM + AIC PEM + oracle

#1 11e-2 5.4e-2 5.5e-2 2.4e-2 24e-2 0.86e-2

#2 6.2e-1 5.5e-1 6.1e-1 3.6e-1 21e-1 0.8e-1

#3 53e-2 8.4e-2 8.7e-2 4.5e-2 25.5e-2 6e-2

#4 1.8e-1 1.3e-1 0.46e-1 0.12e-1 9.7e-1 0.1e-1

#5 4.4 2.1 2.1 1.5 11.4 1.3

Table 2
Discrete-time test functions (Section 6.1). Results from Monte Carlo simulation using square wave as system input: Err using
ETFE with oracle (first column), classical cubic spline kernel W (second column), the Gaussian kernel (third column), the
new stable spline kernel K (fourth column), PEM with Akaike (fifth column) and with oracle (sixth column).

(4) the same with the new stable spline kernel K (al-
ready discussed)

(5) the classical prediction error method (PEM) as im-
plemented in the oe.m function of the MATLAB
System Identification Toolbox [24]. Model orders
m̂1 and m̂2 of the two polynomials defining the out-
put error structure are chosen by the Akaike crite-
rion (AIC), i.e.

(m̂1, m̂2) = arg min
m1∈M,m2∈M

2(m1 +m2)

+ n ln[RSS(m1,m2)] (33)

where n = 100, M = {1, 2, . . . , 15} and RSS is
the residual sum of squares. The latter is computed
using the predicted output of the estimated model
obtained by the predict.m MATLAB function.

(6) the same with model order chosen by the oracle
which minimizes Err obtainable by PEM

It is seen that the stable spline kernel outperforms all
approaches but PEM+oracle with respect to which it
performs almost as well. Table 2 is similar to Table 1
except that system input for identification is a square
wave which alternates between levels 1 and 0, with
period 10. It is apparent that the new nonparametric
approach still outperforms the other nonparametric ap-
proaches and PEM+AIC while is only marginally worse
than PEM+oracle.
In Table 3, we give the root mean square error obtained
by applying the stable spline kernel K on reduced sam-

MC study K (20) K (40) K (60) K (80) K (100)

#1 2.8e-2 1.3e-2 1.1e-2 9.5e-3 8.2e-3

#2 3.8e-1 2.2e-1 1.7e-1 1.5e-1 1.3e-1

#3 1.07e-2 6.7e-2 5.6e-2 5e-2 4e-2

#4 1.5e-2 1e-2 8.3e-3 7.3e-3 6.7e-3

#5 1.9 1.08 8.3e-1 7.5e-1 7.3e-1

Table 3
Dicrete-time test functions (Section 6.1). Results from Monte
Carlo simulation using white noise as system input: Err
using the new stable spline kernel K with reduced and full
sampling grids (number of samples are within brackets).

pling grids (20, 40, 60 and 80 samples randomly chosen
from the original 100 ones) with data generated using
white noise as system input. Again, 300 MC runs for
any subsampled schedule were performed. It is apparent
that, even under these reduced sampling schedules, the
impulse responses are accurately reconstructed. It is
worth remarking that standard nonparametric spectral
approaches like ETFE cannot handle nonuniform sam-
pling schedules, which are routinely adopted in some
fields, e.g. biomedical modeling.
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6.2 Randomly generated discrete-time test functions

In this subsection, we consider a more probing simulated
study where, at any of the 300 runs, a discrete-time sys-
tem of order 30 is randomly generated. In particular,
the coefficients of the numerator of the transfer function
are realizations of white noise with variance 4. The de-
nominator is instead generated by using the MATLAB
function drmodel.m with system poles constrained to lie
inside the circle of radius 0.9.
System is at rest at instant 0 and the forcing input is
white noise of unit variance. Measurement noise is white
and Gaussian with standard deviation set to 10% of the
maximum absolute value of the generated noiseless out-
put samples. The identification data set consists of 150
output measurements collected at instants 1, 2, . . . , 150.
In this case, given an estimate f̂j obtained at the j-th
run, it is useful to define the relative error

errj =

√∑∞
k=1(fj(k)− f̂j(k))2∑∞

k=1 f
2
j (k)

(34)

and Err as in (32). Employed estimators are

(1) regularized estimation of the first 100 impulse re-
sponse coefficients using the the new stable spline
kernel K. Hyperparameters are tuned via maxi-
mum likelihood.

(2) PEM with model order of the two polynomials
defining the output error structure chosen by AIC
with M = 1, 2, . . . , 35 and m1 = m2 in (33)

(3) the same with model order chosen by BIC
(4) the same with model order chosen by the oracle

which minimizes Err obtainable by PEM

At any Monte Carlo run j, we also computed the 95%
confidence interval around the nonparametric estimate
(see subsection (4.3)) and let χj indicate the fraction of
samples of {f(k)}100k=1 that belong to such interval.

Table 4 displays Err values. Remarkably, the proposed
nonparametric estimator outperforms PEM equipped
with AIC and BIC. Moreover, its performance is very
close to that of PEM equipped with the oracle. In ad-
dition, the average value for χj is 0.937, indicating that
confidence intervals obtained from the nonparametric es-
timator are highly informative under these experimental
conditions.

6.3 Other model selection examples

We now consider a discrete time second-order system
with frequency response F (z) given by

F (z) =
2(z − 0.3)2

5(z2 − 1.4z + 0.65)
(35)

K PEM + AIC PEM + BIC PEM + oracle

0.23 0.35 0.32 0.21

Table 4
Randomly generated discrete-time test functions (Sec-
tion 6.2). Results from Monte Carlo simulation: Err using
the new stable spline kernel K (first column), PEM with
AIC (third column), PEM with BIC (third column) and with
oracle (fourth column).

As in [21], the real part of the two complex poles of the
system is 0.7 and the problem consists of reconstructing
f using a step function as input applied to the system at
rest. In particular, estimation has to be performed from
40 noisy measurements corrupted by a noise with stan-
dard deviation σ = 0.04 which is assumed unknown. For
the sake of comparison, we will also consider identifica-
tion of f by means of finite Laguerre expansions, i.e.

F (z, η) =
m∑

k=1

ηkLk(z), Lk(z) =

√
1− p2

z − p

(
1− pz

z − p

)k−1

where value for p is either 0 (corresponding to FIR mod-
els) or is optimally chosen and set to 0.7.
We perform 10 MC studies, each consisting of 300 runs
with independent realizations of the noise. The studies
use

(1) least-squares estimation of the Laguerre coefficients
with p = 0 and model order m chosen by AIC with
maximum allowed value equal to 15

(2) the same with model order chosen by BIC
(3) the same with model order chosen by an oracle

which minimizes the reconstruction error Err de-
fined in (32)

(4) the same except that p = 0.7 and model order is
chosen by AIC

(5) the same except that p = 0.7 and model order is
chosen by BIC

(6) the same except that p = 0.7 and model order is
chosen by an oracle

(7) regularized impulse response estimation using the
stable spline kernel K

(8) PEM with model order chosen by AIC, as described
in (33) but with M = {1, . . . , 6}

(9) the same with model order chosen by BIC
(10) the same with model order chosen by an oracle

In Fig. 4, box-plots of the errors achieved by the 10
estimators are shown. Remarkably, the proposed non-
parametric approach outperforms AIC- and BIC-based
estimators also when basis functions include knowledge
on pole position and when PEM is used. Furthermore,
results are better than those obtained by combining an
oracle and FIR models and are close to those achieved
by PEM+oracle and by combining the oracle with set-
ting p to the optimal value 0.7.
Estimation of Laguerre coefficients by least-squares
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Fig. 4. Model selection example (Section 6.3). Boxplots of errors errj (see eq. (32)) relative to the 10 estimators used to
reconstruct the impulse response of eq. (35)
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Fig. 5. Model selection example (Section 6.3). Boxplots of
errors errj (see eq. (32)) relative to the 4 estimators used to
reconstruct the Runge function reported in eq. (36)

is not robust in this case because is subject to ill-
conditioning. This problem is exacerbated when FIR
models are used since they do not include any infor-
mation regarding regularity of the impulse response.
Conversely, when Laguerre polynomials are optimally
chosen, smoothness information on f is included in the
model. However, AIC- and BIC-based model selection
is not satisfactory. At first sight, it may seem that the
new stable spline estimator differs from parametric ones
only in the choice of the basis functions (see Fig. 2).
As a matter of fact, the difference is more substan-
tial. In fact, the basis functions are not fixed but are
adapted to the specific data set through the tuning of
the hyperparameters. Moreover, the coefficients of the
basis functions are not found by regression but rather

through regularization which dampens high frequency
basis functions. Seen in another way, model complexity
is controlled by the regularization parameter γ while β
encodes information on stability.
To further illustrate flexibility of stable spline ba-
sis functions, let us consider the reconstruction of an
infinite-dimensional system whose impulse response is a
translated and scaled version of the well known Runge
function [37]

f(k) =

(
1 + 25

(
k − 20

20

)2
)−1

, k = 1, 2, . . . (36)

The system has to be reconstructed from 100 noisy mea-
surements using a step as input to the system which is
initially at rest. Noise standard deviation is 2% of the
maximum absolute value of the generated noiseless out-
put samples. We perform 4 MC studies, each consisting
of 300 runs, where the following estimators are used

(1) PEM with model order chosen by AIC, as described
in (33) with M = {1, . . . , 15}

(2) the same with model order chosen by BIC
(3) the same with model order chosen by an oracle
(4) regularized impulse response estimation using the

stable spline kernel K

Fig. 5 displays boxplots of errors errj as defined in (32).
In this case, the oracle performs worse than the nonpara-
metric estimator. As a matter of fact,Err values are 0.63
and 0.37 using the oracle and the stable spline kernel, re-
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spectively, while those obtainable using PEM+AIC and
PEM+BIC are similar and around 0.8.

6.4 First-order low-frequency approximation of a
continuous-time second order system

Consider a continuous-time second-order system whose
frequency response F (s) is given by

F (s) =
5s+ 15

s2 + 21s+ 20

The impulse response is displayed in the top (and bot-
tom) left panels of Fig. 6 (thick line) while the Bode
plot of the magnitude is displayed in the top (and bot-
tom) panel of Fig. 7 (thick line). In Fig. 6, we plot
200 noisy output samples generated by using as input
either a comb function with noise standard deviation
equal to 0.08 (top right panel) or a step function with
σ = 0.02 (bottom right panel). Suppose now that for
control purposes it is desirable to achieve a first-order
approximation of the system for use at low frequencies.
In the left panels of Fig. 6 we plot the estimates of the
impulse response obtained by fitting a first-order model
to data via least squares (dashed lines) while the corre-
sponding Bode plots are visible in Fig. 7 (dashed lines).
One can see that the result obtained by using the comb
function is very inaccurate at low frequencies. This
result could be improved by resorting to pre-filtering
methods but this would require a careful choice of the
bandwidth. In the left panels of Fig. 6 and in Fig. 7
the estimates obtained by the new nonparametric ap-
proach proposed in this paper are shown (thin lines).
One can notice that the estimate is less sensitive to the
type of system input due to the infinite-dimensional
nature of the stable spline hypothesis space. In partic-
ular, it closely approximates the true magnitude plot
over a wide frequency range. The desired lower order
model can be derived from the regularized estimate via
Proposition 4. For instance, Fig. 7 plots the magnitude
plot of a first-order model obtained by projecting the
nonparametric estimate onto a first-order model using
a weighting function which, over the frequency domain,
is constant on [0, 1] rad/sec and 0 elsewhere (dash-dot
line). Finally, in Fig. 8, we display the true magnitude
and phase and the nonparametric estimates together
with 99% confidence intervals (dashed lines). Given this
information, it is possible to obtain the robustness mar-
gin ∆M to be used for control design, see e.g. [15]. In the
simplest case, if a symmetric deterministic error bound
around the nominal model is desired, it suffices to take
the smallest ∆M such that both the lower and upper
confidence limits of the nonparametric estimate (with
prescribed confidence level, e.g. 1%) are encompassed.
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Fig. 6. Continuous-time second-order system (Section 6.4).
Left: true impulse response (thick line), estimated impulse re-
sponse obtained by fitting a first-order model to data (dashed
lines) and by the new nonparametric approach (continuous
line). Right: noisy output samples and reconstructed out-
put. System input is a comb (top panels) or a step function
(bottom panels).
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Fig. 8. Continuous-time second-order system (Section 6.4).
Top: True magnitude Bode plot (thick line), nonparamet-
ric estimate (continuous line) and 99% confidence intervals
(dashed lines). Bottom: True phase Bode plot (thick line),
nonparametric estimate (continuous line) and 99% confi-
dence intervals (dashed lines). System input is a comb (left
panels) or a step (right panels).

7 Conclusions

Methods which are currently used for robust identifi-
cation start with a low-order nominal model identified
by standard techniques such as least-squares and pre-
diction error methods. Then, on the basis of the nom-
inal model, bias and variance errors are quantified. In
this paper, we have embedded this problem in a fully
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Experiment A: comb input
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Experiment B: step input

   Estimate of a
 first-order model

      Nonparametric
          estimate

      Projected nonparametric 
                 estimatel

   Estimate of a
 first-order model

   True

      Nonparametric
           estimate

   True

      Projected nonparametric 
                 estimate

Fig. 7. Continuous-time second-order system (Section 6.4). True magnitude (thick line), estimated magnitude obtained by
fitting a first-order model to data (dashed lines), using the new nonparametric approach (continuous line), and projecting the
regularized estimate onto a first-order model (dash-dot lines). System input is a comb (top panel) or a step (bottom panel).

Bayesian framework. In particular, a new probabilistic
prior has been formulated directly on the unknown im-
pulse response f , rather than on the bias error. This
prior, in some sense, is the least committing one that
incorporates information on both continuity of f and
system BIBO-stability. The actual degree of continuity,
as measured by the norm of the intensity of the white
noise entering the prior, is regulated by a hyperparame-
ter which is tuned from the data. The rate of asymptotic
exponential decay is also estimated from the data. The
mean square estimate is the solution of a Tikhonov
regularization problem formulated on a suitable RKHS
which has been fully characterized and shown to be
dense in the space of continuous functions. If a nominal
low-order model is needed, first, a virtually unbiased
estimate of f is computed in such an RKHS and then
the desired nominal model is obtained by projecting the
regularized estimate onto a finite-dimensional space.
Simulated benchmarks taken from the literature demon-
strate the effectiveness of the proposed approach.
The results obtained in this paper, in particular those
reported in Tables 1-4, could appear surprising. In fact,
even when PEM+AIC is applied to candidate mod-
els which contain the true one, searching the estimate
within the stable spline infinite-dimensional space leads
to much better results. The reasons of the superiority
of the proposed nonparametric approach are threefold.
First of all, Akaike-like criteria rely on approximations
of the likelihood that are only asymptotically exact. On
the contrary, in our approach, the likelihood of the hy-
perparameters is exact, irrespective of the sample size.

Second, it is well known that a drawback of Akaike-like
criteria is that they neglect uncertainty of the estimated
parameters [20]. Instead, the approach of this paper fully
accounts for impulse response uncertainty because the
hyperparameter likelihood is obtained after marginal-
izing with respect to the random impulse response.
Finally, the issue of local maxima of the likelihood is far
less critical in our nonparametric setting. In fact, the
presence of only 3 unknown variables in (18) makes it
possible even to use grid methods for hyper-parameter
tuning [25]. Conversely, Akaike-like methods are faced
with optimization in larger dimensional spaces (the joint
likelihood is a function of all model parameters) and
therefore more exposed to local maxima. For what con-
cerns the computational complexity of the new method,
it depends on the cost of evaluating the marginal log
likelihood (18), which in general is an O(n3) problem.
When dealing with large data sets, a simple yet effec-
tive strategy to reduce computational complexity is to
determine the hyper-parameters using only a subset of
the measurements, subsequently exploiting the entire
data set to achieve f̂ in (21), see e.g. [35]. A more so-
phisticated option is to combine the spectral analysis
in Section (5) and the efficient computational schemes
developed in [5,31]. These results exploit the fact that
accurate approximations of regularized estimates in
RKHS typically belong to subspaces spanned by few
kernel eigenfuctions, i.e. with dimension n̆ much smaller
than n, see also [53,10]. In practice, this permits both
computation of f̂ and evaluation of the objective (18)
with only O(n̆3) operations, see [5,31] for details.
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As for the asymptotic properties of the stable spline
estimator, it can be shown that for n tending to infinity
and under suitable technical conditions, a consistency
property holds for a wide class of impulse responses,
dense in the space of continuous functions. This result
can be derived by extending the error analysis reported
in [38]. A detailed derivation will be the object of future
work.
Finally, it is worth stressing that the proposed method
can be used also for identification of MIMO systems.
In particular, this can be obtained by replacing the
projection module depicted in Fig. 1 with a subspace
algorithm fed with a stable spline estimator of the one-
step-ahead predictor. Preliminary results on this can be
found in [32,8].
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Appendix

Proof of Proposition 3

The problem can be written as finding

arg min
Γ

∫
D

(∫
R

(ft − Γt(y))
2 pt(ft|y)dft

)
w(t)dt

which is equivalent to solving for any value of t

arg min
Γt

∫
R

(ft − Γt(y))
2 pt(ft|y)dft

i.e., minimization is independent of w since the objec-
tive can be optimized pointwise. In particular, for any t
the solution is the conditional expectation and this com-
pletes the proof.

Proof of Proposition 4

We have

E[(ft − ΓPt (y))2|y]
= E[(ft − ΓPt (y) + Γ̂B

t (y)− Γ̂B
t (y))2|y]

= E[(ft − Γ̂B
t (y))2|y] + E[(Γ̂B

t (y)− ΓPt (y))2|y]
+ 2E[(ft − Γ̂B

t (y))(Γ̂B
t (y)− ΓPt (y))|y]

The first term in the RHS does not depend on ΓPt . As
for the second term,

E[(ft − Γ̂B
t (y))(Γ̂B

t (y)− ΓPt (y))|y] =

=
∫
R

(ft − Γ̂B
t (y))(Γ̂B

t (y)− ΓPt (y))pt(ft|y)dft

= (Γ̂B
t (y)− ΓPt (y))

∫
R

(ft − Γ̂B
t (y))pt(ft|y)dft

= (Γ̂B
t (y)− ΓPt (y))(

∫
R
ftpt(ft|y)dft −E[ft|y]) = 0

Hence, one is reduced to solve

arg min
ΓP

∫
D

E[(Γ̂B
t (y)− ΓPt (y))2|y]w(t)dt

= arg min
ΓP

∫
D

(Γ̂B
t (y)− ΓPt (y))2w(t)dt

Proof of Proposition 9

By definition, K(s, t) = W (e−βs, e−βt). Hence, K is a
positive definite kernel. Since W is continuous on the
compact domain S×S, there exists a scalarM such that

sup
(s,t)∈S×S

W (s, t) < M < +∞ (37)

and thus we have∫
X

∫
X

|K(s, t)|2dν(s)dν(t)

=
∫

X

∫
X

|W (e−βs, e−βt)|2β2e−βse−βtdsdt

=
∫

S

∫
S

|W (s, t)|2dsdt ≤M2 < +∞

Furthermore, for any x ∈ X∫
X

|K(x, τ)|2dν(τ) =
∫

X

|W (e−βx, e−βτ )|2βe−βτdτ

=
∫

S

|W (e−βx, t)|2dt ≤M2 < +∞(38)

which shows that for any x ∈ X, K(x, .) ∈ L2
ν(X). Fur-

ther, by defining k(x) =
∫

X
|K(x, τ)|2dν(τ), from (38)

one also obtains that k(x) is bounded on any Xi ⊂ X.
The first part of the thesis now follows by exploiting
Propositions 1,2 and 3 in [42].
As for (28,29), they can be easily obtained using the
fact that integration on X involving kernel K may be
converted into integration on S involving kernel W and
exploiting (26) and Proposition 8. Finally, (30) derives
from Mercer theorem on noncompact domains, see The-
orem 2 in [42].
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Proof of Proposition 10

We must show that∫
X

|f̃(t)|pdt < +∞ a.s. (39)

Since f̃(t) = fW (e−βt), where fW is integrated Wiener
process, it holds that∫

X

|f̃(t)|pdt =
∫

X

|fW (e−βt)|pdt =
1
β

∫
S

|fW (τ)|p

τ
dτ

Since fW (τ) is almost surely continuous, it suffices to
study how |fW (τ)|p/τ behaves near zero to assess if (39)
holds. In view of Proposition 8, we obtain the following
Karhunen-Loeve expansion of fW on S

fW (t) =
+∞∑
i=1

zi

α2
i

φi(t)

where {zi} are zero-mean and independent Gaussian
variables of unit variance. Now, define for t ∈ S

h1(t;αi) =
[
cos(αit)− 1

αit

]
, h2(t;αi) =

[
sin(αit)
αit

]
h3(t;αi) = e−αi

[
eαit − 1
αit

]
, h4(t;αi) =

[
e−αit − 1

αit

]
By exploiting (25) and the fact that φi(0) = 0, ∀i, it
holds that

0 =C1(αi) + e−αiC3(αi) + C4(αi) i = 1, 2, ...
φi(t)
αit

=C1(αi)h1(t;αi) + C2(αi)h2(t;αi)

+C3(αi)h3(t;αi) + C4(αi)h4(t;αi) t ∈ S

Recalling also that | sin(αi)| >
√

1− 4e−π, ∀i, see [31],
one easily obtains that there exists M < +∞ indepen-
dent of indices i, k and of t ∈ S such that

|Ck(αi)|<M k = 1, 2, 3, 4, i = 1, 2, ...
|hk(t, αi)|<M t ∈ S, k = 1, 2, 3, 4, i = 1, 2, ...

Thus, we obtain

fW (t)
t

=
+∞∑
i=1

φi(t)
t

zi

α2
i

≤ 4M2ϑ, ϑ =
+∞∑
i=1

zi

αi

In view of the definition of αi given in (23,24), for i
tending to +∞, αi tends to +∞ not slower than i.
Thus, ϑ is a zero-mean Gaussian with a finite variance.
It emerges that realizations from |fW (τ)|/τ are almost
surely continuous on S, and hence also those drawn from
|fW (τ)|p/τ .

Proof of Proposition 11

As far as (31) is concerned, it can be immediately ob-
tained by exploiting Proposition 9 and results on sepa-
rability of RKHSs defined on noncompact sets, see e.g.
Corollary 1 in [42]. As for density of HK in the space of
continuous functions, we start noticing that HW is as-
sociated with the Green’s function of a self-adjoint dif-
ferential operator. Hence, functions in HW (plus a term
able to accommodate a failure of the boundary condi-
tion at zero) can approximate arbitrarily well any con-
tinuous function on a compact S1 ⊂ S in the sup-norm
topology, see [1] and also Proposition C.1 in [33]. The re-
sult is then obtained by noticing from (27) and (31) that
HW and HK are isometrically isomorphic, the isometry
being established by a transformation Ψ : HW 7→ HK

which maps h(t), t ∈ S into g(τ) = h(e−βτ ), τ ∈ X.
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