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Abstract

Maximum likelihood estimation has a rich history. It has been successfully applied to many problems including dynamical
system identification. Different approaches have been proposed in the time and in the frequency domains. In this paper we
discuss the relationship between these approaches and we establish conditions under which the different formulations are
equivalent for finite length data. A key point in this context is how initial (and final) conditions are considered and how they
are introduced in the likelihood function.
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1 Introduction

Maximum Likelihood (ML) estimation methods have be-
come a popular approach to dynamic system identifica-
tion [10,40,18]. Different approaches have been proposed
in the time and frequency domains [19,17,21,33,34].
A commonly occurring question is how time- and
frequency-domain versions of ML estimation are related.
Some insights into the relationship between the methods
have been given in past literature. However, to the best
of the authors knowledge, there has not previously been
a comprehensive account of the equivalence between the
two approaches, in particular, for finite length data. For
example, [17,21,23] have shown that, when working in
the frequency domain, an extra term arises in the like-
lihood function that depends on the noise model. This
term vanishes asymptotically for long data sets when
considering uniformly spaced frequency points over the
full bandwidth [−π, π] (see, for example, [34]).
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In [34], Box-Jenkins identification has been analyzed.
Extensions to identification in closed loop have also been
presented [34]. Also the case of reduced bandwidth esti-
mation has been considered. A surprising result, in this
context, is that, for processes operating in open loop,
the commonly used frequency domain ML method re-
quires exact knowledge of the noise model in order to
obtain consistent estimates for the plant parameters.
On the other hand, it is well known that the commonly
used ML in the time domain (for systems driven by a
quasi-stationary input and Gaussian white noise that
are mutually uncorrelated) provides consistent estimates
for the transfer function from input to output irrespec-
tive of possible under-modelling of the transfer func-
tion from noise to output [18]. This fact suggests that
there could be key differences between the time- and
frequency-domain approaches in the usual formats. In
the current paper we will see that the apparent differ-
ences are a result of inconsistent formulations rather
than fundamental issues between the use of time or fre-
quency domain data. In particular, we establish in this
paper that the domain chosen to describe the available
data (i.e., time or frequency) does not change the result
of the estimation problem (see also [39,19]). Instead, it is
the choice of the likelihood function, i.e., which parame-
ters are to be estimated and what data is assumed avail-
able, that leads to perceived differences in the estimation
problems. This issue has previously been highlighted for
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time domain methods in the statistics literature where,
for example, the way in which initial conditions are con-
sidered defines different likelihood functions and, thus,
different estimation problems (see e.g. [36, chapter 22]).
More specifically, for dynamic system identification, the
time domain likelihood function is different depending
on the assumptions made regarding the initial state (x0),
e.g.

(T1) x0 is assumed to be zero,
(T2) x0 is assumed as a deterministic parameter to be

estimated, or
(T3) x0 is assumed to be a random vector.

On the other hand, if we convert the data to the fre-
quency domain by applying the discrete Fourier trans-
form (DFT) then a term arises which depends on the dif-
ference between the initial and final states, α = x0−xN .
Different assumptions can be made about this term in
the frequency domain, e.g.

(F1) α is assumed to be zero (equivalent to assuming
periodicity in the state)

(F2) α is estimated as a deterministic parameter (as in,
e.g., [1,34]), or

(F3) α is considered as a hidden random variable.

In this paper we show that the case when the term α
is considered as a random variable is the most general.
In fact, we show that each of the six cases described
above, i.e., (T1)–(T3) and (F1)–(F3), can be obtained
by making particular assumptions regarding the statis-
tical properties of the random variable α and x0. In par-
ticular, our analysis shows that the same solution is ob-
tained (in the time and in the frequency domain, and
using finite data) only if the properties of α as a ran-
dom variable are chosen such that they are consistent
with the system dynamics and the way the initial state is
considered (Theorem 21 in Section 4.2). Throughout the
paper we assume that the system is operating in open
loop. Closed loop data can be treated in a similar fash-
ion by the inclusion of additional terms (see for example
Remark 2 below).

2 Time Domain Maximum Likelihood

2.1 Time-domain model and data

We consider the following Single-Input Single-Output
(SISO) linear system model:

yt = G(q)ut +H(q)wt (1)

where {ut} and {yt} are the (sampled time-domain)
input and output signals, respectively, and {wt} is zero
mean Gaussian noise with variance σ2

w. G(q, θ) and
H(q, θ) are rational functions in the forward shift op-
erator q. We also assume that: (i) G(q) and H(q) are

stable, with no poles on the unit circle; (ii) H−1(q)
is stable (i.e., H(q) is minimum phase, with no zeros
on the unit circle); and (iii) limq→∞H(q) = 1. The
transfer function description of the system in (1) can
equivalently be represented in state space form as:

xt+1 = Axt +B ut +K wt (2)
yt = C xt +Dut + wt (3)

The system parameter vector θ contains the coeffi-
cients of the transfer functions G(q) and H(q) in (1).
This parameter vector also uniquely defines the matri-
ces A,B,C,D,K in the state space representation in
(2)–(3) for controllable or observable canonical forms
[16,22,5]. The two alternative models are related by

G(q) = C(qI −A)−1B +D (4)
H(q) = C(qI −A)−1K + 1 (5)

The initial conditions in (2) summarize the past of the
system prior to time t = 0. To include the effect of ini-
tial conditions on the system response, we note that the
solution of the state-space model (2)–(3) can be written
as

yt = F (q)st +G(q)ut +H(q)wt (6)

= CAt x0 +

[
t−1∑
`=0

CAt−1−`B u`

]
+Dut

+

[
t−1∑
`=0

CAt−1−`K w`

]
+ wt (7)

where the additional term st captures the effect of an
initial state x0 on the system response. If we interpret
st as a Kronecker delta function, i.e., st = x0δK [t], then
the transfer functions in (6) are given by (4), (5), and

F (q) = C(qI −A)−1q (8)

For the sake of simplicity, we represent the system re-
sponse using block matrices. Equation (7) can then be
rewritten as

~y = Γx0 + Λ~u+ Ω~w (9)

where

~y = [y0, . . . , yN−1]T (10)
~u = [u0, . . . , uN−1]T (11)
~w = [w0, . . . , wN−1]T (12)
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and

Γ =


C

CA
...

CAN−1

 , Λ =


D 0 . . . 0

CB D . . . 0
...

. . .
...

CAN−2B CAN−3B . . . D


(13)

Ω =


I 0 . . . 0

CK I . . . 0
...

. . .
...

CAN−2K CAN−3K . . . I

 (14)

2.2 Time domain maximum likelihood

The time-domain likelihood function is defined as the
conditional probability density function (PDF) of the
data given the parameters, i.e.

`(β) = p~y(y0, . . . , yN−1|β) = p~y(~y|β) (15)

where D = {y0, . . . , yN−1} is the available data given in
the time domain, and the vector β contains the param-
eters to be estimated: the system parameters in θ, the
noise covariance σ2

w, and the initial state x0 (when con-
sidered as a deterministic parameter) or its mean µx0

and covariance matrix Σ0 (when x0 is considered as a
random variable). Note that, as stated in the introduc-
tion, different likelihood functions will arise from (15),
depending on the assumptions made about the initial
state x0.

We examine the three time-domain problems corre-
sponding to assumptions (T1)–(T3) described in the
introduction. The next lemma considers the time-
domain likelihood function when the initial state x0 is
considered as a random variable (i.e., case (T3)).

Lemma 1 (T3) Consider the system (1) (or its equiv-
alent form as in (2)–(3)). Assume that the initial state
x0 is a random vector, Gaussian distributed, independent
of the noise process {wt}, with mean µx0 and covariance
matrix Σ0. Then the time domain (negative log-) likeli-
hood function is given by

LT3(θ, σ2
w, µx0 ,Σ0) = − log p~y(~y|θ, σ2

w, µx0 ,Σ0)

=
1
2

[
N log(2π) + log det Σ~y + (~y − µ~y)TΣ−1

~y (~y − µ~y)
]

(16)

where µ~y and Σ~y are the conditional mean and covariance

matrix for the output data given the parameters, i.e.

µ~y = Λ~u+ Γµx0 (17)
Σ~y = ΓΣ0ΓT + σ2

wΩΩT (18)

PROOF. The likelihood of the data given the param-
eter vector θ and the random vector x0 can be obtained
from (9):

~y = Λ~u+
[
Γ Ω

] [x0

~w

]
(19)

Using the PDF of a transformation of random variables
(see, for example, [15, page 34]), we have that the PDF
for ~y is readily obtained from the affine transformation
in (19), i.e.

p~y(~y) =
exp

{
− 1

2 (~y − µ~y)TΣ−1
~y (~y − µ~y)

}
√

(2π)N det Σ~y
(20)

where the mean and covariance are given by equations
(17) and (18). The negative log-likelihood function is
readily obtained from (20). 2

Remark 2 The previous lemma describes the likelihood
function when the initial condition is considered as a
random vector. Note that (16) includes the system pa-
rameter vector θ and also the mean µx0 and covariance
matrix Σ0 of the initial state x0. These quantities, µx0

and Σ0, can also be considered as given, i.e., introducing
prior knowledge to the estimation problem. Alterntively,
the properties of x0 can also be expressed in terms of the
system parameters: for example, if we assume that the
input {ut} and noise {wt} are i.i.d., mutually uncorre-
lated, zero mean random processes having variances σ2

u
and σ2

w, respectively 1 , and acting on the system from
t = −∞, then µx0 = 0 and the covariance Σ0 is the so-
lution of the Lyapunov equation:

Σ0 = AΣ0A
T + σ2

uBB
T + σ2

wKK
T (21)

Notice that, for closed loop data, extra terms appear on
the right hand side of (21). In fact, for systems operat-
ing in closed loop, Σ0 depends on the cross-covariance
between ut and wt, the cross-covariance between xt and
wt, and the cross-covariance between ut and xt. These
quantities depend on the structure of the controller, and
are typically not estimated in closed loop identification
in the prediction error framework (see [18]). OOO

1 We assume that the second order properties of the input
are known for t < 0. For sake of simplicity, we constrain the
analysis to the case when the input is white noise. However,
the extension to inputs having rational spectrum is straight-
forward.
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The following two corollaries cover the cases when the
initial state is considered as a deterministic parameter
(T2), and when the initial state is assumed to be equal
to zero (T1).

Corollary 3 (T2) If the initial state x0 is considered
as a deterministic parameter to be estimated, then the
corresponding (negative log-) likelihood function is given
by

LT2(θ, σ2
w, x0) =

N

2
log(2π) +

N

2
log σ2

w +
1

2σ2
w

N−1∑
t=0

ε2t

(22)

where st = δK(t)xo and εt is the prediction error

εt =
yt −G(q)ut − F (q)st

H(q)
(23)

PROOF. The proof follows from Lemma 1 considering
an initial state with mean µx0 = x0 and a zero covariance
matrix, i.e., Σ0 = 0. Substituting into (17)–(18), we have

µ~y = Λ~u+ Γx0 (24)
Σ~y = σ2

wΩΩT (25)

Moreover, from (14), we have that Ω−1 is related to the
inverse of the noise transfer function, H−1(q), thus:

Ω−1(~y − µ~y) = Ω−1(~y − Γx0 − Λ~u) = [ε0, . . . , εN−1]T

(26)

where εt are the prediction errors defined in (23). Sub-
stituting (25) and (26) in (16), the likelihood function
(22) is obtained. 2

Corollary 4 (T1) If the initial state x0 is assumed to be
equal to zero, then the corresponding likelihood function
is given by

LT1(θ, σ2
w) =

N

2
log(2π) +

N

2
log σ2

w +
1

2σ2
w

N−1∑
t=0

ε2t

(27)

where εt = (yt −G(q)ut)/H(q) is the prediction error.

PROOF. Follows immediately from Corollary 3, by
taking x0 = 0. 2

Remark 5 In the statistics literature the estimation al-
gorithms for ARMA models are described by the following
two cases (see e.g. [27,37,36]): exact Maximum Likeli-
hood, when x0 is considered as a random variable with

zero mean and variance given in (21), and approximate
Maximum Likelihood, when x0 is considered as a param-
eter (In particular, the case x0 = 0 is known as condi-
tional Maximum Likelihood). OOO

Remark 6 Note that the different likelihood functions
obtained in the time- and frequency domains can be con-
centrated on the parameters of interest. For system iden-
tification purposes, we are usually only interested in sys-
tem parameter vector θ, that defines the transfer func-
tions G(q) and H(q) in (1) (and the state-space model
matrices A, B, C, D, and K in (2)–(3)). OOO

3 Frequency Domain Maximum Likelihood

3.1 Frequency domain model and data

In this section we consider the situation where the data
has been transformed from time to frequency domain.
We review the statistical properties of transformed data
when using the DFT. Later, in Section 3.2, we examine
the impact that this transformation has on maximum
likelihood estimation.

To transfer the estimation problem into the frequency-
domain we apply the discrete Fourier transform (DFT)
to the data (see e.g. [11, chapter V]):

Yk =
1√
N

N−1∑
t=0

ytz
−t
k = <{Yk}+ j={Yk} (28)

where zk = ejωk , ωk = 2π
N k, and <{Yk} and ={Yk}

represent the real and imaginary part of Yk, respectively.
The DFT defined in (28) can be expressed in matrix
form as follows:

~Y = MF ~y (29)
where ~y is given in (10), and

~Y = [Y0, . . . , YN−1]T (30)

and the matrix MF is the Fourier matrix given by [2,
page 214]:

MF =
1√
N

[
z
−(i−1)
k−1

]
(31)

where zk = ej
2π
N k and the notation [aik] denotes a matrix

having aik in the i-th row and k-th column. Note that
zNk = 1, and, thus, zN−`k = z−`k . Moreover, the matrix
MF in (31) is Hermitian (MF = MF

H), non-singular
(detMF 6= 0), and unitary (MFMF

H = I) [2].

A difficulty associated with forming the likelihood func-
tion in the frequency domain is that Yk in (28) is a com-
plex random variable. Some of the issues arising from
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having a complex random variable z = x + jy, where
x, y ∈ Rn are real random variables, are outlined below.

(CV1) The probability density function (PDF) of z
cannot, in general, be written in the traditional way since
complex numbers are not an ordered set, i.e., FZ(z) =
P (Z < z) is not meaningful [30,31]. Thus, the PDF of
z has to be understood as the joint PDF of the real and
imaginary parts [6], i.e.

pZ(z) = pX,Y (x, y) =
∂2F (u, v)
∂u∂v

∣∣∣∣
(u,v)=(x,y)

(32)

where F (x, y) = P (X ≤ x, Y ≤ y) is the probability
distribution of the random variables X and Y evaluated
at (x, y).
(CV2) The PDF pX,Y (x, y) can be written as a func-
tion pZ(z) which depends on z [24–26]. This is because
x and y can always be written in terms of z (and z∗).
In fact, x = 1

2 (z + z∗), y = 1
2j (z − z∗) where z∗ is the

complex conjugate of z.
(CV3) The terms proper, circular, or circular sym-
metric are different names used for complex Gaussian
random variables. The imaginary and real part of this
type of complex random variables are uncorrelated, and
the covariance of the real and imaginary parts are the
same.
(CV4) For a proper complex Gaussian random vari-
able z, the PDF pZ(z) has the usual form [29]:

pZ(z) =
exp{−[z − µ]HΣ−1[z − µ]}

πn det Σ
(33)

where µ and Σ are the mean and covariance matrix of z
(More details are given in Appendix A.1).
(CV5) If Wk ∈ Cn is proper then any affine trans-
formation of Wk (e.g. AWk + b, where A ∈ Cm×n, and
b ∈ Cn are constants) is also proper [25, Lemma 3].

We will be interested in analyzing Maximum Likelihood
estimation when the available time-domain data is trans-
formed to the frequency domain by applying the DFT
defined as in (28). It is well known that, if {Yk} is the
DFT sequence of a time sequence {yt}, then:

(DFT1) If {yt} is zero mean i.i.d (real) Gaussian se-
quence with variance P . We write yt ∼ Nr(0, P ). Then
{Yk} given by (28) is an independent zero mean real-
complex proper Gaussian sequence having variance P .
We write Yk ∼ Nr−c(0, P ). The random variable Yk
is characterized by the following Gaussian distribution
[14,17,25,30,31,41]:

p(Yk) =


exp{− 1

2Y
T
k P

−1Yk}√
(2π)n detP

; Yk real

exp{−Y Hk P−1Yk}
πn detP

; Yk complex
(34)

where T denotes transpose and H denotes conjugate-
transpose. It is important to note that Yk is a real Gaus-
sian random variable for k = 0 and for k = N

2 (when
N is an even number), and, otherwise, it is a complex
Gaussian random variable.
(DFT2) The DFT of an i.i.d sequence (not necessar-
ily having a Gaussian PDF but with finite second order
moments and mixing) is asymptotically a proper Gaus-
sian i.i.d sequence. This is basically a consequence of the
Central Limit Theorem [3,17,33].
(DFT3) The PDF of the sequence Y0, · · · , YN−1 is
singular. This is a consequence of the deterministic re-
lationship that exists between the components of this
sequence [14]. If we start with a real vector of length N
and we use a linear invertible transformation then we
still only have N independent components in the new
domain. In fact, YN−k = Yk

∗, where ∗ denotes complex
conjugation. This means that only L = bN2 c random
variables are necessary to define a non-singular PDF,
where bN2 c denotes the smallest integer greater than or
equal to N

2 . Note that the random variable YL is real ifN
is an even number and is complex ifN is an odd number.

In equation (34), and in the sequel, where the sense is
clear from the context, we will use the function p(·) to
denote a PDF where the form of the PDF is characterized
by the arguments. Otherwise, we will use a subscript on
p(·) to define the appropriate function.

3.2 Frequency domain maximum likelihood

In this section we study the impact of using the DFT to
translate the maximum likelihood estimation problem
to the frequency domain. If we apply the DFT (defined
in (28)) to the state space model (2)–(3) we obtain:

zkXk + zk
1√
N

(xN − x0) = AXk +B Uk +KWk (35)

Yk = C Xk +DUk +Wk (36)

It has previously been pointed out [1,21,35] that a key
difference between time and frequency domain represen-
tation of the system is the presence of the extra term α,
where

α = x0 − xN (37)
The DFT representation (35)–(36) can also be written
in terms of transfer functions as (see e.g. [21]):

Yk = Fkα+GkUk +HkWk (38)

where

Fk = C(zkI −A)−1 zk√
N

= F (zk) 1√
N

(39)

Gk = C(zkI −A)−1B +D = G(zk) (40)
Hk = C(zkI −A)−1K + 1 = H(zk) (41)

and F (·), G(·), and H(·) are defined in (8), (4), and (5),
respectively.
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Note that the output DFT sequence, {Yk}, in (38) can
be written in vector form as:

~Y = FDα+GD ~U +HD
~W (42)

where the matrices FD, GD, and HD are defined by

FD = [F0, . . . , FN−1]T (43)
GD = diag{G0, . . . , GN−1} (44)
HD = diag{H0, . . . ,HN−1} (45)

and where Fk, Gk, and Hk are defined in (39)–(41).

Remark 7 Note that the numerator of Fkα in (38) is a
polynomial whose coefficients depend on the initial and
final state of the system. These coefficients are propor-
tional to 1√

N
. In [17,21] it has been suggested that when

the noise signal wt is bounded, this extra term can be
neglected as the number of data points N increases [18,
pages 31–33]. However, in most of the analysis in Sys-
tem Identification the noise signal is not considered as
a bounded signal (for example, Gaussian noise is not
bounded) and, in addition, by neglecting this term sys-
tematic errors are introduced for a finite sample. In [32],
an Errors in Variables framework was utilized in order
to cope with this difficulty. In [35,33] it was pointed out
that, in order to improve the small sample behaviour of
the estimates, the numerator coefficients of Fkα can be
considered as extra parameters to be estimated. OOO

The frequency domain representation for the data above
can be used to obtain an associated frequency domain
likelihood function. However, a difficulty is the fact
that the joint PDF of the sequence of complex DFTs
{Y0, . . . , YN−1} is degenerate (see Property DFT.3 in
Section 3.1). This introduces some difficulties when
calculating the conditional probability. In particular,
to obtain a PDF, we have to restrict the frequency
components up to L = bN2 c, that is

`F (θ) = p(Y0, . . . , YL|θ) (46)

Equation (29) represents a (complex) linear transfor-
mation from time to frequency domain, which gives the
complex (or exponential) Fourier series coefficients {Yk}
associated with the time sequence {yt}. In the sequel it
will be of interest to utilize a real linear transformation
from time to frequency domain. The real discrete Fourier
transform (RDFT) (see, for example, [13,14,7]) is given
by the coefficients of the trigonometric Fourier series as-
sociated with {yt}. The RDFT transforms a real time-
domain vector of length N to a real frequency-domain
vector of length N . Such a real transformation allows
us to translate the PDF of the time-domain data to the
frequency domain, and also establish a clear equivalence
between time and frequency domain Maximum Likeli-
hood estimation.

Lemma 8 Given the time-domain vector ~y (defined in
(10)), there is a real unitary matrix transformation MR

that gives a real valued frequency domain representation
~YR:

~YR = MR~y (47)

where

~YR =


[Y0,
√

2<{Y1},
√

2={Y1}, . . . , YL]T if N is even
[Y0,
√

2<{Y1},
√

2={Y1},
. . . ,
√

2<{YL},
√

2={YL}]T if N is odd
(48)

PROOF. See Appendix A.2. 2

Remark 9 The real matrix transformation in Lemma 8
allows us to write the likelihood function in the frequency
domain as

`F (β) = p(Y0, . . . , YL|β) = p~YR(~YR|β) (49)

where {Y0, . . . , YL} is the transformed frequency-domain
data, and where the vector β contains the parameters to
be estimated, i.e., the system parameters in θ, the noise
covariance σ2

w, and the initial and final state difference
α. Note that, as stated in the introduction, different like-
lihood functions will arise from (49), depending on the
assumptions made regarding the term α. OOO

In Lemma 10 below we consider the likelihood function
for the case (F3) where α is a random variable. We will
show that the other cases, (F1) and (F2) in the fre-
quency domain, and (T1)–(T3) in the time domain can
then be obtained as special cases.

Lemma 10 (F3) Consider the frequency domain rep-
resentation of the linear system (1), given in (35)–(36)
(or, equivalently, in transfer function form (38)). As-
sume that the term α is a random vector, jointly Gaussian
distributed and correlated with the noise process {wt},
and having mean µα, and joint covariance matrix is

Σ[α~w] = E


[
α− µα
~w

][
α− µα
~w

]T =

[
Σα Σα~w

ΣTα~w σ2
wIN

]
(50)

Then the frequency-domain (negative log-) likelihood
function, i.e.

LF3(θ, σ2
w, µα,Σ[α~w]) = − log p~YR(~YR|θ, σ2

w, µα,Σ[α~w])

(51)
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can be expressed as

LF3(θ, σ2
w, µα,Σ[α~w]) = L0 + log det Σ~YR

+ (~YR − µ~YR)TΣ−1
~YR

(~YR − µ~YR)
(52)

where the term L0 accounts for unimportant constants
and where

µ~YR = MTGD ~U +MTFDµα (53)

Σ~YR
= MT

[
FD HDMF

] [ Σα Σα~w
ΣTα~w σ2

wIN

][
FHD

MH
F H

H
D

]
MH
T

(54)

where FD,GD, andHD are defined in (43)–(45), ~U is the
DFT of the input sequence {ut}, and MT is the (unitary)
matrix transformation between the DFT and the RDFT
(see Appendix A.2).

PROOF. Since the term α and the noise sequence {wt}
are assumed jointly Gaussian distributed:[

α

~w

]
∼ Nr

([
µα

0

]
;

[
Σα Σα~w

Σα~wT σ2
wIN

])
(55)

From (42) we have that the RDFT of the output can be
written as:

~YR = MTGD ~U +MT

[
FD HDMF

] [α
~w

]
(56)

where MT = MRMF
H (see Appendix A.2). Thus, in the

frequency domain, the RDFT of the output sequence is
also Gaussian distributed:

~YR ∼ Nr
(
µ~YR ,Σ~YR

)
(57)

where µ~YR and Σ~YR
are given in (53) and (54), respec-

tively. The negative log-likelihood function is then given
by

− log p(~YR) =
1
2

(
N log(2π) + log det Σ~YR

+ (~YR − µ~YR)TΣ−1
~YR

(~YR − µ~YR)
)

(58)

Note that

log det Σ~YR
=

N∑
k=1

log λk(Σ~YR
) (59)

where λk(Σ~YR
) represent the eigenvalues of Σ~YR

. 2

Remark 11 In Lemma 10 (F3) we have assumed that α
and ~w are correlated. In order to establish the equivalence
between time- and frequency-domain identification, one
should make the same assumptions in both frameworks.
Since different assumptions can be made regarding the
data generating mechanism and the parameters to be es-
timated, one needs to carefully translate the assumptions
made in one domain to the equivalent assumptions in the
alternative domain. For example, the assumptions made
in the time-domain regarding the nature of x0, should be
mapped to assumptions on α in the frequency domain by
using equation (37) (see also (70) presented later). Note
that these equations make it clear that xN , and hence
α, depend upon ~w. Thus, the cross-covariance between α
and ~w will be, in general, non-zero. More will be said in
Section 4. OOO

Remark 12 Notice that, in order to obtain estimates
that are robust, for example, to modelling errors, it is pos-
sible to consider only a reduced set of frequency-domain
data in a specific bandwidth. This strategy has been pre-
viously utilized in the statistics literature in e.g. [12,38],
and in the engineering literature in [8,21,34,9,42]. In
particular, in [42] this approach is proposed to avoid the
effect of under-modeling errors when using approximate
sampled-data models. This method motivated by the ML
principle can be developed for the two types of problem,
namely, when α is deterministic (parameter) or stochas-
tic (random variable). OOO

Corollary 13 (F2) If the term α is considered as a de-
terministic parameter to be estimated, then the corre-
sponding (negative log-)likelihood function is given by

LF2(θ, σ2
w, α) = − log p~YR(~YR|θ, σ2

w, α)

= L0 +N log(σ2
w) +

N−1∑
k=0

[
log(|Hk|2) +

1
σ2
w

|Ek|2
]

(60)

= L0 +N log(σ2
w) + 2

bN2 c∑
k=0

fk

[
log(|Hk|2) +

1
σ2
w

|Ek|2
]

(61)

where L0 accounts for unimportant constants, Hk is as
in (41), Ek = (Yk − GkUk − Fkα)/Hk, and fk is equal
to 0.5 whenever Hk (and Ek) is real and equal to 1 in all
other cases.

PROOF. The proof follows from Lemma 10, on setting
µα = α and Σα = 0. Note that Σα~w = 0 is a consequence
of assuming α to be a parameter. Note, in particular,
that:

µ~YR = MTGD ~U +MTFDα (62)

Σ~YR
= σ2

wMTHDHD
HMT

H (63)
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and, from (45), (59), and (63), we have that

log det Σ~YR
=
N−1∑
k=0

log
(
σ2
w|Hk|2

)
(64)

Then, considering that MT
~Y = ~YR, MTM

H
T = I, we

have that

[~YR − µ~YR ]TΣ−1
~YR

[~YR − µ~YR ]

= [~YR −MTGD ~U −MTFDα]HΣ−1
~YR

[~YR −MTGD ~U −MTFDα]

=
1
σ2
w

[MH
T
~YR −MH

T MTGD ~U −MH
T MTFDα]H

[HDH
H
D ]−1[MH

T
~YR −MH

T MTGD ~U −MH
T MTFDα]

=
1
σ2
w

[~Y −GD ~U − FDα]H [HDH
H
D ]−1[~Y −GD ~U − FDα]

=
1
σ2
w

N−1∑
k=0

|Ek|2 (65)

Finally, we obtain (61) by using Lemma 27 in the Ap-
pendix. 2

Corollary 14 (F1) If the term α is assumed to be equal
to zero, then the corresponding (negative log-) likelihood
function is given by

LF1(θ, σ2
w)

= L0 +N log(σ2
w) +

N−1∑
k=0

[
log(|Hk|2) +

1
σ2
w

|Ek|2
]

= L0 +N log(σ2
w) + 2

bN2 c∑
k=0

fk

[
log(|Hk|2) +

1
σ2
w

|Ek|2
]

(66)

where Ek = (Yk − GkUk)/Hk and L0 accounts for con-
stants.

PROOF. Immediate from Corollary 13 making α = 0.

2

Remark 15 The fact that the likelihood function (66)
differs from the time domain likelihood function has
been discussed in several earlier papers. For example, in
[17,21,33] it has been remarked that the logarithmic term
that depends on Hk in (60) and (66) can be neglected in
some special cases, for example, if Hk is assumed given
or known. Moreover, if we use equally spaced data points
on the unit circle (i.e. wk = 2π

N k, k = 0, . . . , N − 1),

then, as N goes to infinity, the sum of the logarithmic
term converges to the following integral:

1
N

N−1∑
k=0

log |Hk|2 →
∫ π

−π
log |H|2 (67)

Since H(0) = 1, we have from Jensen’s formula on the
unit circle (see e.g. [4, page 74]), that this integral is zero.
Hence, the cost function (60) and (66) is asymptotically
equivalent to the one utilized in the time domain [21].

In addition, it has been shown in [34] that the sum on the
left hand side of (67) is bounded by a term that depends
on the dominant pole of H(zk). This analysis shows that
time and frequency approaches asymptotically provide the
same estimates. However, for finite N , the estimates ob-
tained in the time and in the frequency domains will be,
in general, different. Moreover, in [34] it is shown that
the estimates for a Box-Jenkins model obtained in time
and frequency domain have different properties. OOO

Remark 16 Applying the DFT to (6) we obtain equa-
tion (38). Then, applying (CV4), (CV5), (DFT1),
(DFT3) and Lemma 27, we have that the likelihood
function for the cases (F1) and (F2) are given as in
Corollaries 13 and 14. This procedure has been the
usual way to derive the likelihood function described in
[18,33,21,34,19,1,42], where the term α is considered as
an extra parameter to be estimated. However, this pro-
cedure is not useful to derive the likelihood function for
the case when α is considered as a random variable that
depends on the initial state x0, the input signal ut and
the noise wt (F3). This issue is also the core difficulty
when attempting to establish the equivalence between the
likelihood estimates developed in both domains (time and
frequency). OOO

Lemma 10, Corollary 13 and Corollary 14 show that the
different frequency domain maximum likelihood estima-
tion problems can be obtained by including constraints
on the case where α is a random vector (F3). In the
next section, we show that the time-domain maximum
likelihood estimation problems (T1)–(T3) can also be
obtained by making particular assumptions on the fre-
quency domain ML case (F3). This result is valid for
finite data length.

4 Equivalence between time and frequency do-
main maximum likelihood

4.1 General considerations

We first show that the values of the time and frequency
domain likelihood estimates are equal when consistent
parameter definitions are used.

8



Theorem 17 Given a dynamic system model and a set
of output measurements, the estimates obtained by max-
imizing the likelihood function are the same irrespec-
tive of the representation of the data, either in time- or
frequency-domain. That is

arg max
β

p~y(~y|β) = arg max
β

p~YR(~YR|β) (68)

where β is a vector that contains the parameters to be
estimated and equality holds with probability 1.

PROOF. The result follows from the fact that a (uni-
tary) real matrix transformation exists between the time
and frequency domain representation of the data in (47).
Thus, from Remark 9 in Section 3.2 and the PDF of a
transformation of random variables (see, for example,
[28, page 144]), we have

p~YR(~YR|β) =
1

|detMR|
p~y(~y|β) = p~y(~y|β) (69)

2

Theorem 17 shows that the probability of the data given
the parameter vector β takes the same value when the
data is represented in the time domain or in the fre-
quency domain. Hence, the same estimates are obtained
when maximizing the corresponding likelihood function
irrespective of whether a time- or frequency-domain rep-
resentation is used for the data.

Remark 18 Theorem 17 shows that time and frequency
domain ML estimation are, in fact, different ways of ex-
pressing the same problem provided the parameter vec-
tor β is defined consistently. This means that each one
of the maximum likelihood estimation problems in the
time-domain, (T1)–(T3), and in the frequency domain,
(F1)–(F3), has a corresponding counterpart in the other
domain. In the next subsection we show that by consider-
ing α as a random vector all of the six different problems
can be understood in a common framework. In fact, we
show that, if we express α in terms of the initial state x0,
the deterministic input {ut}, and the noise process {wt}
then an equivalence can be established between time- and
frequency-domain maximum likelihood approaches. OOO

4.2 Linking time and frequency domain ML estimation
problems

In order to establish the equivalence between time and
frequency ML estimation problems, we first clarify the
underlying relationship between time and frequency-
domain solutions of the state-space model for the system
in (1). These solutions depend on different quantities,
namely, the initial state x0, and the difference between

the initial and final state, α = x0 − xN , respectively.
The following lemma clarifies the relationship between
the two approaches (see [20]).

Lemma 19 Consider the state space representation of
the system (2)–(3). The time-domain solution of the sys-
tem in (7) and the frequency-domain solution (38), where
α = x0−xN , are related by the DFT (28) if, and only if,
the final state xN is replaced by the time-domain solution
given by:

xN = ANx0 +
N−1∑
t=0

AN−1−t(B ut +K wt) (70)

Corollary 20 Consider the vector representation of the
time- and frequency-domain solutions of the system in
(9) and (42), respectively, where the matrices Γ, Λ, and
Ω are given in (13)–(14), and the matrices FD, GD, and
HD are given in (43)–(45). Then the following matrix
equalities hold:

Γ = MF
HFD(I −AN ) (71)

Λ = MF
HGDMF −MF

HFDMu (72)

Ω = MF
HHDMF −MF

HFDMw (73)

whereMF is the Fourier matrix (31), and we have defined
the following block matrices:

Mu =
[
AN−1B · · · B

]
(74)

Mw =
[
AN−1K · · · K

]
(75)

PROOF. The proof follows from Lemma 19, substitut-
ing α = x0 − xN and xN as in (70).

The core issue in the current paper is whether the esti-
mates associated with the different likelihood functions,
in the time and frequency domain, are the same or not.
The following theorem clarifies this issue by using the
relationship highlighted in Lemma 19 to define α as a
random variable depending on the initial state x0, the
input {ut} and the noise {wt}.

Theorem 21 (Frequency domain equivalent of (T3))
Consider the frequency-domain likelihood function in
Lemma 10 where the random variable α is expressed in
terms of x0, {ut}, and {wt} via the system dynamics, i.e.

α = (I −AN )x0 −
N−1∑
t=0

AN−1−t(But +Kwt)

= (I −AN )x0 −Mu~u−Mw ~w (76)
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Problem µα Σα Σα~w Extra Constraint

T1 −Mu~u MwM
T
wσ

2
w −Mwσ

2
w none

T2 (I −AN )x0 −Mu~u MwM
T
wσ

2
w −Mwσ

2
w none

T3 (I −AN )µx0 −Mu~u (I −AN )Σ0(I −AN )T +MwM
T
wσ

2
w −Mwσ

2
w Σ0 = AΣ0A

T + σ2
uBB

T + σ2
wKK

T

F1 0 0 0 none

F2 α 0 0 none

Table 1
Constraints imposed on (F3) in order to obtain the different estimation procedures.

Then the associated frequency domain likelihood function
of Lemma 10 is equivalent to the time domain likelihood
function given in Lemma 1.

PROOF. The proof follows by obtaining the marginal
probability of the time domain data (given the param-
eters to be estimated) from the joint probability of the
frequency domain data and the term α (given the pa-
rameters to be estimated), i.e., from (69) we have that

p~y(~y|β) = p~YR(~YR|β) =
∫
α

p~YR,α(~YR, α|β)dα (77)

Note that in Lemma 10, ~YR is expressed in terms of α,
the DFT of the input, {Uk}, and the DFT of the noise
sequence, {Wk}. From Lemma 19 we know that ~YR can
be equivalently expressed in terms of x0, {ut}, and {wt}
if, and only if, xN is considered as in (70) or, equivalently,
if α is considered as in (76).

Thus, the joint PDF of ~YR and α can be obtained from[
~YR

α

]
=

[
MRΛ

−Mu

]
~u+

[
MRΩ MRΓ

−Mw (I −AN )

][
~w

x0

]
(78)

Hence,[
~YR

α

]
∼ Nr

([
MRΛ~u+MRΓµx0

−Mu~u+ (I −AN )µx0

]
;

[
MRΩ MRΓ

−Mw (I −AN )

][
σ2
wIN 0

0 Σ0

][
MRΩ MRΓ

−Mw (I −AN )

]T
(79)

The marginal distribution for ~YR is then readily obtained

~YR ∼ Nr (MRΛ~u+MRΓµx0 ;

σ2
wMRΩΩTMR

T +MRΓΣ0ΓTMR
T
)

(80)

We notice that the PDF of ~YR will lead to the same
likelihood function in (16) from the fact that ~y = MT

R
~YR

and, thus

MR
T ~YR ∼ Nr

(
Λ~u+ Γµx0 ;σ2

wΩΩT + ΓΣ0ΓT
)

(81)

2

Remark 22 Another way of obtaining the result in
Lemma 21 would be to rewrite (77) as

p~y(~y|β) =
∫
α

p~YR|α(~YR|α, β)pα(α|β)dα (82)

Inside the integral, the PDF of α can be obtained from
(76), however, the conditional probability p~YR|α(~YR|α, β)
is not straightforward to obtain. This conditional prob-
ability resembles the one considered in Corollary 13. In
that result, however, α is taken to be a parameter. By
way of contrast, the conditional probability inside the in-
tegral in (82) considers α as a random variable having a
specific relation to the initial state x0, the input {ut}, and
the noise {wt}. The conditional probability in this case
has to be obtained (if required) from the joint Gaussian
distribution described in (79). OOO

Remark 23 Theorem 21 has shown that, provided one
calculates the appropriate joint distribution for α and
{wt}, then the time- and frequency-domain maximum
likelihood estimation problems are equivalent. Note that
this equivalence holds true for finite data length. OOO

Remark 24 Depending on the assumptions made on the
initial state x0, different joint distributions for α and
{wt} are obtained which, in fact, correspond to the time-
domain likelihood functions associated with the different
cases (T1)–(T3). This shows that considering α as a
random variable is the most general case among the six
cases described in the introduction, namely (T1)–(T3)
and (F1)–(F3). Table 4.2 summarizes the different con-
straints necessary to obtain the other methods presented
in this paper, i.e. (T1, T2, T3, F1, F2). OOO

Remark 25 The frequency domain ML developed in
Theorem 21 will lead to consistent estimates of G(q) for
Box-Jenkins models of systems operating in open loop,
irrespective of under-modeling in H(q). This is a conse-
quence of the equivalence to the time-domain maximum
likelihood estimation problem. OOO
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The following lemma compares the covariance of the (de-
pendent) random variables involved in the two domains
i.e. x0 and α.

Lemma 26 Assume that the input {ut} and noise {wt}
are i.i.d., mutually uncorrelated, zero mean random pro-
cesses having variances σ2

u and σ2
w, respectively. If the

initial state of system (2) is assumed to have as co-
variance matrix the solution of the Lyapunov equation
(21), then the covariance of the term α is asymptotically
(as N goes to infinity) twice the covariance of x0, i.e. ,
limN→∞Σα = 2 Σ0.

PROOF. The term α can be obtained from (70):

α = (I −AN )x0 −
N−1∑
t=0

AN−1−t(But +Kwt) (83)

Thus, E{α} = 0 and its covariance is given by

Σα = (I −AN )Σ0(I −AN )T + σ2
u

N−1∑
t=0

AtBBT (AT )t

+ σ2
w

N−1∑
t=0

AtKKT (AT )t (84)

AsN goes to infinity,AN goes to zero because the system
is assumed to be stable, thus limN→∞ Σα = Σ0 + Σ1

where

Σ1 = lim
N→∞

[
σ2
u

N−1∑
t=0

AtBBT (AT )t

+σ2
w

N−1∑
t=0

AtKKT (AT )t
]

(85)

Matrix Σ1 then satisfies the Lyapunov equation

Σ1 = AΣ1A
T + σ2

uBB
T + σ2

wKK
T (86)

This means that Σ1 = Σ0 and, as a consequence, we
have that Σα = 2Σ0. 2

Lemma 26 shows that, under certain conditions, E {α} =
0, and Σα = 2Σ0. If we recall the case (F1), we see that
the constraint imposed on µα is asymptotically correct,
however, the constraints imposed on Σα and Σα~w are
valid only for low noise power (σ2

w ≈ 0) and for a deter-
ministic zero mean input.

5 Numerical examples

In this section we present numerical examples to high-
light the estimates obtained using time and frequency
domain maximum likelihood. We consider a simple
model expressed in state-space form:

xt+1 = axt + but + kwt (87)
yt = xt + wt (88)

where {ut} is a zero mean Gaussian noise sequence with
unit variance, {wt} is a zero mean Gaussian noise se-
quence with variance σ2

w = 0.1, and {xt} is the state
vector. The true parameters are a = 0.75, b = 0.5, and
k = 1. We consider an initial state x0 = 3.

The system was simulated over N data points, where
N ranges from 26 to 215. For each data length we run
NMC = 1000 Monte-Carlo simulations with different
seeds of noise. To minimize the negative log-likelihood
function we use the command fminunc from the opti-
mization toolbox of MATLAB and we use the n4sid
command to obtain an initial estimate of the parameters
for the optimization routine.

Figure 1 shows the results obtained when applying the
time-domain approaches (T1) and (T2), and the fre-
quency domain approaches (F1) and (F2). Figure 1(a)
shows the error ‖θ− θ̂‖2, where θ = [a, b, k]T is the true
system parameter and θ̂ is the average of the estimates
obtained from the Monte Carlo simulations. We can see
that the error when estimating the initial condition (T2)
is smaller than the error when the initial condition is as-
sumed to be zero (T1). Similarly, Figure 1(b) shows that
the error when estimating the term α as a deterministic
parameter (F2) is smaller than the error when the term
α is assumed to be zero (F1). However, in both figures
we see that, as the data length is increased, the magni-
tude and the difference between the errors decrease.

Table 2 shows the empirical mean and variance of the
parameter estimates obtained for (T1), (T2), (F1) and
(F2). We show the results obtained for three different
data lengths N = 27, 210, and 215. We can see that the
standard deviation decreases for long data sets, and the
mean approaches the true parameter value. We notice
that the largest error corresponds to the parameter k
when the initial condition is not estimated. We also see
that the largest standard deviation is in the parameter
k. When we include x0 (or α) as an unknown parameter
to be estimated, the quality of the estimates is greatly
improved, especially, for short data lengths.

The results in Figure 1 show that, in order to obtain a
good estimate of θ, it is better to estimate the initial state
x0 (when working in the time domain) or the term α (in
the frequency). However, assuming this extra parame-
ter equal to zero may, in some cases, provide parameter
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Fig. 1. Time and frequency domain estimation results when using a random input.

θ̂ → a b k

θ0 → 0.75 0.5 1

N (T1) (T2) (T1) (T2) (T1) (T2)

↓ (F1) (F2) (F1) (F2) (F1) (F2)

27 0.743± 0.041 0.742± 0.040 0.499± 0.031 0.498± 0.031 0.891± 0.071 1.001± 0.092

0.689± 0.071 0.752± 0.067 0.527± 0.067 0.501± 0.038 0.842± 0.129 1.016± 0.158

210 0.7500± 0.0136 0.7498± 0.0136 0.4994± 0.0099 0.4993± 0.0099 0.9802± 0.0295 1.0007± 0.0307

0.7537± 0.0135 0.7494± 0.0135 0.4916± 0.0104 0.4997± 0.0102 0.9766± 0.0320 1.0012± 0.0310

215 0.74993± 0.00226 0.74993± 0.00226 0.49999± 0.00179 0.49999± 0.00179 0.99916± 0.00523 0.99985± 0.00523

0.74988± 0.00230 0.74998± 0.00230 0.50005± 0.00171 0.50001± 0.00171 0.99904± 0.00519 0.99999± 0.00517

Table 2
Estimation Results: Each cell shows the (empirical mean)±(empirical standard deviation) of the parameters
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(a) ||θ0 − θ̂|| for (T1) and (T2) when E{x0} = 0
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(b) ||θ0 − θ̂|| for (F1) and (F2) when E{α} = 0

Fig. 2. Results for time-domain estimation for E{x0} = 0 and frequency domain estimation when E{x0 − xN} = 0.

estimates of similar quality. For example, Figure 2(a)
shows the estimation results when applying a zero mean
input sequence {ut}, and using the part of the data such
that initial transient has disappeared. We notice that, in
this case, both time-domain approaches (T1) and (T2)
provide similar results. On the other hand, Figure 2(b)
shows the estimation results when the input {ut} is a

periodic signal, whose period has been chosen such that
an integer number of periods fit into the data length. In
this case, both frequency domain approaches (F1) and
(F2) give similar estimation results. In fact, a slightly
smaller estimation error is obtained for (F2) which con-
firms that α = 0, i.e., xN = x0, is a good assumption in
this case.
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Fig. 3. Estimation error for time-domain approaches.

Finally, we consider the case when the initial condition is
assumed as a random vector (T3). In particular, we con-
sider that the system has reached its stationary response
(see Remark 2). Thus, the initial state mean and covari-
ance are µx0 = b

1−aµu and Σx0 = σ2
x0

= σ2
u b

2+σ2
w k2

1−a2 ,
where σ2

u and µu are the input variance and mean, re-
spectively, and σ2

w is the noise variance. Note that the
mean and variance of x0 depend on the system parame-
ters. We refer to this approach as (T3s). Figure 3 shows
the estimation results for the three possible time-domain
approaches (T1), (T2), and (T3s). We consider N =
25, . . . , 28, running NMC = 1000 Monte-Carlo simula-
tions for each data length. The input is a zero mean ran-
dom Gaussian sequence having mean µu = 1.5 and vari-
ance σ2

u = 0.625. The corresponding initial state true
mean is µx0 = 3 and variance σ2

x0
= 1.5. The results in

Figure 3 show that (T3s) yields a lower estimation er-
ror than (T1) or (T2). Moreover, as the data length is
increased the three approaches converge and provide a
good estimate of the system parameters.

6 Conclusions

This paper has considered the equivalence between max-
imum likelihood estimation in the time and frequency
domains for finite length data. It has been shown that
both approaches are equivalent provided consistent as-
sumptions are made regarding the unknown parameters
in the problem. Also, it is apparent from the development
presented here, that it is unsurprising that the methods
lead to different results when inconsistent assumptions
are made.
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A Appendix

Lemma 27 Consider a DFT sequence {Yk}, then the
following quadratic cost equivalence holds:

N−1∑
k=0

g(|Yk|2) = 2
bN2 c∑
k=0

fk g(|Yk|2) (A.1)

where g(·) is a function, fk is equal to 0.5 whenever Yk
is real and 1 in any other case.

PROOF. Straightforward from the fact that Yk =
YN−k

∗, and recalling that Yk is real for k = 0 and for
k = N

2 (when N is even). 2

A.1 Real and complex Gaussian distributions

A random vector x ∈ Rn×1 is said to be normally dis-
tributed if its PDF is given by [24, page 36]:

p(x) = (2π)−
n
2 det Σ−

1
2 exp{− 1

2 [x− µ]TΣ−1[x− µ]}
(A.2)

where µ and Σ are the mean and covariance of x.
The PDF of a complex circular multivariate ran-
dom vector z ∈ Cn×1, with E {z} = µ ∈ Cn×1 and
E
{

[z − µ][z − µ]H
}

= Σ ∈ Cn×n, is given by [24, page
77]:

p(z) =
exp{−[z − µ]HΣ−1[z − µ]}

πn det Σ
(A.3)

where H stands for conjugate-transpose. Alternatively,
let z = x+ jy, x, y ∈ Rn×1 and define ξ = [x, y]T , then

p(z) =
exp{− 1

2 [ξ − γ]TM−1[ξ − γ]}
[2π]n detM

1
2

(A.4)

where γ =

[
<{µ}
={µ}

]
and M = 1

2Re

[
Σ jΣ

jΣH Σ

]
.

We also have that detM = 2−2n(det Σ)2.

A.2 Proof of Lemma 8

Equation (48) can be expressed in matrix form as

~YR =


1 0 0 . . . 0 0

0
√

2
2 0 . . . 0

√
2

2

0
√

2
2j 0 . . . 0 −

√
2

2j
...

...
. . .

...

 ~Y = MT
~Y (A.5)
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Note that, from (48), the last rows of matrix MT are a
function of whether N is an even or an odd number. Let
us define L =

⌊
N
2

⌋
, i.e., the largest integer greater than

or equal to N
2 . If N is odd, then the last two elements of

~YR are
√

2<{YL} and
√

2={YL}. On the other hand, if
N is even, YL is real and, thus, the last row in the matrix
MT has only a 1 in the (L+ 1)-th position.

We notice that the matrix MT in (A.5) is non-singular
and unitary (i.e., MTMT

H = I). Thus, there exists a
real unitary matrix transformation MR, from ~y to ~YR,
obtained as:

~YR = MT
~Y = MT MF ~y = MR ~y (A.6)

whereMF is the (unitary) Fourier matrix defined in (31).
The matrix transformation given by MR, as described
above, corresponds to the trigonometric Fourier series
representation:

yt =



1√
N

(
Y0 + YL + 2

∑L−1
`=1 <{Y`} cos(ω`t)

+ ={Y`} sin(ω`t)
)

if N is even
1√
N

(
Y0 + 2

∑L
`=1<{Y`} cos(ω`t)

+ ={Y`} sin(ω`t)
)

if N is odd

where the coefficients are given by Y0 =
√

1
N

∑N−1
t=0 yt,

√
2<{Y`} =

√
2
N

∑N−1
t=0 yt cos(ω`t), and

√
2={Y`} =√

2
N

∑N−1
t=0 yt sin(ω`t). 2
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