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Abstract— The ability of a robot team to reconfigure itself is
useful in many applications: for metamorphic robots to change
shape, for swarm motion towards a goal, for biological systems
to avoid predators, or for mobile buoys to clean up oil spills.
In many situations, auxiliary constraints, such as connectivity
between team members or limits on the maximum hop-count,
must be satisfied during reconfiguration. In this paper, we show
that both the estimation and control of the graph connectivity
can be accomplished in a decentralized manner. We describe
a decentralized estimation procedure that allows each agent to
track the algebraic connectivity of a time-varying graph. Based
on this estimator, we further propose a decentralized gradient
controller for each agent to maintain global connectivity during
motion.

I. INTRODUCTION

A mobile sensor network consists of n mobile sensors (or
agents) connected by links along which information flows.
Applications for mobile sensor networks include target track-
ing [15], [25], [22], [12], formation and coverage control [1],
[2], [4], [6], environmental monitoring [10], [11], [17], [20],
and several others. These applications take advantage of
the sensors’ ability to position themselves to maximize the
information in their sensor readings. For these cooperative
sensing applications, it is often desirable to maintain a
connected communication graph, even as communication
links are established or lost as the agents move. To date,
the connectivity-maintenance problem has been addressed
using two different approaches: control of local connectivity
measures using decentralized control schemes, and control
of global connectivity measures based on centralized com-
putations.

The first approach focuses on devising decentralized con-
trollers for each agent to maintain local connectivity. For
discrete-time second-order agents, a feasible control space
is computed in [14] for each agent to maintain all existing
pairwise connections. In comparison, in [18] each agent tries
to maintain its two-hop communication neighbors. The use
of local connectivity measures allows each agent to compute
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a feasible motion controller with only local information. In
many cases, however, it is the global connectivity of the
network that is of primary interest, and strict maintenance of
local connectivity may be overly restrictive.

The second approach in [3], [23], [24] uses global connec-
tivity measures such as algebraic connectivity [5]. Given a
graph, a k-connectivity matrix1 is computed in [23]. To main-
tain graph connectivity, gradient controllers are designed
such that each off-diagonal entry of the k-connectivity ma-
trix, where k = n, remains positive over time. In comparison,
the gradient controller designed in [24] uses the fact that
connectedness of the graph is equivalent to the determinant
of the deflated Laplacian matrix being positive. However,
computing the k-connectivity matrix and the determinant of
a deflated Laplacian matrix are both centralized procedures.
A method to compute the k leading eigenvectors of an n by n
matrix is proposed in [9]. In [3] this method is used to com-
pute Fiedler eigenvector [5], an eigenvector corresponding
to the second smallest eigenvalue of a Laplacian matrix. The
Fiedler eigenvector is then used in [3] to derive a subgradient
algorithm that increases the algebraic connectivity of a graph.
However, the method in [9] is not scalable: In the task of
estimating Fiedler eigenvector, each agent has to keep O(n)
estimator states, communicate with each neighbor O(n2)
length of message and perform O(n2) computation at each
state update. Moreover, the initialization step in [9] is not
entirely decentralized.

In this paper we are concerned with controlling the global
connectivity of the network (as in the second approach
above) using only local communication and decentralized
computations (as in the first approach above). The key
component in our solution is a decentralized power iteration
algorithm that enables each agent i to compute xi, which is
an estimate of the i-th component of the Fiedler eigenvector.
This algorithm is entirely decentralized and scalable: Each
agent keeps only O(1) estimator states, and the commu-
nication and computational load at each state update is
proportional to its local degree of connection. Each agent
uses xi to estimate the algebraic connectivity of a graph.
Each agent also uses xi in a decentralized controller that
maintains the global connectivity of the graph over time.

The rest of the paper is organized as follows. We summa-
rize the necessary graph theoretical background in Section II.
In Section III, we first review the centralized discrete-time

1Given a graph’s adjacency matrix A, its k-connectivity matrix is defined
as I + A + · · · + Ak for k ∈ {1, . . . , n}.



power iteration algorithm and then describe our modified
continuous-time version. We further characterize the gain
conditions that guarantee the correct convergence of this
continuous-time power iteration algorithm. In Section IV,
we describe a decentralized version of this continuous-
time power iteration procedure and use it to estimate the
connectivity of a graph. This algorithm is scalable: the
computational complexity of each agent is only proportional
to its number of connections in the network. A controller
to maintain connectivity is proposed in Section V. Future
research directions are outlined in Section VI and the full
stability analysis of the continuous-time power iteration
algorithm is given in the appendix.

II. PRELIMINARIES

Given n mobile agents, we assume they can exchange
information on an undirected communication network. For
agent i, we denote its set of communication neighbors as
N i. We denote the overall communication graph as G and
the edge set as E = {(i, j)| j ∈ N i}. The adjacency matrix
A ∈ Rn×n is defined as

Aij =
{

Aji > 0 if j ∈ N i,
0 otherwise. (1)

The degree of each node is di =
∑n

j=1 Aij or d = A1 where
1 is a column vector of all ones. The degree matrix is defined
as D = diag(d), and the weighted Laplacian matrix of the
graph is defined as L = D − A. The unweighted Laplacian
matrix L can be treated as a special case where Aij = 1.
The spectral properties of L have been shown to be critical in
many multiagent applications, such as formation control [4],
[6], consensus seeking [16] and direction alignment [8].

For the weighted Laplacian L, because we restrict the
weights Aij to be positive, the spectral properties of L are
similar to those of L [13]. Specifically, we know

1) L1 = 0.
2) Given {{λi}| i = 1, . . . , n} as the spectrum of L, all

the eigenvalues are real and they satisfie 0 = λ1 ≤
λ2 ≤ · · · ≤ λn, and λ2 > 0 if and only if the graph is
connected. As in the unweighted case, we call λ2 the
algebraic connectivity of the graph.

III. CENTRALIZED POWER ITERATION

We want to design an algorithm to estimate the graph
connectivity measure λ2. To do this, we first estimate the
corresponding eigenvector v2 (Lv2 = λ2v2), which is then
used to determine λ2.

Throughout the rest of the paper, we use superscripts to
index the agents and components of a vector, and subscripts
to index eigenvalues, eigenvectors, and their estimates. For
example, a Laplacian L has n eigenvalues λ1, . . . , λn and n
eigenvectors v1, . . . , vn. The components of an eigenvector
are vi = (v1

i , . . . , vn
i )T . In addition, if x ∈ Rn is the

network’s estimate of the eigenvector v2, then xi ∈ R is
the ith component of the estimate x, stored by agent i. We
also write λi

2 ∈ R for agent i’s estimate of λ2.

A. Discrete-time Power Iteration

Given a square matrix Q and its eigenvalue spectrum
satisfying |µ1| < |µ2| · · · < |µn|, power iteration is an
established iterative method to compute the eigenvalue µn

and its associated eigenvector vn [21]. Now assume instead
of µn, we are interested in its second-largest eigenvalue
µn−1. If we already know µn and vn, we can estimate µn−1

by running the power iteration on the deflated matrix

Q̃ = Q− vnvT

n . (2)

Specifically this power iteration procedure is carried out in
three steps. For a random initial vector w,

1) Deflation on Q: Q̃ = Q− vnvT
n .

2) Direction update: x = Q̃w.
3) Renormalization: w = x

‖x‖ . Then go to step 2.
This power iteration method converges linearly in the

ratio µn−2/µn−1. Once it converges, w is the eigenvector
corresponding to the second largest eigenvalue µn−1 of
Q. In the case of repeated eigenvalues where µn−1 =
. . . = µn−k+1 > µn−k, the iteration converges in the ratio
µn−k/µn−1. If µn−1 = . . . = µ1, then any unit vector w is
a solution.

B. Continuous-time Power Iteration

Inspired by the power iteration algorithm, we define a
variant to find the second-smallest eigenvalue λ2. To do
this, we make two primary modifications to the algorithm.
First, we modify the algorithm to run in continuous-time.
Second, instead of performing the direction update step
using a deflated matrix Q̃, we use a deflated matrix of −L.
The deflation causes −λ2 to be the leading (least negative)
eigenvalue, and the negative sign results in convergence to
the eigenvector v2 corresponding to the eigenvalue with the
minimum magnitude (as opposed to that with the maximum
magnitude in the previous section).

Let x = (x1 . . . xn)T ∈ Rn be the estimate of the
eigenvector v2. The continuous-time algorithm has three
parts:

1) Deflation: ẋ = −Ave({xi})1.
2) Direction update: ẋ = −Lx.
3) Renormalization: ẋ = −(Ave({(xi)2})− 1)x.

where the function Ave({qi}) , (
∑

i qi)/n. Step 1 drives
x to the null space of 1, i.e., the space spanned by the
eigenvectors {v2, . . . , vn}. For most initial conditions the
direction update in step 2 drives x towards the eigenvector
direction associated with the largest eigenvalue of −L, which
is 0. But if the state x belongs to the null space of 1, the
direction update step will keep x in the null space, and
drive x towards the eigenvector direction associated with the
largest eigenvalue of the null space, which is −λ2. Step 3
drives x towards the unit sphere.

In order to achieve the three steps simultaneously, we
combine the three pieces in a linearly weighted fashion:

ẋ = −k1Ave({xi})1− k2Lx− k3(Ave({(xi)2})− 1)x (3)



This can be rewritten as

ẋ = −k1

n
11T x− k2Lx− k3

(xT x

n
− 1

)
x. (4)

The weighted Laplacian matrix L is real symmetric, so it
has an eigenvalue decomposition L = T T L∗T with L∗ =
diag(0, λ2, . . . , λn) and T being an orthonormal matrix. It is
easier to analyze system (4) under a new set of coordinates
y = (y1 . . . yn)T = Tx where both matrices L and 11T can
be simultaneously diagonalized:

ẏ = −k1diag(1, 0, . . . , 0)y − k2L
∗y − k3

(yT y

n
− 1

)
y. (5)

Denoting L̃∗ = diag{k1/k2, λ2, . . . , λn}, the system (5) can
be rewritten as

ẏ = −k2L̃
∗y − k3

(yT y

n
− 1

)
y. (6)

The following theorem shows that for suitable gain condi-
tions on k1, k2 and k3, system (3) is convergent from almost
all initial conditions to an eigenvector ṽ2 corresponding to
the eigenvalue −λ2.

Theorem 1: Given any initial condition x(t0) and positive
gains k1, k2, k3 > 0, as long as y2(t0) 6= 0, the gain
conditions

k1 > k2λ2 (7)
k3 > k2λ2 (8)

are necessary and sufficient for system (4) to converge
to an eigenvector ṽ2 corresponding to the eigenvalue −λ2

of the weighted Laplacian matrix −L satisfying ‖ṽ2‖ =√
n
(

k3−k2λ2
k3

)
.

Proof: See the Appendix.
Next we modify the continuous-time power iteration (3)

so that it can be decentralized over the graph. In the de-
centralized algorithm, no single agent maintains an estimate
of the entire eigenvector ṽ2; instead, agent i maintains the
single component xi of the network’s estimate x of ṽ2. This
is sufficient to maintain an estimate λi

2 of λ2.

IV. DECENTRALIZED POWER ITERATION AND
CONNECTIVITY ESTIMATION

To obtain a decentralized version of the power iteration
algorithm, we first note that it is possible for each agent to
satisfy the gain conditions (7) and (8) without knowing the
graph topology. We know∑

i

λi = trace(L) =
∑

Aij ≤ n(n− 1) maxAij .

Additionally, in our edge weighting scheme introduced in
Section V, we have Aij ≤ 1. Therefore each agent can
satisfy (7) and (8) by choosing k3, k1 > n(n − 1)k2

(assuming n is known to every agent).
Next we point out that the matrix iteration ẋ = −Lx is

a naturally decentralized operation, and its implementation
only requires local communication.

The last obstacle to decentralize the continuous-time
power iteration (3) is the averaging operation Ave(·). We

can use the PI average consensus estimator [7] to decen-
tralize this averaging operation. As there are two averaging
functions in (3), we need two consensus estimators. Average
consensus estimators allow n agents, each of which measures
some time-varying scalar αi(t), to compute an approximation
of α(t) = 1

n

∑
i αi(t) using only local communication. The

PI estimator has the form (see [7] for details):

żi = γ(αi − zi)−KP

∑
j∈N i

[
zi − zj

]
+ KI

∑
j∈N i

[
wi − wj

] (9)

ẇi =−KI

∑
j∈N i

[
zi − zj

]
. (10)

Here zi is the average estimate, γ > 0 is the rate new
information replaces old information, N i contains all one-
hop neighbors of agent i in the communication network, and
KP ,KI are estimator gains. When the network is connected,
the estimator error is ei(t) = yi(t) − 1

n

∑n
i=1 αi(t) for

each agent i. Compared to other dynamic average consensus
estimators [19], this PI consensus estimator has several
advantages. First, it approaches a ball around zero whose size
is related to the rate of change of the input, with constant
input producing errors that decay exponentially to zero [7].
For the high-pass estimator [19], zero steady-state error
requires extra bookkeeping to keep track which communi-
cation links are active. Besides, intermittent communication
noise or drops cause the high-pass filters to drift, whereas
a ”forgetting” factor in the PI filter results in a stable filter
from communication noise to errors relative to the solution
manifold.

In the decentralized implementation of (3), agent i main-
tains a scalar xi (which converges to the i-th compo-
nent of the eigenvector ṽ2) and four consensus estima-
tor states {zi,1, wi,1, zi,2, wi,2} (zi,1 and zi,2 are agent
i’s estimates for Ave({xi}) and Ave({(xi)2}) respec-
tively) and receives from communication its neighbors’
{xj , zj,1, wj,1, zj,2, wj,2} for all j ∈ N i. There are two
ways to estimate the connectivity measure λ2. First, noticing
−Lṽ2 = λ2v2, agent i can estimate λ2 as

λi
2 = −

∑
j∈N i Lijx

j

xi
(11)

when xi 6= 0. This estimate is nonsmooth when xi passes
through zero, however. Therefore we use a second method,
based on Theorem 1, which says that zi,2 → ‖ṽ2‖2

n =
k3−k2λ2

k3
. Agent i can therefore compute its estimate of λ2

as
λi

2 =
k3

k2
(1− zi,2). (12)

Example 1: We simulated the eigenvalue estimation al-
gorithm over the 5-node constant graph (Fig. 1), where the
weights are set as Aij = 1. The eigenvalue spectrum of its
Laplacian matrix is {0, 0.83, 2.69, 4.00, 4.48}. The gains for
the two PI average consensus estimators are γ = 25,KP =
50,KI = 10 and the gains for the eigenvector estimator are
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Fig. 1. (a) A five-node network with all weights equal to 1. Nodes are
counter-clockwise numbered from 1 to 5 starting from the top node. (b)
Eigenvalue estimation through equation (12). The initial eigenvalue estimate
for each agent is randomized.

k1 = 6, k2 = 1, k3 = 20, satisfying (7) and (8). Fig. 1 (b)
shows the estimated λi

2 for each node i.

V. CONTROL TO MAINTAIN CONNECTIVITY

In this section we show how the connectivity estimator
can be applied in a connectivity-control algorithm. We start
by showing one additional property of λ2.

Lemma 2: Given any positively weighted graph G, λ2 is
a nondecreasing function of each weight Aij .

Remark 1: This lemma is easily demonstrated from the
following equivalent definition of λ2:

λ2 = min
x⊥1,x 6=0

xT Lx

xT x
= min

x⊥1,x6=0

∑
(i,j)∈E Aij(xi − xj)2

xT x
.

(13)
Based on this property, we can choose a weight function Aij

that is position-dependent. Then we can design connectivity-
maintaining motion controllers, moving the agents to in-
crease the connectivity of the network.

If the maximal reliable inter-agent communication dis-
tance is r, one simple weighting choice is

Aij =
{

e−‖p
i−pj‖22/2σ2

if ‖pi − pj‖2 ≤ r,
0 otherwise.

The weight decreases as the inter-agent distance gets larger.
We choose the parameter σ to satisfy a threshold condition
e−r2/2σ2

= ε, with ε being a small predefined threshold.
We know λ2 > 0 for connected graphs, and based on

Lemma 2, λ2 increases as the graph adds more links or
as individual link weights increase as two agents come
closer. We can design a gradient controller where each node
moves to maximize λ2, and this will in effect maintain
the connectivity of a graph. The gradient controller in [24]
was designed based on a similar idea. In that paper, each
node moves to maximize the determinant of the deflated
Laplacian matrix of a graph, in effect guaranteeing the
algebraic connectivity λ2 is bounded away from 0.

Next we derive the analytical form of the gradient con-
troller for fully-actuated first-order agents. We use the nor-
malized eigenvector corresponding to λ2 to make the gradi-
ent of λ2 easier to derive. Given the normalized eigenvector
v̂2 (‖v̂2‖ = 1) corresponding to λ2, the differential of λ2 is

dλ2 = d(v̂T

2 Lv̂2)
= dv̂T

2 Lv2 + v̂T

2 dLv̂2 + v̂T

2 Ldv̂2. (14)

Because LT = L, we know that

v̂T

2 Ldv̂2 = dv̂T

2 Lv2 = λ2dv̂T

2 v̂2 =
1
2
d(v̂T

2 v̂2) = 0. (15)

Based on (14) and (15), the gradient controller for agent k
is

uk = ṗk =
∂λ2

∂pk
= v̂T

2

∂L

∂pk
v̂2. (16)

Next we replace the v̂2 in (16) with the ṽ2 in Theorem 1,
which scales the control effort but does not change its
direction:

uk = ṽT

2

∂L

∂pk
ṽ2 =

∑
(i,j)∈E

∂Aij

∂pk
(ṽi

2 − ṽj
2)

2. (17)

Since we have defined Aij = e−‖p
i−pj‖22/2σ2

, we can
compute

∂Aij

∂pi
= −Aij(pi − pj)/σ2 i 6= j (18)

∂Aij

∂pj
= Aij(pi − pj)/σ2 i 6= j (19)

∂Aii

∂pi
= 0 (20)

∂Aij

∂pk
= 0 k 6= i, j. (21)

Plugging (18)-(21) into (17), we get

uk =
∑

(k,j)∈E

∂Akj

∂pk
(ṽk

2 − ṽj
2)

2

=
∑

(k,j)∈E

−Akj(ṽk
2 − ṽj

2)
2 pk − pj

σ2
. (22)

Compared to the eigenvector estimators (11) and (12),
the implementation of (22) requires agent k to additionally
obtain its neighbors’ positions {pj , j ∈ N i}. Agent k
approximates the exact ṽk

2 , ṽj
2 with the estimates xk, xj ,

yielding the final control law:

uk =
∑

(k,j)∈E

−Akj(xk − xj)2
pk − pj

σ2
. (23)

Example 2: We simulated the connectivity-maintaining
algorithm over a randomly-generated six-node network. The
communication radius is r = 20 and we set the threshold ε =
0.01. In this network, the three big nodes are leaders. They
all follow the same sinusoidal motion model ṗi

x(t) = −0.2,
ṗi

y(t) = 0.5 cos(pi
x) with different initial configurations. The

three small nodes run (23) to move along with the leaders
and maintain graph connectivity.

The gains for the two average consensus estimators are
γ = 100,KP = 50,KI = 200 and the gains for the
eigenvector estimator are k1 = 18, k2 = 3, k3 = 60.
We choose the consensus and eigenvector estimator gains
to approximately achieve a time-scale separation: the time
constant of consensus estimation is significantly less than
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Fig. 2. Snapshots of the agents during motion: (a) t = 0; (b) t = 14;
(c) t = 27; (d) t = 47.
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Fig. 3. Each agent’s estimate of the the graph connectivity λ2 over time.
All agents’ estimates converge to the true algebraic connectivity of the graph
within a few seconds.

the time constant of eigenvector estimation, which is sig-
nificantly less than the time constant of the motion con-
troller. Fig. 2 shows four snapshots of these nodes dur-
ing the motion and Fig. 3 shows the estimated λi

2 of
each node i during the motion. A video of the simulation
is available at http://lims.mech.northwestern.
edu/projects/swarm/connect.wmv.

VI. FUTURE WORK

In this paper we present a decentralized power iteration
algorithm that agent i uses to estimate its component ṽi

2 of
the eigenvector ṽ2 of the Laplacian matrix L. We further
show how each agent uses the estimate of ṽi

2 to estimate
the graph connectivity λ2 and choose a motion direction to
increase λ2. One possible extension of the work is to modify
the motion controller so that a rigorous small-gain stability
condition can be derived for the system of coupled estimators
and controllers as in [6].

APPENDIX

In the appendix we analyze the stability properties of
system (3). We show the boundedness of all trajectories,
characterize the equilibrium sets and their local stability, and
finally give a proof of Theorem 1.

Proposition 3: Given any initial condition x(t0) and any
positive gains k1, k2, k3 > 0, the system trajectory remains
bounded over time:

‖x(t)‖ ≤ max{‖x(t0)‖,
√

n}. (24)

Proof: Defining V1 = xT x = yT y, we have

V̇1 = 2yT ẏ (25)

= 2yT [−k1diag(1, 0, . . . , 0)− k2L
∗ − k3

(yT y

n
− 1

)
I]y.

If ‖x(t0)‖ >
√

n, then k3(yT y
n − 1) > 0 and V̇1 < 0 until

‖x(t)‖ ≤
√

n. If ‖x(t0)‖ ≤
√

n, then ‖x(t)‖ ≤
√

n for all
t > 0.
The following two propositions completely characterize the
equilibrium sets of system (3) and their local stability prop-
erties.

Proposition 4: System (3) has an equilibrium point x = 0,
and it is locally unstable when k3 > k2λ2.

Proof: It is easy to verify that x = 0 (or y = 0) is an
equilibrium state of system (3). Linearizing the equivalent
system equation (6) around the point y = ỹ we get

ẏ = [−k2L̃
∗ − k3

( ỹT ỹ

n
− 1 + 2

ỹỹT

n

)
I]y. (26)

Plugging in ỹ = 0, equation (26) is simplied to ẏ = [k3 −
k2L̃

∗]y. The gain condition k3 > k2λ2 makes the equilibrium
point y = 0 locally unstable, at least in one direction.

Now we proceed to investigate the non-zero equilibrium
points of system (3).

Proposition 5: When the gain conditions (7), (8) are sat-
isfied, system (3) has n (when k3 > k1) or n − 1 (when
k3 ≤ k1) pairs of distinct non-zero equilibrium points
{yi | 1 ≤ i ≤ n} where

y1 =
(
±

√
n(

k3 − k1

k3
), 0, . . . , 0

)T

, if k3 > k1; (27)

and {yi | 2 ≤ i ≤ n} is

yj
i =

{
0 if 2 ≤ j ≤ n, j 6= i,

±
√

n(k3−k2λi

k3
) if j = i.

(28)

Additionally, among all the n or n − 1 pairs of equilibria,
only y2 is locally stable.

Proof: The insight here is that any nonzero equilibrium
point y of system (6) has to be an eigenvector of the matrix
L̃∗ with an associated eigenvalue k3

k2
(yT y

n −1). Furthermore,
we know the n different unit eigenvectors for the diagonal
matrix L̃∗ ∈ Rn×n. Therefore, we can solve for all the
eigenvectors of the system (6) that are also equilibria of the
system. There are n such eigenvectors in total, described
in (27) and (28). Additionally, we use the linearized mod-
els (26) to check the local stability of every yi. For y1, its
eigenvalue spectrum {µj

1 | j = 1, . . . , n} is{
µ1

1 = −2(k3 − k1) if j = 1,

µj
1 = k1 − k2λj if j = 2, . . . , n.

(29)

Since at least µ2
1 > 0, y1 is locally unstable. Similarly for the

equilibrium point yi, i = 2, . . . , n, its eigenvalue spectrum
{µj

i | j = 2, . . . , n} is
µ1

i = k2λi − k1 if j = 1,

µj
i = k2(λi − λj) if j = 2, . . . , n, j 6= i,

µi
i = −2(−k2λi + k3) if j = i.

(30)

http://lims.mech.northwestern.edu/projects/swarm/connect.wmv
http://lims.mech.northwestern.edu/projects/swarm/connect.wmv


Because 0 < λ2 ≤ · · · ≤ λn, yi is unstable for any i > 2 (at
least in some directions), and y2 is stable.
Finally we give a proof for the near-global convergence result
stated in Theorem 1.

It is useful to write out equation (6) in its scalar form:

ẏ1 = (−k1 − k3

(yT y

n
− 1

)
)y1 (31)

ẏ2 = (−k2λ2 − k3

(yT y

n
− 1

)
)y2 (32)

...

ẏn = (−k2λn − k3

(yT y

n
− 1

)
)yn. (33)

We first notice that the value of each component yi will
not change its sign over time and if yi(t0) = 0, yi(t)
remains zero. Next we present the complete proof of the
main theorem.

Proof: (Sufficiency) Let us first consider y1. If y1(t0) =
0, then y1(t) = 0 for all t. If y1(t0) 6= 0, combining (31)
and (32) we get

d

dt
(ln

y2

y1
) =

d

dt
(lny2)− d

dt
(lny1) = k1 − k2λ2 > 0 (34)

which implies y2/y1 → ∞. We know y2 is bounded from
Theorem 3, therefore y1 → 0. The cases are similar for
yi, i > 2. If yi(t0) = 0, then yi(t) = 0 for all t. If yi(t0) 6= 0,
then y2/yi →∞ and yi → 0.
Therefore over time equation (32) is reduced to ẏ2 =
(−k2λ2 − k3(

(y2)2

n − 1))y2. When (8) holds, this scalar
dynamical system can be rewritten as

ẏ2 =
k3

n
(
√

n
(k3 − k2λ2

k3

)
+y2)(

√
n
(k3 − k2λ2

k3

)
−y2)y2.

(35)

We see that y2 → ±
√

n
(

k3−k2λ2
k3

)
depending on the

initial condition y2(t0) and the equilibrium point y2 = 0
is unstable.

(Necessity) When y2 → ±
√

n
(

k3−k2λ2
k3

)
obviously condi-

tion (8) holds. Now we suppose the condition k1 ≤ k2λ2

holds. If k1 < k2λ2, using the same argument method
in (34), y1/y2 → ∞ and therefore y2 → 0, which is
a contradiction. If k1 = k2λ2, then d

dt (ln
y1

y2 ) = 0 and
y1/y2 is a constant c. For initial conditions y1(t0) 6= 0,
c = y1(t0)/y2(t0) 6= 0, therefore y cannot converge to y2

where y1
2/y2

2 = 0, which is also a contradiction. Therefore,
the gain condition (7) must hold.

Remark 2: In case of repeated eigenvalues λ2 = · · · =
λk < λk+1, Theorem 1 still holds. In this case all trajectories
with y2(t0) 6= 0 converge to an equilibrium point on the

k-dimensional manifold {y| ‖y‖ =
√

n
(

k3−k2λ2
k3

)
, y1 =

0, yi = 0,∀i > k}.
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