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Abstract

This paper is concerned with the state feedback control problem for a class of discrete-time stochastic systems involving sector
nonlinearities and mixed time delays. The mixed time-delays comprise both the discrete and distributed delays, and the sector
nonlinearities appear in the system states and all delayed states. The distributed time-delays in the discrete-time domain
are first defined and then a special matrix inequality is developed to handle the distributed time-delays within an algebraic
framework. An effective linear matrix inequality (LMI) approach is proposed to design the state feedback controllers such that,
for all admissible nonlinearities and time-delays, the overall closed-loop system is asymptotically stable in the mean square
sense. Sufficient conditions are established for the nonlinear stochastic time-delay systems to be asymptotically stable in the
mean square sense, and then the explicit expression of the desired controller gains is derived. A numerical example is provided
to show the usefulness and effectiveness of the proposed design method.
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1 Introduction

In the past few decades, stochastic dynamical systems
modeled by the Ito-type stochastic differential or dif-
ference equations have received a great deal of research
attention since stochastic systems have many applica-
tions in practice such as attitude control of satellites and
missile autopilot control, macroeconomic system control
and chemical process control [14,19]. Although a vari-
ety of results for the stability and stabilization of linear
stochastic systems have been published, the stabiliza-
tion control problem of nonlinear stochastic systems has
received relatively little attention.

Recently, several important results have been obtained
in the area of nonlinear stochastic control, see e.g. [2,
8,16]. In particular, the so-called sector nonlinearity [9)]
has gained much attention for deterministic systems, and
both the control analysis and model reduction problems
have been investigated, see [7,12]. On the other hand,
stability analysis of time-delay systems has been a prob-
lem of recurring interest during the past years [1,15]. For
linear stochastic time-delay systems, the stability and
stabilization problems have also been studied by many
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authors, see e.g. [5,18]. It should be noticed that al-
most all time-delays studied in the aforementioned liter-
ature are of the discrete nature. Recently, another type
of time-delays, namely, distributed time delays, has re-
cently drawn much research interests. This is mainly be-
cause the signal propagation is often distributed during
a certain time period with the presence of an amount
of parallel pathways with a variety of axon sizes and
lengths [3,4]. It is worth mentioning that, the general
method of Lyapunov functionals construction has been
proposed in [11] and the stability results have been es-
tablished in [17] for difference equations with distributed
and varying delays. In fact, both discrete and distributed
delays should be taken into account when modeling a re-
alistic complex systems, and it is not surprising that var-
ious systems with discrete and distributed delays (also
called mized delays) have drawn increasing research at-
tention, see [13,20] and the references cited therein.

Although the importance of distributed delays has been
widely recognized, almost all available results have been
focused on continuous-time systems with distributed de-
lays that are described in the form of a finite or infinite in-
tegral. In reality, however, discrete-time systems become
more important than their continuous-time counterparts
when implementing the control laws in a digital way.
To be more specific, it is essential to formulate discrete-
time analogue of the continuous-time system when one
wants to simulate or compute the continuous-time one
after obtaining its dynamical characteristics. Naturally,
it turns out to be meaningful to investigate the issue of
how distributed delays influence the dynamical behav-
ior of a discrete-time system. Unfortunately, a literature
search has revealed that such an issue has not yet been
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addressed, and the main reason lies in how to properly de-
fine the distributed delays in a discrete-time domain and
how to carry out the corresponding mathematical anal-
ysis. It is, therefore, the purpose of this paper to close
such a gap by making one of the first few attempts to
deal with the control problem for a class of discrete-time
nonlinear stochastic systems with distributed delays.
Notations: Throughout this paper, N stands for the
set of nonnegative integers; R™ and R™*™ denote, re-
spectively, the n dimensional Euclidean space and the set
of all n x m real matrices. The superscript “T” denotes
the transpose and the notation X > Y (respectively,
X >Y) where X and Y are symmetric matrices, means
that X — Y is positive semi-definite (respectively, pos-
itive definite). I is the identity matrix with compatible
dimension. | - | denotes the Euclidean norm in R™. If A
is a symmetric matrix, Amax(A) (respectively, Amin(A) )
denote the largest (respectively, smallest) eigenvalue of
A. Moreover, we may fix a probability space (2, F,P)
where, P, the probability measure, has total mass 1. E{-}
stands for the mathematical expectation operator with
respect to the given probability measure P. The aster-
isk * in a matrix is used to denote term that is induced
by symmetry. Matrices, if not explicitly specified, are as-
sumed to have compatible dimensions. Sometimes, the
arguments of a function will be omitted in the analysis
when no confusion can arise.

2 Problem Formulation

Consider, on a probability space (2, F,P), the follow-
ing discrete-time nonlinear stochastic system with mixed
time delays of the form:

(3) :x(k +1)= Ax(k) + Bz(k — d(k))

+oo
+O Z ,Umf(x(k - m))

m=1
+g(x(k), z(k — d(k))) + Du(k)
+ o(z(k), z(k — d(k)))w(k), (1)

where z(k) € R™ is the state vector; u(k) € R™ is the
control input; A, B,C, and D are known constant ma-
trices; f(+) : R®™ — R" g(-,-) : R" x R" — R" and
o(--) : R"™ x R™ — R™ are nonlinear functions; w(k)
is a scalar Wiener process (Brownian Motion) defined
on a complete probability space (§2, F, P) with

Efw(k)] = 0, E[w? (k)] = 1, E{w(i)w(j)} = 0(i # j)

where the stochastic variables w(O),w(l),w(2),(3)
are assumed to be mutually independent; ¢(j), j =
—dp,—dpy + 1,...,—1,0, are the initial conditions,
which are independent of the process {w(:)}.

In the system (X), the positive integer d(k) denotes the
time-varying delay satisfying

dp < d(k) < dpg, k e NT (4)
where d,,, and dj; are known positive integers. The con-

stants p,, > 0 (m = 1,2, ...) satisfies the following con-
vergence conditions:

+oo +oo
Z fm < +00 and Z My < +00. (5)

m=1 m=1
Remark 1 The model (1) includes the term of the
distributed time-delays, >+ pum f(z(k — m)), in the
discrete-time setting. Such a term can be interpreted as
the discrete analogy of the following continuous-time
system with mized time delay (see e.g. [13]):

dz(t) = [Az(t) + Bz(t — 7(t)) + g(z(t), z(t — d(t)))

+C/ k(t — s)f(xi(s))ds + Du(t)]dt

— 00

Vo(z(t), z(t — d(t)))dw(t).

As can be seen later, the inclusion of such a distributed
delay term will bring additional difficulty in the analysis
and a special inequality will need to be developed.

For the nonlinear vector functions f, g and o, we assume:

[f(z) — L1a]"[f (x) — Lox] <0, Yz € R™, (6)
‘o(x,y,t)f < |Elgc|2 + |Egy|2, Vr, y € R, (7)
l9(,y,1)[* < [Graf? + |Gayl, Va, y € R™, (8)

where L1, Lo, ¥1,%9,G1, Gy € R X are known real
constant matrices, and p; and py are known real scalar
constants.

Remark 2 Note that the nonlinear vector functions o
and g satisfy the norm-bounded conditions, and f sat-
isfies the so-called sector condition in the sense that f
belongs to the sector [L1, Lo] [9]. Such a sector descrip-
tion is quite general that includes the usual Lipschitz con-
ditions as a special case, and also covers several other
classes of well-studied nonlinear systems [7,12].

Substituting the state feedback controller u(k) = Kz (k)
to system (X) gives the following closed-loop system:

(2e) : a(k + 1) = Aga(k) + Ba(k — d(k))

“+o0

+C Z Mmf(x(k - m))
+g(a(k), 2(k — d(K)))
+o(e(k),o(k — dk)wlk), (9

2(k) = ¢(k), —o0 < j <0, (10)

where Ay = A+ DK.

Definition 1 The system (X) with u(k) = 0 is said to be
asymptotically stable in the mean square sense if, there
exists a constant Ry > 0 such that for any initial condi-
tion {¢(4); |¢(45)| < Ry, —o00 < j < 0}, the correspond-
ing solution {x(k); k > 1} satisfies klim E[|z(k)|?] = 0.

Definition 2 The system (X) with u(k) = 0 is said to
be globally asymptotically stable in the mean square sense
if, for any initial condition, the corresponding solution
{z(k); k> 1} satisfies klim E[|z(k)|?] = 0.

Definition 3 The system () is said to be stabilizable
in the mean square sense if there exists a state feedback
controller u(t) = Kx(t) such that the close-loop (X.) is
asymptotically stable in the mean square sense.



In this paper, we aim at developing techniques for
stochastically stabilizing a class of discrete-time non-
linear stochastic systems (X) with mixed time delays.
By constructing new Lyapunov-Krasovskii functional,
we shall establish LMI-based sufficient conditions un-
der which the stabilizability in mean square sense is
guaranteed for the stochastic system (3).

3 Main Results

The following lemmas are essential in establishing our
main results.

Lemma 1l [13] Let z, y be any ny-dimensional real
vectors, and let P be a n, X ng positive semi-definite

matriz. Then, we have 22T Py < 27 Px + yT Py.

Lemma 2 [13] Let M € R"=*"= be q positive semi-
definite matriz, ¢, € R™ and a; > 0 (1 = 1,2,...). If

the series concerned is convergent, then the following in-
equality holds:

+00 T +o00 +oo +oo
(Z ai:ci> M (Z ai:ci> < (Z ai> Zaiw?M:ci

i=1 i=1 i=1 i=1
(11)

For notation simplicity, we denote

H(k)= Agx(k) + Bx(k — d(k)) + g(z(k), z(k — d(k)))

+oo
+OS i f(alk —m)),

&) = [ (k) @ (k = (k) S (@ (k)

T

+o00
>t (@lk = m) g7 (@(k) 2k — (k)]
Sok) = [« (k) o (k= d(k) =" (k—dur) 7 (x(k))

“+oo
S sk —m) " (a(k). 2k — (k)]
m=1

—+oo

m=1
Ly=(LTLy+LYLy)/2, Ly = (LT + LT)/2,
’I]():[AK BO0O0OC I}

Theorem 1 Let K be a given real constant matriz. The
closed-loop system (X.) is globally asymptotically stable
in the mean square sense if there exist sixz positive defi-
nite matrices X, Q, S, R, Z1 and Zs, a positive constant
scalar A, and three matrices My, My and Ms such that
the following LMIs hold:

P<X  (12)

Vo4, +5, +=27 + =5, +27 =
L e U )

=3 =

where

LS

v=mng (P +dun(Zy + Za))mo,
12[—dM(Z1+Z2) 0O 0 0 O O]T’I](),
o=[Mi+Ms My—M, —My—Ms 0 0 0],

Z3=[VduMi dy —dmMsy  /dyMs],

54 = diag{—Zl, —Zl, —Zg},

11 [1]

m 0 0 L, 0 0]

x IIs 0O 0 0 0
Ty — x x =S ) 0 0 7

* % x pR—I 0 0

T * -1r 0

I

* ok ok * * =1

with

=P+ (dy —dpm +1)Q + AXTE, + 5 — Ly
+dM(Zl + ZQ) + G{Gl,
My =—Q + A\X2 % + GE Go.

Proof: To deal with the stability problem of the system
(X.), we construct the Lyapunov-Krasovskii functional

V(k) =0, Vi(k), where s
Vi(k) =a" (k)Pa(k), Va(k) = > 2" ()Qux(i), (14)

i=k—d(k)
k—dm k—1
Vak)= Y > 2" ()Qu(), (15)
j=k—da+1 i=]
k—1
Vitk)= Y 2" (i)S(i), (16)
i=k—dns
- k—1
Vs = > Y v () (% + Za)y(d) (17)
i=—dnr j=k+i
with  y(j) = z(j + 1) — 2(j), (18)
+oo k—1
Vok)=> mi Y fT(x()Rf(2(5))- (19)
i=1  j=k—i

Calculating the difference of V (k) along the system (%)
and taking the mathematical expectation, we have

6

E{AV(k)} = E{AV;(k)}

zl
=S E{Vi(k +1) - Vi(k)}, (20)
where
E{AVi(k)}

=E{H" (k)PH(k) + o (x(k), z(k — d(k)))
x Po(x(k), z(k — d(k)))} — 2T (k)Pz(k), (21)
E{AV>(k)}
< E{a" (k)Qu(k) — & (k — d(k))Quz(k — d(k))



k—dm,
p>
i=k—dp+1
E{AV3(k)}
=E{(dy — dm)z
k—dm,
- X
i=k—dp+1
E{AV4(k)}
= E{z" (k)Sz(k)
E{AV5(k)}

= E{ [darHT () — 2dua™ (R)](Z1 + Za)H (k)

wT(i)Qw(i)} ; (22)

T (k)Qx (k)
l’T(i)Qx(i)} ; (23)

— 2T (k —dy)Sx(k —dpr)},  (24)

k—1

tdya” (k) Zva(k) = >
i=k—d(k)
k—d(k)—1

+dya” (k) Zox(k) — )

i=k—dnm

y" (i) Z1y(i)

y" (i) Z1y(i)

k—1

- Y @20} (25)

i=k—dn

and
E{AVs(k)}
:E{ﬁfT( (k)R f (@ (k)

_Zﬂsz

Substituting (22)-(26) into (20) leads to
E{AV(k)}
< E{H"(k)PH(k) — " (k — d(k))Qz(k — d(k))
+ol (z(k), x(k — d(k))) Po(z(k), 2(k — d(k)))
+a (k)| = P+ (dar = dyn +1)Q] (k)
T(k)Sx(k) — 2T (k — dar)Sx(k — dar)
+ldyH" (k) — 2dya” (K)](Z1 + Z2)H(K)
+dyzT (k) (Zy + Zo)x(k)

k—1
PN
i

k—))Rf@(k—)f.  (26)

T (@) Zy (i) + 265 (k) MiAs

i=k— k)
k—d(k)—

- Z ( ) Z1y(i )+2§0( )MzAs
i=k— dM

- Z (i) Zay (i) + 26T (k) M3Ag
i=k—dn

—Zuz k—i)Rf(x(k —1i))

+ufT( ()R f(2(K))}, (27)

with Ay = a(k) — a(k — d(k)) = 120 4)y(0), A =
a(k — d(k)) — 2(k — dar) — 28 "1y(0) and Aq
a(k) — a(k —dun) — 35504 y(i).

Notice that
k—1 k—1

- > YD) Zy() 265 ()M D y(i)
i=k—d(k) i=k—d(k)
< du& (k)M Z7 M &o (k). (28)
Similarly, we have
k—d(k)—1 k—d(k)—1
- Y Oz -2l My S )
i=k—d i=k—dnm
< (dyr — dm)&G (k)M Zy My &0 (k) (29)
and
— k—d(k)—1
Z (1) Zay(i —250 y(i
i=k—dns
50( )M3Z2 M3 50( ) (30)

On the other hand, it follows from (7) and (12) that

ol (x(k), z(k — d(k))) Po(x(k), x(k — d(k)))
<A [z (k)= S12(k)
+2"'(k — d(k))X] Sox(k — d(k))] . (31)

Also, one has from Lemma, 2 that

—Zuz

k—i)Rf(x(k —1i))

Furthermore, from (6) and (8), we have

T o o
x(k) L1 —L2 ,T(k)
lf(x(@)] l—ig I ]“” (33)

flax(k) | —
and
9" (x(k), z(k — d(k))g(z(k), z(k — d(k)))
< —a(k — d(k))G; Gaa(k — d(k))
—aT (k)GT Gra(k). (34)
Letting

Y=o+l (P+dy(Zi + Z2))no + =1 + E]
+E5 + 27 +<dM d) Mo Z7 P M3
+dp My Z7 MY+ dpy My Zy P ME



and then substituting (28)-(34) into (27), we obtain that
E{AV(k)} <E{& (k)Yéo(k)} - (35)

By (13), (35) and Schur Complement, we have T < 0
and therefore

E{AV (%)} < —Amin(T)Elz(k)|* (36)

where Apin (1) is the minimum eigenvalue of Y. It follows
from the Lyapunov stability theory that the closed-loop
system (X.) is globally asymptotically stable in the mean
square.

In Theorem 1, the stability analysis problem is dealt
with for the closed-loop system (3.) with a given feed-
back gain and a sufficient condition is derived, which de-
pends both the delays d,,, and dy;, in the form of LMIs
to guarantee the mean-square asymptotic stability of
the closed-loop system (X.). In the following, two subse-
quent results are given in order to facilitate the control
design procedure.

Corollary 1 Let K be a given real constant matrixz. The
closed-loop system (X.) is globally asymptotically stable
in the mean square sense if there exist three positive defi-
nite matrices X, Q and R, and a positive constant scalar
A such that the following LMIs hold:

X > M (37)
(X 0 XL, 0 0 XAL W, ]
x* —Q 0 0 0 XBT W,
x x pR—1 0 0 0 0
Q=% = * —%R 0 CcT 0 | <0.(33)
* % * * =1 T 0
* % * * * =X 0
|+ * * * * * —W_
whereX:—X—i—JQ,J:dM—dm—l—l, W =

E,{El + G,{Gl - i/l, Wy = 2522 + GgGg, Wl =
[XWl 0], W2 = [0 XWQ], and W = diag{Wl, Wg}

Proof : Let X = diag{ X+, X' I, I, I, I,diag{I, I'}}
and

0= XX

(011 0 Ly 0 0 AL Wil
¥ Qo2 0 0 0 BT W,
* x* (ozz O 0 O 0

=| * x —%R oct o |, (39)

* * * x —I I 0
* * * * * =X 0

| * * * * ok % —W_

with W has been defined in (38) and Qo33 = —X '+
dX1QX Y, Qo2 = —X'QX 1, Qosz = pR—I, Wy =
W1 0],Wy = [0 Whs]. It is obvious that Q < 0 is

equivalent to Qg < 0. Furthermore, by letting P = X !

and Q = PQP, it follows readily from Schur complement
that ¢ < 0 is equivalent to

Q=0 +1"Pp<0. (40)
where
Qi 0 Ly 0 0
x —Q+Wy 0 0 0
Q= * * pR—1 0 0 (41)
1
* * * _ﬁR 0
* * * * =1

with 9111 =-P + JQ + Wl.
Construct the Lyapunov-Krasovskii functional V (k) =

S0, Vi(k), where
k—1

Vi(k) =2"(k)Pa(k), Va(k) = Y 2" (i)Qx(i), (42)

i=k—d(k)
k—dm

k—1
Vs(k)= Y > 2T (0)Qu(), (43)

j=k—da+1 i=j

+oo k—1
Va(k) =Y i > [T (@) R (2(5)). (44)
i=1  j=k—i

The rest of the proof follows directly from Theorem 1
and is therefore omitted to save space.

Next, we are in a position to consider the stabilizability
of the system (X)) and design the desired controller. The
following result is given without proof since it is easily
accessible from Corollary 1.

Corollary 2 System (X) is stabilizable in the mean
square sense if there exist three positive definite matrices
X,Q and R, a matrix Y, and a positive constant scalar
A such that the following LMIs hold:

X > M (45)
(X 0 XL, 0 0 A W]
* —Q 0 0 0 XBT W,
* x pR—1 0 0 0 0
Q=% = * —%R 0 ¢ 0 |<0, (46)
* % * * =1 T 0
* ok * * *x —X 0
|+ * * * % * —W_

where X, Wl’ Woa, W, W1 and Wy are defined in Corol-
lary 1 and A = XAT + YTDT. Furthermore, if LMIs
(45)-(46) are feasible, the desired state feedback gain ma-
triz can be designed by K =Y X L.

Remark 3 The features of the main results can be sum-
marized as follows: 1) the distributed time-delay is de-
fined in the discrete-time setting; 2) a new Lyapunov-



Krasovskii functional is introduced to account for dis-
tributed time-delay; 3) a sector-like nonlinearity is im-
posed on the function concerning the distributed delays;
and 4) an up-to-date delay-dependent approach is em-
ployed to obtain the LMI-based stabilizability conditions.
We like to point out that, within the same LMI frame-
work, it is not difficult to extend our main results to
more general systems (e.g. parameter uncertain systems,
systems with input delays and systems with uncertain
switching probability) with static/dynamic output feed-
back.

4 Numerical Example

In this example, we consider the third-order system (X)
with the following parameters and nonlinear functions:

101 0 0.2 -0.1 0
A=|10 03 01 |,B=1]01-01 0 |,
0.1 0 —0.2 0 —0.2 —0.1
[—0.2 0 0.1 -11
C=1{-02-01011|,D=1]0 1],
0 0.2 —0.1 01
_1\k
d(k) =2+ #7 = 27 (3+m)
f2) = (filx), f2(), f3(2)"
T
9(x,y) = (91(2,y), 92(z,9), g3(w, v))" ,
o(z,y) = g(z,y),
where

x) = 0.1z1 — tanh(z2) + 0.222,
x) = 0.1z1 + 0.2z5 — tanh(z3),

(
(
g1(w,y) = —0.2y/a + y3 sin(af + 23),
(z,y) = 0.24/23 + y? cos(x? + z3),
g3(x,y) = 0.24/2% + 3.

It is easy to verify that

0.8 0.1 0.1 0.2 0.1 0.1
Li=|01 -08 0 |,Ly=1]0102 0 |,

01 0 -0.8 0.1 0 0.2
Y =% =Gy =Gy =02,

dm =2, dyy =3, =273,

With the above parameters, by using Matlab LMI Tool-
box, we solve the LMIs (45)-(46) and obtain the desired
feedback gain matrix as follows

0.9628 —0.0883 0.0116
—0.0461 —0.1618 0.0382

K=vYX'=

According to Corollary 2, the system () with the given
parameters is stabilizable in the mean square and such a

conclusion is further confirmed by the numerical simula-
tion. In fact, Fig. 1 shows the dynamics evolution of the
uncontrolled system (X), i.e., in the case of u(k) = 0. In
this case, it is observed that the system is unstable. As
shown in Fig. 2, the closed-loop system with the above
feedback gain matrix is stable. Therefore, the simulation
matches the theoretical results perfectly.

[Ly— . 30p . 2r
- [0 R
20}
501 -2
10
. —4r
- [ ] R ous® DL
-100} P D -ef
<, % -10 < -8
o N 3
-150| : : -10}
20} B
-12
-30
—200| : -14
_aol
16l
—250 . . so . 1 . )
) 20 40 ) 20 40 () 20 40
K K K

005 014 03
0.12f :
0 | E ozl
01f
-0.05}
: 0.08f" 01 -
: M
—01f :
0.06F,
O essenssssessossssssssa -
<, -0.15F <. 004 =
2 i 3 3
-0.1
0.02
-0.2
u"‘ ~~~~~~~~~~~~~~~~ =3
or iy -02
-0.25F
-0.02
oab -03
-0.04+ :
-0.35 L ! -0.06 L ! -0.4 L !
) 20 40 ) 20 40 ) 20 40
K K K

Fig. 2. The state evolution of the closed-loop system
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