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Abstract

A new gradient estimation method is proposed that relies on efficient computation of the negative gradient of the averagelinear quadratic
cost function completely in the frequency domain. Based on the proposed theory, a new iterative tuning method is developed to solve linear
multi-input multi-output Active Noise/Vibration Controlproblems. Compared with published iterative tuning methods, the new method
has the added advantage that the number of experiments per iteration is reduced to one. Combined with the other advantageof relatively
simple controller structures, the method is suitable for real-time implementation as an adaptive controller.
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1 Introduction

Iterative feedback tuning (IFT) has been the subject of in-
tensive research effort during the past decade [3,4,6,5]. Its
advantage is that it does not need detailed plant modelling,
assuming that a stable reasonably functioning controller is
available to start with. Recent efforts were aimed at improv-
ing gradient estimation [9,8] of the control performance cri-
terion and improving stability robustness without modelling
[23].

This paper extends work in [12] to propose a new gradient es-
timation method in the frequency domain to deal with adap-
tive control problems in Multi-Input Multi-Output (MIMO)
systems, which relies on the analysis of frequency response
of the system dynamics and spectrum of signals. With local
linearization analysis techniques in the frequency domain,
the key to this solution is the investigation of the mapping
from the change of control parameters to the change of out-
put spectra.

Using this technique a new Iterative Tuning (IT) method in
the Frequency domain (FD), i.e., FD-IT, is developed for
linear MIMO control problems with periodic signals. It is a
data-driven approach which only requires partial modelling
according to the discrete spectrum of signals. It is applicable
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to a variety of controller structures, including finite-impulse-
response (FIR) model based and frequency-selective-filter
(FSF) based controllers. One initial experiment is required
for each input channel of the unknown plant to initialize the
gradient estimate. Later tuning takes place simultaneously
for all inputs while the iterative feedback/feedforward tun-
ing in earlier publications [4] had to perform multiple ex-
periments for feedback and feedforward controllers.

The proposed gradient estimation method is applicable to
general control problems, including nonlinear ones, as the
gradient approximation approach is valid for nonlinear sys-
tems. Despite this generality, the proposed tuning method
is specialized to the LTI case with periodic signals for ease
of implementation as the general case is computationally
intensive. The most important target area of its application
is Active Noise and Vibration Control (ANVC) problems
which often need to attenuate the effect of periodic distur-
bances. Many methods have been developed for ANVC dur-
ing the past twenty years. There are design approaches that
are model-based, e.g.,H∞ control [2], unfalsification con-
trol [24] and correlation based IFT [11]. There are many
model-free approaches as well. One of the most widely used
and well understood methods is the filtered-x LMS algo-
rithm [18], which can be made adaptive to track plant dy-
namics with slow time variance. Frequency selective filter-
based iterative feedback/feedforward tuning (FSF-IFT) con-
trol [16] has also been successfully used for periodic dis-
turbance cancelation. There are very few effective methods
available to tune both feedback/feedforward controllers in
ANVC. This paper suggests a method of tuning feedback
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and feed-forward controllers simultaneously.

The remainder of this paper is organized as follows. In Sec-
tion 2, the problem of gradient-based tuning control for
ANVC is shortly reviewed in the time domain and refor-
mulated in the frequency domain. In Section 3 the gradient
estimation method is proposed and the new iterative tuning
method (FD-IT) is developed in Section 4. Section 5 com-
pares FD-IT to some other iterative tuning methods in the
time domain. In Section 6 a series of MIMO simulation ex-
amples are presented to compare two implementations of
FD-IT and the robustness of the algorithm. Finally conclu-
sions are drawn in the last section.

2 Gradient based tuning for ANVC

In this section, the ANVC problem is addressed in the time
domain and frequency domain in general, fundamental def-
initions and the performance function are given and the
essence of iterative tuning is formulated in the context of
the ANVC problem.

2.1 Problem setting in the time domain

Figure 1 provides a schematic description of the control
system considered.

Fig. 1. Block diagram of the linear feedforward/feedback ANVC
system.

The measured output, which is affected by the disturbance
ddd ∈ Rnd , is represented byyyy∈ Rny. G is the unknown plant
dynamics with inputsddd anduuu and produces the vector output
yyy. It can be described as

yyy = G(ddd,uuu) (1)

The control signals from the feedforward controllerF and
feedback controllerH are denoted byuuuf ∈Rnu anduuuh ∈Rnu,
respectively. The tunable control systemC comprises the
parameterized feedforward controllerF and the feedback
controllerH:

C(www, rrr,yyy) : F : uuuf = F(wwwF , rrr)

H : uuuh = H(wwwH ,yyy)

uuu := {uuuf ,uuuh}

(2)

which can be tuned by adjusting their parameter vectors in
www := {wwwF ,wwwH} ∈ Rnw.

As usual in ANVC, it is assumed that the measurable
disturbance-reference signalrrr ∈ Rnr is correlated to dis-
turbanceddd, and rrr is obtained through an unknown but
time-invariant dynamicsS from ddd. While the output signal
yyy(t) is measurable and recordable, the disturbance signalddd
cannot be measured directly.

In the case of a periodic disturbanceddd, it is always assumed
that the steady outputyyy is also periodic. If the system has
steady outputyyy with periodN then the control performance
criterion is defined as the average quadratic performance of
a lengthN output sequence:

J(www) :=
1
N

N−1

∑
t=0

yyyT(t)Qyyy(t) (3)

whereQ is a priori specified weighting matrix.

The objective of tuning for ANVC is to adjust the controller
parameterswwwF andwwwH to minimize the performance crite-
rion (3).

In general, the problem of minimizingJ(wwwF ,wwwH) is not nec-
essarily convex. The tuning method often finds a suboptimal
solution at a local minimum. This suboptimal solution of the
problem is obtained by findingwwwo = {wwwo

F ,wwwo
H} that satisfies

∇J(wwwo
F ,wwwo

H) = 000 (4)

On the topic of how to solve the global optimization prob-
lem, there are a number of papers available [21,20,22,1] as
referenced.

2.2 Problem setting in the frequency domain

In this subsection the ANVC problem as in Fig.1 and with
cost function (3) will be represented in the frequency do-
main.

Considering the MIMO system described by Fig.1, if there is
N-length output data setY := {yyy(0); . . . ;yyy(N−1)},yyy(t) :=
{y1(t), . . . ,yny(t)} ∈ Rny, this can be detailed with the out-
put channels asY = {yyy1, . . . ,yyyny

},yyyi = {yi(0); . . . ;yi(N−

1)}, i = 1, . . . ,ny.

Denoting byΩN = {ωm := m2π
N ,m= 0, . . . ,N−1} the set of

uniformly sampled discrete frequencies forN-length data,
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φφφ i
y := {φ i

y(ω0); . . . ;φ i
y(ωN−1)} ∈ CN will be the notation for

the Discrete Fourier Transform (DFT), that is a windowless
estimate of the discrete spectrum ofyyyi , i.e. φφφ i

y
.
= DFT(yyyi).

Furthermore, the discrete spectrum ofY is presented as
φφφ y := {φφφ1

y; . . . ;φφφny
y } ∈ C(ny·N)·1. There are some similar fur-

ther notations such asφφφ d, φφφ r , φφφ u f andφφφ uh.

In the frequency domain, the plantG is described as a map-
ping: {φφφd,φφφ u} ∈ C(nd·N+nu·N) 7→ φφφy ∈ C(ny·N):

φφφ y = ΦG(φφφd,φφφ u) = ΦG(φφφd,φφφ
1
u, . . . ,φ

nu
u ), (5)

and the controller systemC is described as a mapping:
{www,φφφ r ,φφφ y} ∈ C(nw+nr ·N+ny·N) 7→ φφφu ∈ C(ny·N):

ΦC(www,φφφ r ,φφφy) : ΦF : φφφ u f = ΦF(wwwF ,φφφ r)

ΦH : φφφuh = ΦH(wwwH ,φφφy)

φφφ u := {φφφu f ,φφφuh}

(6)

According to Parseval’s Theorem [19], it is straightforward
to rewrite (3) in the frequency domain format as

J =
1
N

N−1

∑
i=0

φ∗
y (ωi)ΦQφy(ωi) =

1
N2 φφφ ∗

yΦQφφφ y (7)

whereΦQ is the representation ofQ in the frequency domain.

Similarly, the optimization problem can be written as:

min : J(www) in (7),

s.t. Eqn. (5),

Eqn. (6).

(8)

Note that the system as Fig.1 is represented in the frequency
domain as general mappings between two multi-dimensional
spaces, and the cost function (3) is also represented in the
frequency domain as multiplication of discrete spectra. This
representation is suitable to describe general systems includ-
ing linear or nonlinear ones.

3 Gradient estimation in the frequency domain

In this section, a new gradient estimation theory is proposed,
from a frequency domain aspect, which is based on the re-
formatted ANVC problem as presented above.

3.1 Gradient estimation in full-bandwidth

In a gradient-basedalgorithm the continuous differentiability
condition is always necessary. Similarly, in iterative tuning
in the frequency domain, it is also assumed thatΦG, ΦF and
ΦH are continuously differentiable functions with respect
to their input spectra and tunable parameters. In order to
discover the relationship between control performance and
control parameters, local linearization can be performed and
computed using infinitesimal increments.

Considering the ANVC system in Fig. 1, the local lineari-
sation ofΦG can be described as

∆φφφy ≈
dφφφy

d{φφφd,φφφu}

[

∆φφφd

∆φφφ u

]

(9)

As theφφφ d is fixed for stationary disturbances, only the case
of ∆φφφd = 000 is needed to be discussed. To simplify the pre-
sentation, some of the most frequently used notations are
defined as

ΦG′ :=
∂φφφy

∂φφφu
∈ C

(ny·N)·(nu·N)
, (10)

and similarly

ΦH′ :=
φφφuh

∂φφφ y
∈ C

(nuh·N∗)·(ny·N) (11)

Without losing generality, givenφφφy, φφφu and ΦG′ , the in-
finitesimal increment format of dynamicsG in the frequency
domain with respect to∆φφφu can be written as

∆φφφy ≈ ΦG′(∆φφφw
u f + ∆φφφw

uh) (12)

For the tunable controllersΦF(wwwF ,φφφ r) andΦH(wwwH ,φφφ y) in
(6), the following notations are going to be used:

Φw
F ′ :=

∂φφφu f

∂wwwF
∈ C

(nu·N)·nwF ,Φw
H′ :=

∂φφφ uh

∂wwwH
∈ C

(nu·N)·nwH

(13)

Considering small increments caused by the small update of
parameterwww, i.e., wwwF → wwwF + ∆wwwF andwwwH → wwwH + ∆wwwH ,
it is straightforward to write

∆φφφy ≈ ΦG′(Φw
F ′∆wwwF + Φw

H′∆wwwH + Φw
H′∆φφφy) (14)
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Fig. 2. Block diagram of small increment in frequency domain.

Using notations that∆φφφw
u f ≈ Φw

F ′∆wwwF , ∆φφφw
uh≈ Φw

H′∆wwwH and
∆φφφy

uh≈ΦH′∆φφφy, (14) can be graphically described by Fig. 2.

The input/output increment mapping is∆φφφu 7→ ∆φφφy. The
physical increment in the path of the feedback controllerH
consists of two parts:∆φφφw

uh caused by the change of con-
troller parameter∆wwwH , and∆φφφy

uh caused by the change of
output∆φφφy.

Considering that the part∆φφφu is only caused by the
∆w, if (I − ΦG′ΦH′)−1 exists, the input/output mapping
{∆φφφw

u f ,∆φφφ w
uh} 7→ ∆φφφy can be rewritten from (14) as

∆φφφy ≈ (I −ΦG′ΦH′ )−1ΦG′(∆φφφw
u f + ∆φφφw

uh) (15)

By introducing the notation

ΦT ′ := (I −ΦG′ΦH′)−1ΦG′ ∈ C
(ny·N)·(nu·N)

, (16)

the key result turns out to be that the derivative ofφφφ y with
respect to controller parameterswwwH andwwwF can be approx-
imated as

∂φφφ y

∂wwwF
≈ ΦT ′ΦF ′ ,

∂φφφ y

∂wwwH
≈ ΦT ′ΦH′ (17)

The derivative of performanceJ with respect to controller
parameters can be written in the frequency domain as

∂J(www)

∂www
≈

2
N2 φφφ∗

yΦQΦT ′
∂ΦC

∂www
(18)

Generally, the outputyyy, the controllerH andF are all known,
φφφ y and

∂ΦC

∂www
= [ΦF ′ , ΦH′ ]

can be both estimated. The final point of to gradient estima-
tion is the approximate computation ofΦT ′ at the relevant
frequencies that will add an initial experiment to our proce-
dure.

Remark 1 As mentioned at the beginning of this section, the
above deduction is completely based on the representation
in the frequency domain without considering time domain.
But the conclusions are similar to IFT results in the time
domain [3], which may point to similar conclusions in other
integral transform domains, i.e., wavelet transform domain
in a future research.

Remark 2 Note that the above deduction is based on a
local linearization analysis with incremental equation (12).
If nonlinear G and C have continuous derivative matrices in
the frequency domain (i.e.,ΦG′ , ΦC′ ), then the derivation in
the nonlinear case is straightforward as discussed in [13].

Fig. 3. Block diagram of a servo control problem.

Remark 3 Although Fig.1 illustrates ANVC, it can be used
to present common control problems with some slight mod-
ifications. As shown in Fig. 3, a servo control problem can
be illustrated with a similar format of ANVC, where ’ddd’ and
yyy is replaced by rrr and eee in Fig. 3, respectively. In [14],
the proposed idea has been adopted to implement a tracking
control problem. Therefore, the proposed gradient estimate
as (18) is valid in theory for most of general control prob-
lems with a periodic reference signal.

3.2 Gradient estimate in finite frequency set

In the subsection above (18) gives a full-bandwidth format
in the frequency domain including the full-band fromω0 to
ωN−1. However, the computation of the performance gradi-
ent can be greatly simplified in LTI systems with periodic
disturbances that cover only part of the full-bandwidth.

Note that in (18)φφφ ∗
y can be considered as a weighting se-

quence when it is rewritten as

∂J(www)

∂www
≈

2
N2

N−1

∑
n=0

φ∗
y (ωn)ΦQ(ωn)

∂φy(ωn)

∂www
(19)
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Considering periodic outputyyy with common periodN and
finite frequency set

Ω := {ω̄0, . . . , ω̄n} ⊂ ΩN

φφφ y can be substituted withφφφy|Ω, and the other elements

in φφφ y are 0. Therefore, in order to get∂J(www)
∂www in (18), only

the elements in
∂φφφy
∂www with respect toΩ are required to be

included, i.e.,

∂J(www)

∂www
≈

2
N2 ∑

ω∈Ω
φ∗

y (ω)ΦQ(ω)
∂φy(ω)

∂www
(20)

In this case only the partial dynamics{ΦT ′
∂φC
∂www }|Ω is re-

quired to be estimated according to the frequency domain
characteristics ofyyy. (20) provides a data-driven approach to
tune the controller that only requires partial modelling ac-
cording to the discrete spectrum of signals. If{ΦT ′

∂φC
∂www }|Ω

has some easy presentation then the computation of∇J(www)
can be simplified.

Fortunately, in LTI systems there is a very simple presenta-
tion in the frequency domain: the frequency response is in-

dependent for individual frequencies, and in this case,∂φy(ω)
∂www

can be decomposed as

∂φy(ω)

∂www
≈ ΦT(φφφ u(ω),φφφd(ω))

∂ΦC(www,φφφ r(ω),φφφ y(ω))

∂www

.

Therefore, in LTI systems, it is straightforward to
rewrite (18) to the format with respect to the finite frequency
setΩ as

∂J(www)

∂www
≈

2
N

φφφ∗
y|ΩΦQ|ΩΦT |Ω

∂ΦC(www,φφφ r ,φφφy)

∂www
|Ω (21)

In this case, the advantage of gradient estimate in the fre-
quency domain is explicit: while the problem in the time
domain is to solveN sub-problems for estimating∂y(t)

∂www ,t =
0, . . . ,N − 1, the problem in the frequency domain is to

solve n sub-problems of estimation of
∂φy|ωi

∂www , i = 0, . . . ,n.
Therefore, the gradient computation can be greatly simpli-
fied whenN >> n.

4 Iterative Tuning in the Frequency Domain

In this section a new iterative tuning method is developed for
linear MIMO ANVC problems with periodic disturbances.

4.1 Tuning a MIMO system in the frequency domain

In (21), the key to approximating∂J(www)
∂w is to estimate the

derivative matrixΦT |Ω, which has((ny · nu) · n) unknown
variables in LTI case.

In LTI systems the Frequency Response Function (FRF) ma-
trix is independent of the frequencyω . To ease the descrip-
tion, the single frequency FRF ofΦT , i.e., ΦT |ω ), is used
in the following discussion, and the extension to all relevant
frequencies is straightforward. Recalling (16), ifΦG′ can be
estimated,ΦT ′ can also be estimated sinceH is known:

Φ̂T |ω = (I − Φ̂G|ω ΦH|ω )−1Φ̂G|ω ∈ C
(ny·nu) (22)

where hatŝ∗ are used for estimates.

Applying two linear controllers{F(wwwi
F),H(wwwi

H)} and
{F(wwwj

F),H(wwwj
H)} to the linear system in Fig. 1, the control

action, reference signal and output areuuui
u f anduuuj

u f , uuui
uh and

uuu j
uh, rrr i andrrr j , yyyi andyyy j , respectively. Note that the under-

lying φ i
r andφ j

r are required to keep identical phases. The
output increment is approximated by

∆φφφ{i, j}
y (ω) ≈ ΦG|ω∆φφφ{i, j}

u (ω), (23)

where ∆φφφ {i, j}
y (ω) := φφφ i

y(ω) − φφφ j
y(ω) and ∆φφφ{i, j}

u (ω) :=

φφφ i
u(ω)− φφφ j

u(ω). While ΦG|ω has (ny · nu) unknown vari-
ables, (23) givesny equations. Givennu pairs of difference
data{∆uuu,∆yyy} to set upnu such different equation groups
as (23), the estimatêΦG|ω can be computed from(nu ·ny)

equations in (23). UsinĝΦG|ω the Φ̂T |Ω can be computed
using (22) and∇J(www) can be obtained by (21). There-
fore, the gradient∇J(www) can be estimated through(nu +1)
experiments in the case of LTI systems.

4.2 Implementation of FD-IT

For LTI systems,ΦG|ω is considered stationary and can be
estimated through initial 1+ nu experiments. UsinĝΦG|ω
and H the varyingΦ̂i

T |ω can be computed. To makeNT
gradient tuning steps, the number of experiments isNT +nu.
The general algorithm of FD-IT for one step is described in
Figure 4.

To implement FD-IT, the format of tunable controllersC =
{F,H} can vary as ARMA format, Numerator-Denominator
(N-D) format, Zeros-Poles-Gains (Z-P-K) format and state
equation format, that can be chosen by the designer accord-
ing to individual requirement. FIR controllers are one of the
most convenient controller structures to realize. For simple
ANVC application with few frequencies, especially single
frequency control, an FIR based FD-IT controller can give
satisfying tuning result with a simple controller structure.
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Fig. 4. A possible algorithm of FD-IT for linear systems, where
k is the index of the periodic cycles,µ is an empirical adaptation
gain; the rest of the notations are as defined in the text.

In order to achieve higher cancellation levels and robust
tuning performance, Frequency-Selective-Filters (FSFs)[17]
can be introduced for each important disturbance frequency

Fig. 5. Block diagram in frequency domain of one sub-block in
the FSF controller

Figure 5 shows the typical block diagram of one sub-block
in the FSF based controller withn FSF channels, which
is from i-th input to j-th output. For the finite set ofΩ =
{ω1, . . . ,ωn}, there arenΩ FSF channels.Φm

FSF is FRF of the
band-pass FSF with central frequencyωm serial-connected
with a tunable complex gain modulewji (m), wherem =
1, . . . ,n.

5 Comparison with other control method

In this section, the comparison with iterative tuning methods
in time domain will be discussed.

5.1 Comparison with IFT in the time domain

Time domain (TD) IFT had initially been proposed for in-
stance in [7]. In [16] TD-IFT was introduced to control an

ANVC system and has been tested in laboratory experi-
ments [15]. It has similar physical dynamics to FD-IT, while
TD-IFT can be well explained by FD-IT in the frequency
domain.

To ease the description, the idea of TD-IFT is described here
for the SISO case. With the LTI assumption, the key idea of
TD-IFT is to estimate the derivatives ofy(t) with respect to
wwwH with [7]:

zzzH :=
∂y(t)
∂wwwH

=
∂H(wwwH)

∂wwwH

G
1−GH

y(t) (24)

In [16], the estimation of the derivatives ofy(t) with respect
to wwwF is given by

zzzF :=
∂y(t)
∂wwwF

=
∂F(wwwF)

∂wwwF

G
1−GH

r(t) (25)

Given the average quadratic performance criterionJ as
J(www) := 1

N ∑N−1
t=0 y2(t)

it is straightforward to write

∂J
∂wwwH

=
2
N

N−1

∑
t=0

y(t)zH(t) (26)

and
∂J

∂wwwF
=

2
N

N−1

∑
t=0

y(t)zF(t) (27)

Injectingyyy andrrr to the closed loop system,∂y(t)
∂wwwH

and ∂y(t)
∂wwwF

are the output of close-loop systemG
1−GH followed by post-

filters ∂H(wwwH)
∂wwwH

and ∂F(wwwF )
∂wwwF

, respectively.

In TD-IFT the gradient estimation of the control cost func-
tion can be achieved directly using data from additional ex-
periments.

Comparing (17) with (24) and (25), FD-IT can be considered
as having similar expression to TD-IFT in the frequency
domain. They both describe the physical essence of the chain
rule about the derivative, i.e.,www⇒ uuu⇒ yyy⇒ J.

Despite the similarity of physical dynamics, TD-IFT and
FD-IT is quite different in the implementation. While the
additional signal injections in the extra gradient experiments
are necessary to ‘produce’∂yyy

∂www in TD-IFT, ∂yyy
∂www is ‘estimated’

through the difference ofφφφy andφφφ u in different iterations.
This difference can be produced by either additional signal
injections or the change of the controller parameters. The
direct advantage of FD-IT is that it gives a simpler structure
without the path to inject additional signals.
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Another obvious advantage of FD-IT over TD-IFT is that
FD-IT requires much less iterations to tune than TD-IFT.
As stated in [3,4,8], to estimate the gradient with respect
to all possible parameters,nu ·ny gradient experiments are
necessary for the feedback controllerH andnu ·nr gradient
experiments for feed forward controllerF , which gives (1+
nu ·ny+nu ·nr) experiments in order to compute all gradients
for one tuning step. If the blocks of the controller are not
independently parameterized, a more elaborate procedure is
required [3]. Figure 6 illustrates the relationship between
experiments and tuning iterations for TD-IFT.

Fig. 6. Experiments and iterations in TD-IFT

On the other hand, as shown in Figure 7, FD-IT can perform
NT times tuning steps with onlyNT + nu experiments, for
which TD-IFT requiresNT ·(1+nu·ny+nu·nr) experiments.

Fig. 7. Experiments and iterations in FD-IT

5.2 Comparison with direct IFT methods via spectrum
analysis

In [10] a method, referred to as Direct IFT via Spectrum
Analysis (SA-IFT), has been proposed to compute deriva-
tives of linear quadratic (LQ) cost functionsJ with respect
to the controller parameter vectorwww via spectral analysis of
the closed loop experimental data. In this subsection FD-IT
is compared to SA-IFT.

SA-IFT approaches TD-IFT via the power spectrum analysis
of yyy, i.e., φ̄φφy := φφφ∗

yφφφ y. SA-IFT obtains the derivative ofJ
with respect towww as

∂J
∂wi

= 2φ̄φφyRe(
G

1+GH
∂C
∂wi

) (28)

where Re(·) denotes the real part of complex variables.
There are two unknown items in (28). One is̄φφφ y, which is
‘produced’ by a ‘normal operation’ that the reference signal

rrr is assumed to be kept identically zero. Another isG1+GH ,
which ‘can be obtained via an intrusive experiment per-
formed in the loop by injecting the stationary non-degenerate
signal{rt}’ [10] according the following relationship:

ΦG

1+ ΦGΦH
=

∆φφφy

ΦF ∆φφφ r
. (29)

First of all, although (28) gives almost the same mathemat-
ical expression as (21), (28) has no explicit expression in
the frequency domain to explain∂y(t)

∂wwwC
and the extra gradient

experiments in TD-IFT because the spectrum densityφφφy is
integrated into the power spectrum̄φφφ y in (28). In principle,
FD-IT could be viewed as a more proper frequency domain
explanation of TD-IFT than SA-IFT.

Secondly, SA-IFT is quite different from FD-IT in the im-
plementation. Since the power spectrum̄φφφ y in (28) varies
with the change ofH, in every tuning stepφ̄φφ y should be
‘produced’ by a ‘normal operation’ that is difficult to imple-
ment in real time tuning. Additionally, SA-IFT requires an
extra ‘intrusive experiment’ to yield ΦG

1+ΦGΦH
, which varies

with the tuning ofH. Therefore, SA-IFT always requires
two experiments for one gradient estimation, i.e., ‘normal
operation’ and ‘intrusive experiment’.

6 Simulation

This section illustrates the usefulness of the FD-IT as tested
in simulation using MATLABR©. FIR control structure and
FSF controllers are tested and compared. The robustness
to errors in the frequency estimates of the disturbance are
discussed within this simulation example.

6.1 Simulation platform

The block diagram of the SIMULINKR©-based simulation
is given in Fig. 8. It is a 2-input and 2-output LTI system.
Outportsy1, y2, r1 andr2 denote the data acquiring output
and reference signals. ModulesNy1, Ny2, Nr1 and Nr2
denote the sensor noise in the output and reference paths.
They are assumed as being white noise with variance 1e−6.

Figure 9 illustrates the block diagram of the unknown plant
G.

In Fig. 9, control pathGu and disturbance pathGd are given
by

Gu(q) =





0.1q−8−0.3q−9

1+0.2q−1−0.2q−2
0.01q−6−0.03q−7

1+0.02q−1−0.02q−2

−0.02q−7−0.02q−8

1+0.01q−1−0.01q−2
−0.2q−8−0.3q−9

1+0.1q−1−0.2q−2



 (30)
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Fig. 8. SIMULINK R© block diagram.

Fig. 9. SIMULINK R© block diagram of PlantG.

and

Gd(q) =





0.85q−4

1+0.4q−1 0

0 0.95q−6

1−0.2q−2



 (31)

The sampling frequency is 4kHz. The disturbance signalddd
is a mix of three sine-waves with frequencies of 50Hz, 80Hz
and 100Hz and a white noise signalwt with variance 1e−4,
leading to:

d(t)=
1
3
[sin(100πt)+sin(160π(t−0.091))+sin(200πt)]+wt

(32)

The uncontrolled output is shown in Fig. 10.

The reference signalr(t) is obtained fromd(t) by S:

S(q) =





0.8q−8

1+0.8q−1 0

0 0.5q−10

1+0.9q−1



 (33)
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Fig. 10. Initial output without control.

6.2 Simulation for FIR-FD-IT and FSF-FD-IT

In this subsection two formats of controller structures are
tested in simulation.

One is the FIR controllers (FIR-FD-IT) in which the feed-
back controller is 10-th order and feed-forward controlleris
40-th order. The adaptation gain for the feed-forward con-
troller tuning step isµ f = 0.1 and for feedback controller
tuning it is µh = 0.02.

The second controller format is FSF-FD-IT in which 1st-
order Butterworth bandpass filters are applied in realtime
according to the spectrum ofyyy. The bandwidths of the FSF
are given by the disturbance frequency±10 percent which
also eliminates the unwanted white noise in the tuning. The
step size (adaptation gain) for feed-forward controller tuning
is µ f = 8.0 and the step size for feedback controller tuning
is µh = 2.0.

The signal period is defined asN = 800. The length of tuning
is set to 50 periods. All the initial controllers are set to
zero. The weighting matrix isQ= diag([1.00.8]). The initial
performance criterion without control is 0.2443. In order to
perform initial estimate ofG, only the sub-block fromrrr1 to
uuuf 1 in H is changed to 0.2 in the 2nd iteration, and only the
sub-block fromrrr2 to uuuf 2 in H is changed to 0.2 in the 3rd
iteration.

Fig. 11 is the update of performance in FIR-FD-IT: The 2nd
and 3rd iteration are manual updates, which giveJ(2) =
0.2432 andJ(2) = 0.2391. After 50 iterations, the final per-
formance isJ = 0.0371 with 8.2dB cancellation. The final
output with control is shown in Fig.12.

Fig. 13 displays the performance updates in FSF-FD-IT. Af-
ter 50 iterations, the final performance isJ = 0.0026 with
19.8dB cancellation. The final output with control is shown
in Figure14.
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Fig. 11. Performance update in FIR-FD-IT .
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Fig. 12. Final output of FIR-FD-IT .
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Fig. 13. Performance update in FSF-FD-IT .
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Fig. 14. Final output of FSF-FD-IT .

In comparison with FIR-FD-IT, FSF-FD-IT resulted in better
tuning performance than FIR-FD-IT. The reason is that in
FIR-FD-IT, given nF -th order FIR forF and nH -th order
FIR for H, the tuning is performed in thenF -dimensional
space forF andnH -dimension space forH. In FSF-FD-IT,
FSF can split the whole solution space into independentnω
sub-spaces since the FRF is independent in the LTI system.
Each sub-space is 2-dimensional for the norm and phase of
the complex gain. Therefore, the tuning is more effective in
FSF-FD-IT.

6.3 Simulation for robustness against the errors in N

While the error of the frequency estimate from the finite
time data is inevitable, the robustness against an error inN
is important for FD-IT applications. To test the robustness
against error in the frequency estimate, a series of simu-
lations based on FSF-FD-IT were performed with varying
data lengthN in (3).

In the above simulation the actual common period isN =
800. Given some estimation errorNe this period becomes
N̂ = N + Ne. A series of simulation experiments are per-
formed by changinĝN from 702 to 808, so that there are 4
experiments for eacĥN. In the test,µ f = 4.0 andµ f = 1.0.

Fig. 15 gives the change of the average final performance
after 40 iterations when the estimated common periodN̂
changes from 795 to 805. According to above simulation
results, FSF-FD-IT provides a fair amount of robustness to
errors in disturbance period.

7 Conclusions

A frequency domain iterative feedback tuning approach has
been presented that uses an innovative way of approximat-
ing gradient estimates of the controller cost function. The
method is ideally suitable for ANVC applications with pe-
riodic disturbances. First gradient approximation has been
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Fig. 15. Change of final performance with respect toN̂

proposed in the frequency domain and an iterative tuning
method has been developed for linear systems. Compari-
son has been made between the presented frequency domain
and other published iterative tuning methods that has shown
favourable properties of the new method proposed in terms
of reduced number of experiments. The effectiveness, flexi-
bility and robustness of the new method has been shown in
simulation examples.

Future work is concerned with theoretical robustness analy-
sis in the frequency domain. Extension of this general frame-
work to other control application besides ANVC also re-
quires further research.
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