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Abstract

A new gradient estimation method is proposed that reliesfiiciest computation of the negative gradient of the averdagear quadratic
cost function completely in the frequency domain. Basedherproposed theory, a new iterative tuning method is deeeldp solve linear
multi-input multi-output Active Noise/Vibration Contrgiroblems. Compared with published iterative tuning methdde new method
has the added advantage that the number of experimentspatiah is reduced to one. Combined with the other advarmégelatively
simple controller structures, the method is suitable fal-tene implementation as an adaptive controller.

Key words: Self-tuning control; Feedback/feedforward control; &tére method; Active noise/vibration control; Frequenonins;
MIMO systems.

1 Introduction to a variety of controller structures, including finite-ioipe-
response (FIR) model based and frequency-selective-filter

lterative feedback tuning (IFT) has been the subject of in- (FSF) based controllers. One initial experiment is reglire
tensive research effort during the past decade [3,4,a8s5]. | for each input channel of the unknown plant to initialize the
advantage is that it does not need detailed plant modelling,gradient estimate. Later tuning takes place simultangousl
assuming that a stable reasonably functioning contradler i for all inputs while the iterative feedback/feedforward-u
available to start with. Recent efforts were aimed at improv INg in earlier publications [4] had to perform multiple ex-
ing gradient estimation [9,8] of the control performande cr ~ Periments for feedback and feedforward controllers.
terion and improving stability robustness without modli
[23]. The proposed gradient estimation method is applicable to
general control problems, including nonlinear ones, as the
This paper extends work in [12] to propose a new gradient es-gradient approximation approach is valid for nonlinear sys
timation method in the frequency domain to deal with adap- tems. Despite this generality, the proposed tuning method
tive control problems in Multi-Input Multi-Output (MIMO)  is specialized to the LTI case with periodic signals for ease
systems, which relies on the analysis of frequency responseof implementation as the general case is computationally
of the system dynamics and spectrum of signals. With local intensive. The most important target area of its applicatio
linearization analysis techniques in the frequency domain is Active Noise and Vibration Control (ANVC) problems
the key to this solution is the investigation of the mapping which often need to attenuate the effect of periodic distur-
from the change of control parameters to the change of out-bances. Many methods have been developed for ANVC dur-
put spectra. ing the past twenty years. There are design approaches that
are model-based, e.dH. control [2], unfalsification con-
Using this technique a new Iterative Tuning (IT) method in trol [24] and correlation based IFT [11]. There are many
the Frequency domain (FD), i.e., FD-IT, is developed for model-free approaches as well. One of the most widely used
linear MIMO control problems with periodic signals. Itisa and well understood methods is the filtered-x LMS algo-
data-driven approach which only requires partial modgllin  rithm [18], which can be made adaptive to track plant dy-
according to the discrete spectrum of signals. Itis appleea  namics with slow time variance. Frequency selective filter-
based iterative feedback/feedforward tuning (FSF-IFT-co
* An early version of this paper was presented at ALCOSP'07. trol [16] has also been successfully used for periodic dis-

Corresponding author S. M. Veres. turbance cancelation. There are very few effective methods
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s. mver es@ot on. ac. uk (Sandor M. Veres). ANVC. This paper suggests a method of tuning feedback

Preprint submitted to Automatica 15 January 2010



and feed-forward controllers simultaneously.

Cwr,y): F:u; = F(wg,r)
The remainder of this paper is organized as follows. In Sec- . 2
tion 2, the problem of gradient-based tuning control for H:ith = H(W,y) 2)
ANVC is shortly reviewed in the time domain and refor- u = {us,uy}
mulated in the frequency domain. In Section 3 the gradient \ nioh can be tuned by adjusting their parameter vectors in
estimation method is proposed and the new iterative tuning . — (We, Wiy} € R
method (FD-IT) is developed in Section 4. Section 5 com- F, '
pares FD-IT to some other iterative tuning methods in the As usual in ANVC. it is assumed that the measurable
time domain. In Section 6 a series of MIMO simulation ex- !

) : disturbance-reference signale R™ is correlated to dis-
amples are presented to compare two implementations ofy \,onced “and'r is obtained through an unknown but
FD-IT and the robustness of the algorithm. Finally conclu-

sions are drawn in the last section time-invariant dynamic$ from d. While the output signal
' y(t) is measurable and recordable, the disturbance sajnal
cannot be measured directly.
2 Gradient based tuning for ANVC In the case of a periodic disturbanggit is always assumed
) ) ) _ ) that the steady outpwt is also periodic. If the system has
In this section, the ANVC problem is addressed in the time steady outpuy with periodN then the control performance

domain and frequency domain in general, fundamental def- ojterion is defined as the average quadratic performance of
initions and the performance function are given and the 4 lengthN output sequence:

essence of iterative tuning is formulated in the context of
the ANVC problem.

1 N-—1 -
2.1 Problem setting in the time domain JW) = N t;)y (HQy() (3)
whereQ is a priori specified weighting matrix.
Figure 1 provides a schematic description of the control
system considered. The objective of tuning for ANVC is to adjust the controller

parametersve andwy to minimize the performance crite-
rion (3).

A\ 4

v p v In general, the problem of minimizinlwr, Wy ) is not nec-

S essarily convex. The tuning method often finds a suboptimal
A solution at a local minimum. This suboptimal solution of the
g problem is obtained by finding® = {wW ,w, } that satisfies

F(W’F) =P
” [ 2 CI(wg, wiy) =0 4)

H(wn)

On the topic of how to solve the global optimization prob-
lem, there are a number of papers available [21,20,22,1] as
referenced.

v

4

Fig. 1. Block diagram of the linear feedforward/feedback \AIN
system.

2.2 Problem setting in the frequency domain
The measured output, which is affected by the disturbance

d € R™, is represented by € R". Gis the unknown plant | this subsection the ANVC problem as in Fig.1 and with
dynamics with mp_utd andu and produces the vector output -t function (3) will be represented in the frequency do-
y. It can be described as main.

Considering the MIMO system described by Fig.1, if there is
y=0G(d,u) 1) N-length output data se¥ := {y(0);...;y(N—1)},y(t) :=
{y1(t),...,yny(t)} € R, this can be detailed with the out-
The control signals from the feedforward controlferand put F:hannels ag = {Yl""’y”y}’yi = (0 wi(N =
feedback controlled are denoted by € R™ anduy, € R™, D}i=1,...,n,.
respectively. The tunable control syst&bncomprises the
parameterized feedforward controllErand the feedback  Denoting byQn = {wm = mZW”, m=0,...,N—1} the set of
controllerH: uniformly sampled discrete frequencies féflength data,



= {g(w);...; @ (an-1)} € CV will be the notation for
the D|screte Fourler Transform (DFT), that i is a windowless
estimate of the discrete spectrumypfi.e. @}, = DFT(y;).
Furthermore, the discrete spectrum ®f is presented as
o ={ay...; @'} € C™N)'L There are some similar fur-
ther notations such agy, @,, @,; and @,

In the frequency domain, the pla@tis described as a map-
ping: {@y, @} € CraN+neN) @ e CIYN):

(py:q)G(‘pda‘pu):q)G(‘pdv‘pEj_v--'a(nTu)a )

and the controller syster@ is described as a mapping:
{w, o, q)y} e CowtneN+nyN) 0, c C(yN)-

Ok @y = Pr(Wr, @)
Py @yy = PH(WH, @)
@, = { Qs Punt

®c (Wv @, ¢y) :
(6)

According to Parseval’'s Theorem [19], it is straightfordiar
to rewrite (3) in the frequency domain format as

1N1

3= 3,

wheredq is the representation ¢fin the frequency domain.

1 %
)Py () = N2 ¢yq)Q Py (1)

Similarly, the optimization problem can be written as:

min : J(w) in (7),
Eqn. (5)
Eqn. (6)

(8)

st.

3.1 Gradient estimation in full-bandwidth

In a gradient-based algorithm the continuous differetilitsto
condition is always necessary. Similarly, in iterativeitgn

in the frequency domain, it is also assumed that ® and

@y are continuously differentiable functions with respect
to their input spectra and tunable parameters. In order to
discover the relationship between control performance and
control parameters, local linearization can be perfornmetl a
computed using infinitesimal increments.

Considering the ANVC system in Fig. 1, the local lineari-
sation of®dg can be described as

A ~
W™ d0s 0.} | ng,

As the @y is fixed for stationary disturbances, only the case
of A@y = 0 is needed to be discussed. To simplify the pre-
sentation, some of the most frequently used notations are
defined as

P = ot € CHYNN), (10)
u
and similarly
Py = ‘puh eC (NuhN#)-(ny-N) (11)
a¢y

Without losing generality, giverp,, @, and ®g, the in-
finitesimal increment format of dynam|6£|n the frequency
domain with respect t&@, can be written as

Ay ~ O (At +A]) (12)

For the tunable controlle®r (Wg, @,) and @y (Wh, @) in
(6), the following notations are going to be used:

Note that the system as Fig.1 is represented in the frequency
domain as general mappings between two multi-dimensional
spaces, and the cost function (3) is also represented in the

frequency domain as multiplication of discrete spectrasTh 0@y N 0@,
representation is suitable to describe general systerglinc r = e © CuN)Twe i - — 0W“ € CMuN) M
ing linear or nonlinear ones. F H (13)

Considering small increments caused by the small update of
parametew, i.e., W — W + AW andwy — Wy + AWy,

it is straightforward to write

In this section, a new gradient estimation theory is progpse
from a frequency domain aspect, which is based on the re-
formatted ANVC problem as presented above.

3 Gradient estimation in the frequency domain

AQy ~ O (PFAWE + D AW + DL AQ)  (14)



can be both estimated. The final point of to gradient estima-
A e ~ tion is the approximate computation @, at the relevant
/ D \ frequencies that will add an initial experiment to our proce
dure.

44, Remark 1 As mentioned at the beginning of this section, the
above deduction is completely based on the representation
in the frequency domain without considering time domain.
But the conclusions are similar to IFT results in the time
domain [3], which may point to similar conclusions in other
integral transform domains, i.e., wavelet transform domai

] Dy | | in a future research.

4"

Remark 2 Note that the above deduction is based on a

local linearization analysis with incremental equatior2j1
Fig. 2. Block diagram of small increment in frequency domain  If nonlinear G and C have continuous derivative matrices in

the frequency domain (i.eBg/, ©c), then the derivation in
Using notations thah@}j; ~ ®F AWr, Ay, ~ ®YY, Awy and the nonlinear case is straightforward as discussed in [13].

A(pyuh ~ @y Ay, (14) can be graphically described by Fig. 2.

The input/output increment mapping 4sp, — A@,. The
physical increment in the path of the feedback contrdler
consists of two partsA@)}, caused by the change of con-
troller parameteAw, andAepyuh caused by the change of
outputAg,.

Considering that the parf@, is only caused by the
Aw, if (I — dgdy )~ exists, the input/output mapping
{A@];, Ay} — A@y can be rewritten from (14) as

A@, ~ (| — gDy ) 1y (AQY; + L@ 15
k! ( & Pr) o (A Pun) (19) Fig. 3. Block diagram of a servo control problem.

By introducing the notation Remark 3 Although Fig.1 illustrates ANVC, it can be used
to present common control problems with some slight mod-
P = (| — Py D) Ty € CyN-(uN) (16) ifications. As shown in Fig. 3, a servo control problem can

be illustrated with a similar format of ANVC, wherd''dnd

the key result turns out to be that the derivativegyfwith y is replaced byrrand e in Fig. 3, respectively. In [14], -
respect to controller parametens, andwg can be approx- the proposed idea has been adopted to implement a tracking
imated as control problem. Therefore, the proposed gradient estamat

as (18) is valid in theory for most of general control prob-
lems with a periodic reference signal.
o,

_— = / / _— = / / 17 i i i ini
Iwe O/ P, Wy b/ Py (17) 3.2 Gradient estimate in finite frequency set

In the subsection above (18) gives a full-bandwidth format
in the frequency domain including the full-band frapg to
w\-1. However, the computation of the performance gradi-

ent can be greatly simplified in LTI systems with periodic
disturbances that cover only part of the full-bandwidth.

The derivative of performancé with respect to controller
parameters can be written in the frequency domain as

aJ(w 2 . 0D
W)~ 2 ooy 2o (18) o | .
ow N ow Note that in (18)¢{, can be considered as a weighting se-

guence when it is rewritten as
Generally, the outpwt, the controlleH andF are all known,
@, and

D oIw) 2" o@y(an)
d—wc =[P/, D] ow N2 n;]%(ah)qb(ah) ow (19)



Considering periodic outpwyt with common periodN and
finite frequency set

Q::{("_bv"'aa_)n}CQN

@, can be substituted withp|o, and the other elements
in @, are 0. Therefore, in order to g@# in (18), only

the elements in‘;%y with respect toQ are required to be
included, i.e.,

Hdw) 2 " op(w)
2 (@) Po(w) (20)
ow N2 ng(R/ ow
In this case only the partial dynamu{SDT/ }|Q is re-

quired to be estimated according to the frequency domain

characteristics of. (20) provides a data-driven approach to
tune the controller that only requires partial modelling ac

cording to the discrete spectrum of signals{dﬁT/%—%HQ

has some easy presentation then the computatiail O#)
can be simplified.

Fortunately, in LTI systems there is a very simple presenta-
tion in the frequency domain: the frequency response is in-

dependentfor individual frequencies, and in this c&%ﬁ
can be decomposed as

aCDC(W7 P, (OJ), ¢y(w))
ow

0y (®) _
oW

1 (@y(w), @g(w))

Therefore, in LTl systems, it is straightforward to
rewrite (18) to the format with respect to the finite frequenc
setQ as

2J(w)

ow

chC (Wa ¢r ) ¢y)

oW o (21)

2 .
~ N Ple®Pola®rlo

In this case, the advantage of gradient estimate in the fre-
guency domain is explicit: while the problem in the time

domain is to solveN sub-problems for estimatingﬁ t=
0,...,N—1, the problem in the frequency domain is to

solve n sub-problems of estimation 0'3‘(”/—‘“‘ i=0,.
Therefore, the gradient computation can be greatly S|mpI|
fied whenN >> n.

4 Iterative Tuning in the Frequency Domain

In this section a new iterative tuning method is developed fo
linear MIMO ANVC problems with periodic disturbances.

4.1 Tuning a MIMO system in the frequency domain

In (21), the key to approximatiné# is to estimate the
derivative matrix®t|q, which has((ny - ny) - n) unknown
variables in LTI case.

In LTI systems the Frequency Response Function (FRF) ma-
trix is independent of the frequency. To ease the descrip-
tion, the single frequency FRF dfr, i.e., ®r]|y), is used

in the following discussion, and the extension to all reféva
frequencies is straightforward. Recalling (16)Pi§ can be
estimated®+, can also be estimated sinekis known:

Prlp = (1 - Pg,Ph|,) P, €CMMW  (22)
where hats: are used for estimates.
Apply_ing tWQ linear controllers {F(W:),H(w,)} and

{F(wt),H(W},)} to the linear system in Fig. 1, the control
action, reference signal and output afg anduuf, u, and

ulJJh, r' andr/, y‘ andy!, respectively. Note that the under-

lying ¢ and ¢’ are required to keep identical phases. The
output increment is approximated by

O |0 (w),

A (w) ~ (23)

where A} (w) = @ (w) — @l(w) and A (w) =
@y (w) — @) (w). While dg|,, has(ny-ny) unknown vari-
ables, (23) givesy equations. Givemy pairs of difference
data{Au,Ay} to set upn, such different equation groups
as (23), the estimat®g|,, can be computed frorn, - ny)
equations in (23). Usin@g|., the ®r|q can be computed
using (22) andJJ(w) can be obtained by (21). There-
fore, the gradienflJ(w) can be estimated through, + 1)
experiments in the case of LTI systems.

4.2 Implementation of FD-IT

For LTI systems®g|, is considered stationary and can be
estimated through initial 4 n, experiments. UsngG|w
andH the varying®/ |, can be computed. To maker
gradient tuning steps, the number of experimenhkris- ng.

The general algorithm of FD-IT for one step is described in
Figure 4.

To implement FD-IT, the format of tunable controll€s=
{F,H} can vary as ARMA format, Numerator-Denominator
(N-D) format, Zeros-Poles-Gains (Z-P-K) format and state
equation format, that can be chosen by the designer accord-
ing to individual requirement. FIR controllers are one df th
most convenient controller structures to realize. For &&mp
ANVC application with few frequencies, especially single
frequency control, an FIR based FD-IT controller can give
satisfying tuning result with a simple controller struur



| k=0, set {wsl, ws}

)
hJ

Experiment, recordy. r. u; DFT to get g%, @k bt |

Compute Ag,, Ag,, estimate Oglo

l

| Estimate ®jpand 277 |
aw

]

[
Wil =k 3%
3w

Fig. 4. A possible algorithm of FD-IT for linear systems, whe
k is the index of the periodic cycleg, is an empirical adaptation
gain; the rest of the notations are as defined in the text.

In order to achieve higher cancellation levels and robust

tuning performance, Frequency-Selective-Filters (FBF$)

can be introduced for each important disturbance frequency

Z
Ci(wi( 1))
/m
"

A 4

- -»

.l
Ci(wi(n))
/

Fig. 5. Block diagram in frequency domain of one sub-block in
the FSF controller
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Figure 5 shows the typical block diagram of one sub-block
in the FSF based controller with FSF channels, which
is from i-th input to j-th output. For the finite set d =
{w1,...,an}, there areg FSF channelsb's. is FRF of the
band-pass FSF with central frequenoy serial-connected
with a tunable complex gain module(m), wherem =
1,....n.

5 Comparison with other control method

In this section, the comparison with iterative tuning meiho
in time domain will be discussed.

5.1 Comparison with IFT in the time domain

Time domain (TD) IFT had initially been proposed for in-
stance in [7]. In [16] TD-IFT was introduced to control an

ANVC system and has been tested in laboratory experi-
ments [15]. It has similar physical dynamics to FD-IT, while
TD-IFT can be well explained by FD-IT in the frequency
domain.

To ease the description, the idea of TD-IFT is described here
for the SISO case. With the LTI assumption, the key idea of
TD-IFT is to estimate the derivatives gft) with respect to

wy with [7]:

G

ay(t)
- 1onYV

OWH

OH(wy)

W, (24)

Zy =

In [16], the estimation of the derivatives yft) with respect
to Wg is given by

G

ay(t)
= ion' ¥

OWE

JoF (WF )
OWE

Zr = (25)

Given the average guadratic performance criterdbmas

‘J( - Nzt 01y2

it is straightforward to write

2 N-1
s = N 2.y (26)
and
2 N-1 (27)

TF PR

Injectingy andr to the closed loop systengf and 24

(3 Wg

are the output of close-loop systepﬂ-e— followed by post-
filters dH(WH) and aF(WF) , respectively.

In TD-IFT the gradient estimation of the control cost func-
tion can be achieved directly using data from additional ex-
periments.

Comparing (17) with (24) and (25), FD-IT can be considered
as having similar expression to TD-IFT in the frequency
domain. They both describe the physical essence of the chain
rule about the derivative, i.ew=u=y=-J.

Despite the similarity of physical dynamics, TD-IFT and
FD-IT is quite different in the implementation. While the
additional signal injections in the extra gradient expetins

are necessary to produc% in TD-IFT, % s ‘estimated’
through the difference of, and @, in dlﬁerent iterations.
This difference can be produced by either additional signal
injections or the change of the controller parameters. The
direct advantage of FD-IT is that it gives a simpler struetur
without the path to inject additional signals.



Another obvious advantage of FD-IT over TD-IFT is that r is assumed to be kept identically zero. Anotheﬁ%—H,
FD-IT requires much less iterations to tune than TD-IFT. which ‘can be obtained via an intrusive experiment per-
As stated in [3,4,8], to estimate the gradient with respect formedin the loop by injecting the stationary non-degeteera

to all possible parameters, - ny gradient experiments are
necessary for the feedback controll¢randny - n, gradient
experiments for feed forward controller which gives (&
Ny-Ny+ny-ny) experiments in order to compute all gradients
for one tuning step. If the blocks of the controller are not

independently parameterized, a more elaborate proceslure i

required [3]. Figure 6 illustrates the relationship betwee
experiments and tuning iterations for TD-IFT.

[Ny -1)x (1+ Nr x
n, Xny+m, Xn I th (1+n, X nytn, Xn)th

Experiment Experiment

< Ist Tuning > < Nyth Tuning ——»|

i (I+n, X n,

. +n, ¥n,)th
Experiment ]

Experiment

oo

[ Np x(Utn,Xn,4n,xn,) Tunings ———»

Fig. 6. Experiments and iterations in TD-IFT

On the other hand, as shown in Figure 7, FD-IT can perform
Nr times tuning steps with onli{t + ny experiments, for
which TD-IFT requiresNrt - (14ny-ny+ny- Ny ) experiments.

1st (l+n,)th  (2+n,)th

Experiment Experunent

Npth

Experument

(N7t n,)th
Experiment

T

l—— Nqth Tuning ——»

Experiment

[e—— 1st Tuning ——»|

2nd Tuning ———»

A

(Nt + 1) Tunings

Fig. 7. Experiments and iterations in FD-IT

5.2 Comparison with direct IFT methods via spectrum
analysis

In [10] a method, referred to as Direct IFT via Spectrum
Analysis (SA-IFT), has been proposed to compute deriva-
tives of linear quadratic (LQ) cost functiodswith respect

to the controller parameter vectawvia spectral analysis of
the closed loop experimental data. In this subsection FD-IT
is compared to SA-IFT.

SA-IFT approaches TD-IFT via the power spectrum analysis
of y, i.e., @, == @ ¢,. SA-IFT obtains the derivative of
with respect tow as

aJ — G ocC
—— =2 - =
ow 2P T GHaw
where Re(-) denotes the real part of complex variables.
There are two unknown items in (28). Onegs, which is
‘produced’ by a ‘normal operation’ that the reference slgna

(28)

signal{r¢}’ [10] according the following relationship:

CDG _ A(py
1+ Psdy CD|:A¢I. ’

(29)

First of all, although (28) gives almost the same mathemat-
ical expression as (21), (28) has no explicit expression in

the frequency domain to expla%é(n%) and the extra gradient
experiments in TD-IFT because the spectrum dengjtys
integrated into the power spectrugy in (28). In principle,

FD-IT could be viewed as a more proper frequency domain
explanation of TD-IFT than SA-IFT.

Secondly, SA-IFT is quite different from FD-IT in the im-
plementation. Since the power spectrgmin (28) varies

with the change oH, in every tuning stepp, should be
‘produced’ by a ‘normal operation’ that is dif?i,cult toimple
ment in real time tuning. Additionally, SA-IFT requires an
extra ‘intrusive experiment’ to yie@jﬁ—&, which varies
with the tuning ofH. Therefore, SA-IFT always requires
two experiments for one gradient estimation, i.e., ‘normal
operation’ and ‘intrusive experiment’.

6 Simulation

This section illustrates the usefulness of the FD-IT atest

in simulation using MATLABY. FIR control structure and
FSF controllers are tested and compared. The robustness
to errors in the frequency estimates of the disturbance are
discussed within this simulation example.

6.1 Simulation platform

The block diagram of the SIMULINR®-based simulation

is given in Fig. 8. It is a 2-input and 2-output LTI system.
Outportsyl, y2, r1 andr2 denote the data acquiring output
and reference signals. Modulésyl, Ny2, Nrl and Nr2
denote the sensor noise in the output and reference paths.
They are assumed as being white noise with variaece6l

Figure 9 illustrates the block diagram of the unknown plant
G.

In Fig. 9, control patiG, and disturbance patBy are given
by

0.1g8-0.3q° 0.019-5-0.03q7
_ | 14029 1-0292 1+0.029-1-0.02q 2
Gu(a) = -0.0297-00298 -02q8-03q° (30)

1+0.01g-1-0.019-2 1+0.1g71-0.29°2
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Fig. 8. SIMULINK® block diagram.
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Fig. 9. SIMULINK® block diagram of PlanG.

and

0.8504 0
—1
Ga(@) = | " qosye (31)
1-0.292

The sampling frequency isk#iz. The disturbance signdl

is a mix of three sine-waves with frequencies of 50Hz, 80Hz
and 100Hz and a white noise signalwith variance &— 4,
leading to:

d(t) = %[sin(lOOnt) +sin(1607T(t —0.091)) + sin(2007t )] + w

(32)
The uncontrolled output is shown in Fig. 10.
The reference signalt) is obtained frond(t) by S
0.8q~8 0
_ | 1+08q7T
S(g) = 0 0.5q-10 (33)
14+0.9q1

. . .
0.4 0.6 0.8 1
Time,s

.
0 0.2

. . .
0.4 0.6 0.8 1
Time,s

1
0 0.2

Fig. 10. Initial output without control.

6.2 Simulation for FIR-FD-IT and FSF-FD-IT

In this subsection two formats of controller structures are
tested in simulation.

One is the FIR controllers (FIR-FD-IT) in which the feed-
back controller is 10-th order and feed-forward contraoler
40-th order. The adaptation gain for the feed-forward con-
troller tuning step isus = 0.1 and for feedback controller
tuning it is up, = 0.02.

The second controller format is FSF-FD-IT in which 1st-
order Butterworth bandpass filters are applied in realtime
according to the spectrum gf The bandwidths of the FSF
are given by the disturbance frequentf0 percent which
also eliminates the unwanted white noise in the tuning. The
step size (adaptation gain) for feed-forward controllairg

is us = 8.0 and the step size for feedback controller tuning
is up = 2.0.

The signal period is defined k= 800. The length of tuning
is set to 50 periods. All the initial controllers are set to
zero. The weighting matrix iQ = diag([1.00.8]). The initial
performance criterion without control isB143. In order to
perform initial estimate o6, only the sub-block fronm; to
Us1 in H is changed to @ in the 2nd iteration, and only the
sub-block fromr, to Uz, in H is changed to @ in the 3rd
iteration.

Fig. 11 is the update of performance in FIR-FD-IT: The 2nd
and 3rd iteration are manual updates, which giv@) =
0.2432 and)(2) = 0.2391. After 50 iterations, the final per-
formance isJ = 0.0371 with 82dB cancellation. The final
output with control is shown in Fig.12.

Fig. 13 displays the performance updates in FSF-FD-IT. Af-
ter 50 iterations, the final performanceJs= 0.0026 with
19.8dB cancellation. The final output with control is shown
in Figurel4.
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Fig. 14. Final output of FSF-FD-IT .

In comparison with FIR-FD-IT, FSF-FD-IT resulted in better
tuning performance than FIR-FD-IT. The reason is that in
FIR-FD-IT, givenng-th order FIR forF and ny-th order

FIR for H, the tuning is performed in theg-dimensional
space for- andny-dimension space fad. In FSF-FD-IT,

FSF can split the whole solution space into independgnt
sub-spaces since the FRF is independent in the LTI system.
Each sub-space is 2-dimensional for the norm and phase of
the complex gain. Therefore, the tuning is more effective in
FSF-FD-IT.

6.3 Simulation for robustness against the errors in N

While the error of the frequency estimate from the finite
time data is inevitable, the robustness against an errbr in
is important for FD-IT applications. To test the robustness
against error in the frequency estimate, a series of simu-
lations based on FSF-FD-IT were performed with varying
data lengthN in (3).

In the above simulation the actual common periodNis-
800. Given some estimation errbk this period becomes
N = N+ Ne. A series of simulation experiments are per-
formed by changing\ from 702 to 808, so that there are 4
experiments for eacN. In the testus = 4.0 andus = 1.0.

Fig. 15 gives the change of the average final performance
after 40 iterations when the estimated common pefbd
changes from 795 to 805. According to above simulation
results, FSF-FD-IT provides a fair amount of robustness to
errors in disturbance period.

7 Conclusions

A frequency domain iterative feedback tuning approach has
been presented that uses an innovative way of approximat-
ing gradient estimates of the controller cost function. The
method is ideally suitable for ANVC applications with pe-
riodic disturbances. First gradient approximation hasbee
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proposed in the frequency domain and an iterative tuning
method has been developed for linear systems. Compari-
son has been made between the presented frequency domain
and other published iterative tuning methods that has shown
favourable properties of the new method proposed in terms
of reduced number of experiments. The effectiveness, flexi-
bility and robustness of the new method has been shown in

simulation examples.

Future work is concerned with theoretical robustness analy [

sis in the frequency domain. Extension of this general frame
work to other control application besides ANVC also re-
quires further research.
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