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Abstract

The pseudospectrum of a linear time-invariant system is the set in the complex plane consisting of all the roots of the
characteristic equation when the system matrices are subjected to all possible perturbations with a given upper bound. The
pseudospectral abscissa is defined as the maximum real part of the characteristic roots in the pseudospectrum and, therefore, it
is for instance important from a robust stability point of view. In this paper we present an accurate method for the computation
of the pseudospectral abscissa of retarded delay differential equations with discrete pointwise delays. Our approach is based on
the connections between the pseudospectrum and the level sets of an appropriately defined complex function. The computation
is done in two steps. In the prediction step, an approximation of the pseudospectral abscissa is obtained based on a rational
approximation of the characteristic matrix and the application of a bisection algorithm. Each step in this bisection algorithm
relies on checking the presence of the imaginary axis eigenvalues of a complex matrix, similar to the delay free case. In the
corrector step, the approximate pseudospectral abscissa is corrected to any given accuracy, by solving a set of nonlinear
equations that characterize extreme points in the pseudospectrum contours.

Key words: pseudospectrum, pseudospectral abscissa, computational methods, time-delay, delay equations, robustness,
stability.

1 Introduction

The pseudospectrum provides information about the
characteristic roots of a system when the system ma-
trices in the characteristic equation are subject to per-
turbations. It is closely related to the robust stability
of a system and to the distance to instability, [18]. We
consider the time-delay system

ẋ(t) =

m
∑

i=0

Aix(t− τi), (1)

where Ai ∈ Rn×n, τ0 = 0 τi ∈ R
+
0 for i = 1, . . . ,m

and define τmax as the maximum delay of the time-delay
system,

τmax := max{τ0, . . . , τm}.

Note that this type of time-delay system is of retarded
type [16].

The characteristic equation of the time-delay system (1)

is:
detF (λ) = 0 (2)

where

F (λ) := λIn −

(

m
∑

i=0

Aie
−λτi

)

. (3)

The characteristic equation (2) has infinitely many roots
extending to the complex left half-plane, yet a finite
number of roots in any right half plane [16]. Therefore
the maximum of the real parts of the characteristic roots
is well defined, and called the spectral abscissa

α(F ) := max
λ∈C

{ℜ(λ) : detF (λ) = 0}. (4)

The ǫ-pseudospectrum of the function F is the collection
of characteristic roots of (1) when the system matrices
are subject to all possible perturbations with a given
upper bound determined by ǫ > 0 and individual weights
on the system matrices. More precisely, it is defined as
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Λǫ(F ) :=

{

λ ∈ C : det

(

λIn −

(

m
∑

i=0

(Ai + δAi)e
−λτi

))

= 0

for some (δA0, . . . , δAm) ∈ C
n×n×(m+1)

satisfying σmax(δAi) ≤
ǫ

wi

for i=0,. . . ,m

}

. (5)

Here the numbers wi ∈ R
+
0 ∪ {∞}, i = 0, . . . ,m, are

weights on the perturbations of the system matrices Ai

which can be chosen a priori. A weight equal to infin-
ity means that no perturbations on the corresponding
matrix are assumed. Note the ǫ-pseudospectrum of the
function F depends on ǫ and the chosen weights on sys-
tem matrices wi for i = 0, . . . ,m.

The maximum real part in the pseudospectrum is the
pseudospectral abscissa which is defined as

αǫ(F ) = sup
λ∈C

{ℜ(λ) : λ ∈ Λǫ(F )}. (6)

The pseudospectral abscissa is a bound characterizing
the stability robustness of the system. All characteristic
roots of the time-delay system (2) are on the left complex
half-plane for all possible perturbations as in (5) if and
only if αǫ < 0, therefore, the system (1) is robustly sta-
ble. Similarly, the inequality αǫ < −σ0 (where σ0 > 0)
is a necessary and sufficient condition guaranteeing that
all characteristic roots lie to the left of ℜ(s) = −σ0. This
type of stability is known as Γ-stability in the literature
where the Γ-region is the half-plane ℜ(s) < σ0 and it
gives an upper bound for the exponential rate of conver-
gence of a system. Note that there are many sufficient
conditions to check robust stability or Γ-stability in the
presence of perturbations at systemmatrices in the liter-
ature, for instance, conditions based on Lyapunov func-
tional approach as in [17], [14] or conditions based on
matrix measures as in [8], [19].

In the finite-dimensional, delay-free case, (3) reduces to

F0(λ) = λIn −A0, (7)

and the pseudospectrum (for a unity weight) can be
equivalently expressed as

Λǫ(F0) =

{

λ ∈ C : σmax

(

F0(λ)
−1
)

>
1

ǫ

}

, (8)

(see [2]). Thus, the boundaries of the pseudospectrum
can be computed as the level set of a resolvent norm.This
connection is used to compute the distance to instabil-
ity and the pseudospectral abscissa via a bisection algo-
rithm in [7] and [5] respectively. A quadratically conver-
gent algorithm for the pseudospectral abscissa compu-
tation is given in [6], based on a ‘criss-cross’ procedure.

In [15] the formula (8) is generalized from (7) to a
broad class of matrix functions including (3). In par-
ticular, from Theorem 1 of [15] it follows that the
ǫ-pseudospectrum of (3), as defined by (5), can be
equivalently expressed as

Λǫ(F ) =

{

λ ∈ C : f(λ) >
1

ǫ

}

(9)

where

f(λ) = w(λ)σmax(F (λ)−1), w(λ) =

m
∑

i=0

e−ℜ(λ)τi

wi

.

(10)

Using the formula (9), the pseudospectral abscissa (6)
can be rewritten as

αǫ(F ) = max
λ∈C

{

ℜ(λ) : f(λ) =
1

ǫ

}

. (11)

Note that the maximum in (11) is well-defined since
F (λ)−1 is a strictly proper function and w(λ) is uni-
formly bounded on any complex right half-plane.

Our main contribution is the extension of the pseu-
dospectral abscissa computation to infinite-dimensional
time-delay systems. Both in the definition of the pseu-
dospectrum and in the computational scheme the struc-
ture of the delay equation is fully exploited. The numer-
ical methods in [5], [6] consider the finite-dimensional,
delay-free case. Our algorithm for the pseudospectral ab-
scissa computation of time-delay systems is implemented
in two steps: a prediction and a correction step. First the
transcendental function (3) is approximated by a ratio-
nal function in Section 2, and an approximation of the
pseudospectral abscissa is computed using this rational
approximation in Section 3. Second, in Section 4 the ap-
proximate result is corrected using a locally convergent
method which is based on solving equations characteriz-
ing extreme values in the pseudospectrum contour. The
overall algorithm for the pseudospectral abscissa com-
putation is outlined in Section 5. A numerical example
and concluding remarks can be found in Sections 6 and
7.

Notation:
The notations in the paper are standard and given below.

σmax(A) : the largest singular value of the matrix A
A∗ : complex conjugate transpose of the matrix A
In : identity matrix with dimensions n× n
0n : zero matrix with dimension n× n
C,R : the field of the complex and real numbers
R

+
0 : the positive real numbers, excluding zero
ℜ(u) : real part of the complex number u
ℑ(u) : imaginary part of the complex number u
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|u| : magnitude of the complex number u
ū : conjugate of the complex number u
D(.) : domain of an operator
C,L2 : the space of continuous and square integrable

complex functions, i.e., L2([−τmax, 0],C
n) :=

{f : [−τmax, 0]→ C
n :
∫ 0

−τmax

|f(t)|2dt <∞}
‖F‖∞ : L∞ norm of the transfer function F (jω)
α(G) : the spectral abscissa of G, i.e.,

supλ∈C {ℜ(λ) : det(G(λ)) = 0}.

2 FINITE DIMENSIONAL APPROXIMA-
TION

We derive a rational approximation of the functionF (λ),
given by (3), which is instrumental to the algorithm
developed in the next sections. It is based on a finite-
dimensional approximation of the system

ẋ(t) =

m
∑

i=0

Aix(t− τi) + u(t), y(t) = x(t), (12)

whose input-output map is characterized by the transfer
function F (λ)−1.

We start by reformulating the system (12) as an infinite-
dimensional linear system in the standard form, [9].
When defining the space X := Cn × L2([−τmax, 0],C

n)
equipped with the inner product

< (y0, y1), (z0, z1) >X=< y0, z0 >Cn + < y1, z1 >L2
,

we can rewrite (12) as

ż(t) =Az(t) + Bu(t), (13)

y(t) = Cz(t),

where

D(A) = {z = (z0, z1) ∈ X : z1 is absolutely continuous

on [−τmax, 0],
dz1

dθ
∈ C([−τmax, 0],C

n), z0 = z1(0)},

(14)

Az =

(

A0z0 +
∑m

i=1 Aiz1(−τi)
dz1
dθ

(.)

)

, z ∈ D(A),

Bu=

(

u

0

)

, u ∈ C
n, Cz = z0, z ∈ X.

The connection between (12) and (13) is that z0(t) ≡
x(t), z1(t) ≡ x(t+ θ), θ ∈ [−τmax, 0].

Next, we discretize the infinite-dimensional system (13).
We use a spectral method, as in [3,4]. Given a positive
integer N , we consider a mesh ΩN of N + 1 distinct
points in the interval [−τmax, 0],

ΩN = {θN,i, i = −N, . . . , 0} , (15)

where we assume that θN,0 = 0. With the Lagrange
polynomials lN,k defined as real valued polynomials of
degree N satisfying

lN,k(θN,i) =

{

1 i = k

0 i 6= k

where i, k ∈ {−N, . . . , 0}. We can construct a N + 1 by
N + 1 differentiation matrix on the mesh ΩN ,

D :=















d−N,−N · · · d−N,−1 d−N,0

...
...

...

d−1,−N · · · d−1,−1 d−1,0

d0,−N · · · d0,−1 d0,0















=





D1,1 D1,2

D2,1 D2,2



 ,

(16)
where

di,k = l′N,k(θN,i), i, k ∈ {−N, . . . , 0}. (17)

Then, similarly as in [3], the delay differential equation
can be approximated by the finite-dimensional system:

ż(t) = ANz(t) +BNu(t), z(t) ∈ R
(N+1)n×1

y(t) = BN
∗z(t)

(18)

where

AN =















d−N,−NIn . . . d−N,−1In d−N,0In
...

...
...

d−1,−NIn . . . d−1,−1In d−1,0In

Γ−N . . . Γ−1 Γ0















, (19)

Γ0 = A0 +
∑m

l=1 AllN,0(−τl),

Γk =
∑m

l=1 AllN,k(−τl), k ∈ {−N, . . . ,−1},

BN = [0n . . . 0n In]
∗.

In order to explain the effects of the approximation of
(12) by (18) in the frequency domain, we need the fol-
lowing definition.
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Definition 2.1 For λ ∈ C, let pN(·; λ) be the polyno-
mial of degree N satisfying

pN (0; λ) = 1,

p′N (θN,i; λ) = λpN (θN,i; λ), i ∈ {−N, . . . ,−1}.

(20)

Note that the polynomial pN (t; λ) is an approximation
of eλt on the interval [−1; 0]. Indeed, the first equation
of (20) is an interpolation requirement at zero, the other
equations are collocation conditions for the differential
equation ż = λz, of which eλt is a solution.

We can now state the main result of this section:

Theorem 2.2 The transfer function of the system (18)
is given by

BN
∗(λI(N+1)n −AN)−1BN

=

(

λIn −A0 −
m
∑

i=1

AipN (−τi; λ)

)−1

, (21)

where the function pN is given by Definition 2.1.

For the proof of the theorem we refer to Section A of the
appendix.

Recall that the transfer function of (12) is given by
F (λ)−1. Therefore, the effect of approximating (12) by
the finite-dimensional system (18) can be interpreted as
the effect of approximating the function F (λ) by

FN (λ) := λIn −A0 −

m
∑

i=1

AipN (−τi, λ). (22)

In Proposition A.1 of the appendix it is shown that the
functions

λ 7→ pi(−τi; λ)

are proper rational functions. Hence, the function FN (λ)
can be considered as a rational approximation of F (λ).

Remark: It follows from Theorem 2.2 that

α(FN ) = sup
λ∈C

{ℜ(λ) : det(λI(N+1)n −AN) = 0}.

3 Approximation of the Pseudospectral Ab-
scissa

Given the approximation (22) of F (λ) and the charac-
terization (11) we can obtain an approximation of the
pseudospectral abscissa αǫ(F ) by computing

αN
ǫ (F ) := max

λ∈C

{

ℜ(λ) : fN (λ) =
1

ǫ

}

, (23)

where

fN (λ) = w(λ)σmax(FN (λ)−1), w(λ) =

m
∑

i=0

e−ℜ(λ)τi

wi

.

(24)
This is outlined in what follows.

Let the function αN
f be defined on the interval

(α(FN ), ∞) by

αN
f (σ) = sup

ω∈R

fN(σ + jω). (25)

Proposition 1 The function αN
f has the following prop-

erties.

(1) It is strictly decreasing.
(2) limσ→α(FN )+ αN

f (σ) = +∞.

(3) limσ→+∞ αN
f (σ) = 0.

(4) αN
ǫ (F ) =

{

σ ∈ (α(FN ), ∞) : αN
f (σ) = 1

ǫ

}

.

Proof. We have

αN
f (σ) = w(σ) sup

ω∈R
σmax

(

FN (σ + jω)−1
)

.

For the first assertion, note that the function σ 7→ w(σ)
is strictly decreasing. Furthermore, the function

σ 7→ sup
ω∈R

σmax

(

FN (σ + jω)−1
)

cannot be increasing because this would be in contradic-
tion with the fact that the sets

{

λ ∈ C : σmax(FN (λ)−1) >
1

ǫ

}

can be interpreted as pseudospectrum of the function
FN , where only A0 is perturbed (see [15] for the details).

The second assertion follows from the fact that FN has a
zero on the boundaryℜ(λ) = α(FN ). The third assertion
is due to the fact that F−1

N is strictly proper. The last
assertion follows from the other assertions. ✷

Proposition 1 directly leads to a bisection algorithm over
the interval (α(FN ), ∞) for the computation of αN

ǫ (F ),
where the main step consists of checking whether or not
the inequality

αN
f (σ) >

1

ǫ
(26)
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is satisfied. Using Theorem 2.2, we get

αN
f (σ) >

1

ǫ
⇔ w(σ) sup

ω∈R

σmax

(

FN (σ + jω)−1
)

>
1

ǫ
⇔

sup
ω∈R

σmax

(

BN
∗
(

jωI(N+1)n −
(

AN − σIn(N+1)

))−1
BN

)

>
1

ǫw(σ)
.

It follows that the inequality (26) is satisfied if and only
if the matrix

BN
∗
(

jωI(N+1)n −
(

AN − σIn(N+1)

))−1
BN (27)

has a singular value equal to 1
w(σ)ǫ for some value of ω.

According to [7], this is equivalent to requiring that the
Hamiltonian matrix

HN,σ :=

[

AN − σIn(N+1) (w(σ)ǫ)BNBN
∗

−(w(σ)ǫ)BNBN
∗ −

(

(AN − σIn(N+1)

)∗

]

(28)
has imaginary axis eigenvalues 1 .

Putting together the above results we arrive at the fol-
lowing algorithm for computing αN

ǫ (F ), the approxima-
tion of αǫ(F ).

Algorithm 1
Input: system data, tolerance for the prediction step, tol,
and number of discretization points, N
Output: the approximate pseudospectral abscissa,
αN
ǫ (F ), and the corresponding frequencies, jω̃i

1) σL = α(FN ), σR =∞, ∆σ =tol,
2) while (σR − σL) > tol

2.1) if (σR =∞)
then ∆σ = 2×∆σ, σM = σL +∆σ,
else σM = σL+σR

2 .
2.2) if HN,σM

has imaginary axis eigenvalues
then σL = σM ,
else σR = σM .

{result: αN
ǫ (F ) = σL, jω̃i: imaginary axis eigenvalues of

HN,σL
}

It is important to note that the algorithm does not re-
quire an explicit computation of the rational function
FN . This is due to Theorem 2.2.

4 Correcting the pseudospectral abscissa

Algorithm 1 finds the complex points

λ̃i = αN
ǫ (F ) + jω̃i, i = 1, . . . , ñ,

1 These are given by jω, where ω is such that the matrix
(27) has a singular value equal to (ǫw(σ))−1.

which are approximations of the rightmost elements of
the pseudospectrum Λǫ(F ), the accuracy depending on
the tolerance and the number of discretization points,
N . These approximations can be corrected by solving
a set of equations inferred from a nonlinear eigenvalue
problem. This is detailed in what follows.

The function αf (σ) can be defined in a similar way as
the function αN

f (σ) as

αf (σ) := sup
ω∈R

f(σ + jω), (29)

where σ ∈ (α(F ), ∞). Using the arguments as spelled
out in the proof of Proposition 1 it can be shown that

αf (σ) =
1

ǫ
(30)

if and only if σ = αǫ(F ).

Using the definition (10) of f(λ) , the equality (30) can
be written as

sup
ω∈R

σmax





(

(σ + jω)In −
m
∑

i=0

Aie
−(σ+jω)τi

)−1


 ·

w(σ) =
1

ǫ
, (31)

or, equivalently,

‖Fσ(jω)
−1‖∞ =

1

ǫw(σ)
, (32)

where

Fσ(jω) = jωIn −Aσ,0 −

m
∑

i=1

Aσ,ie
−jτiω (33)

and

Aσ,0 = A0 − σIn, Aσ,i = Aie
−τiσ, i = 1, . . . ,m. (34)

Similarly the connection between a transfer function and
the spectrum of a corresponding Hamiltonian matrix in
the finite dimensional case, the following lemma estab-
lishes connections between the singular value curves of
Fσ(jω)

−1 and the spectrum of a nonlinear eigenvalue
problem.

Lemma 4.1 Let ξ > 0 and σ ∈ (α(F ), ∞). The matrix
Fσ(jω)

−1 has a singular value equal to ξ for some ω ≥ 0
if and only if λ = jω is a solution of the equation

detH(λ, σ, ξ) = 0, (35)
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where

H(λ, σ, ξ) := λI −Mσ,0−
m
∑

i=1

(

Mσ,ie
−λτi +Mσ,−ie

λτi
)

,

(36)
with

Mσ,0 =

[

Aσ,0 ξ−2In

−In −A
∗
σ,0,

]

,

Mσ,i =

[

Aσ,i 0

0 0

]

, Mσ,−i =

[

0 0

0 −A∗
σ,i

]

, 1 ≤ i ≤ N,

Proof. The proof is similar to the proof of Proposi-
tion 22 in [11]. For all ω ∈ R, we have the relation

detH(jω, σ, ξ) det(−ξ2In) =

det((F−1
σ (jω))∗F−1

σ (jω)− ξ2I)

det

([

Fσ(jω) 0

−In −(Fσ(jω))
∗

])

, (37)

because both left and right hand side can be interpreted
as expressions for the determinant of the 2-by-2 block
matrix









Fσ(jω) 0 In

−In −(Fσ(jω))
∗ 0n

0n In −ξ2In









using Schur complements. We get from (37):

det((F−1
σ (jω))∗F−1

σ (jω)−ξ2I) = 0⇔ detH(jω, σ, ξ) = 0.

This is equivalent to the assertion of the theorem. ✷

For a given value of ξ and σ the solutions of (35) can be
found by solving the nonlinear eigenvalue problem

H(λ, σ, ξ) v = 0, v ∈ C
2n, v 6= 0, (38)

which in general has an infinite number of solutions.

The correction method is based on the property that if
σ is such that

‖Fσ(jω)
−1‖∞ =

1

ǫω(σ)
,

then the nonlinear eigenvalue problem (38) has a multi-
ple non-semisimple eigenvalue for ξ = 1

ǫw(σ) , as clarified

in Figure 1.

Singular Value Plots of Fσ
−1

ω

Solution of of H(λ,σ,ξ)ν=0

σ

ω

ω σ

ω

ω σ

ω

ω
1,2

jω
1,2

jω
2

jω
1

ω
2

ω
1. .

.

Fig. 1. (left) Intersections of the singular value plot of
F−1
σ with the horizontal line 1

ǫw(σ)
for the cases where

(top) ‖Fσ(jω)
−1‖∞ > 1

ǫw(σ)
, (middle) ‖F−1

σ (jω)‖∞ = 1
ǫw(σ)

and (bottom) ‖F−1
σ (jω)‖∞ < 1

ǫw(σ)
. (right) Corresponding

eigenvalues of the problem (38) where ξ = 1
ǫw(σ)

.

Let αǫ(F )+jωǫ be a rightmost element of Λǫ(F ). Setting

hσ(λ) = detH

(

λ, σ,
1

ǫw(σ)

)

,

the pair (ω, σ) = (ωǫ, αǫ(F )) satisfies

hσ(jω) = 0, h′
σ(jω) = 0. (39)

These complex-valued equations seem over-determined
but this is not the case due to the spectral properties
of H , which imply the following result.

Proposition 2 For ω ≥ 0, we have

ℑ hσ(jω) = 0 (40)

and

ℜ h′
σ(jω) = 0. (41)

Proof. It can easily be shown that

hσ(λ) = hσ(−λ), h′
σ(λ) = −h

′
σ(−λ).

Substituting λ = jω yields

hσ(jω) = hσ(−jω) = (hσ(jω))
∗
,

h′
σ(jω) = −h

′
σ(−jω) = − (h′

σ(jω))
∗
,

and the assertions follow. ✷
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Using Proposition 2 we can simplify the conditions (39)
to:

{

ℜ hσ(jω) = 0,

ℑ h′
σ(jω) = 0.

(42)

Hence, the pair (ωǫ, αǫ(F )) can be directly computed by
solving the two equations (42) for ω and σ, e.g. using
Newton’s method, provided that good starting values
are available.

The drawback of working directly with (42) is that an
explicit expression for the determinant of H is required.
To avoid this, let u, v ∈ Cn be such that

H
(

jω, σ, (ǫw(σ))−1
)

[

u

v

]

= 0, n̂(u, v) = 0, (43)

where n̂(u, v) = 0 is a normalizing condition. Given the
structure of H it can be verified that a corresponding
left eigenvector is given by [−v∗ u∗]. According to [13],
we get

h′
σ(jω) = 0⇔ [−v∗ u∗]

∂

∂λ
H(jω, σ, (ǫw(σ))−1)

[

u

v

]

= 0.

A simple computation yields:

[−v∗ u∗]
∂

∂λ
H(jω, σ, (ǫw(σ))−1)

[

u

v

]

=

2ℑ

{

v∗

(

I +

m
∑

i=1

Aσ,iτie
−jωτi

)

u

}

, (44)

which is always real. This is a consequence of the prop-
erty (41).

Taking into account the above results, we end up with
4n+ 3 real equations















H(jω, σ, (ǫw(σ))−1)

[

u,

v

]

= 0, n̂(u, v) = 0

ℑ
{

v∗
(

I +
∑m

i=1 Aσ,iτie
−jωτi

)

u
}

= 0

(45)
in the 4n + 2 unknowns ℜ(v),ℑ(v),ℜ(u),ℑ(u), ω and
σ. These equations are still overdetermined because the
property (40) is not explicitly exploited in the formu-
lation, unlike the property (41). However, it makes the
equations (45) exactly solvable, and the (ω, σ) compo-
nents have a one-to-one-correspondence with the solu-
tions of (42).

In our implementation the equations (45) are solved us-
ing the Gauss-Newton method. This method exhibits

quadratic convergence because the residual in the solu-
tion is zero, i.e., an exact solution exists [1]. The starting
values are generated using the approach outlined in the
previous section.

5 Algorithm

The overall algorithm for computing the pseudospectral
abscissa is as follows.

Algorithm 2
Input: system data, tolerance for prediction step, tol,
and number of discretization points, N
Output: pseudospectral abscissa αǫ(F )

Prediction Step:

1) Calculate the spectral abscissa α(FN )
2) σL = α(FN ), σR =∞, ∆σ =tol,
3) while (σR − σL) > tol

3.1) if (σR =∞)
then ∆σ = 2×∆σ, σM = σL +∆σ,
else σM = σL+σR

2 .
3.2) if HN,σM

has imaginary axis eigenvalues
then σL = σM ,
else σR = σM .

{result: αN
ǫ (F ) = σL and jω̃i, i = 1, . . . , ñ: imaginary

axis eigenvalues of HN,σL
}

Correction Step:

(1) calculate the approximate null vectors {x1, . . . , xñ}
of H(jω̃i, α

N
ǫ (F ), (ǫw(αN

ǫ (F )))−1) i = 1, . . . , ñ,
(2) for all i ∈ {1, . . . , ñ}, solve (45) with starting values

[

u

v

]

= xi, ω = ω̃i, σ = αN
ǫ (F )

denote the solution with (uǫ,i, vǫ,i, ωǫ,i, σǫ,i).
(3) set αǫ(F ) := max1≤i≤ñ σǫ,i.

The two steps are the prediction step explained in Sec-
tion 3 and the correction step explained in Section 4. The
first step requires a repeated computation of the eigen-
values of the 2n(N + 1) × 2n(N + 1) Hamiltonian ma-
trix HN,σ (28). The second step solves (45), i.e. a set of
4n+3 nonlinear equations. Our implementation chooses
N large enough and the tolerance in the prediction step
small enough such that the results of the prediction step
are good starting values for the correction step.

Note that by increasing N and reducing the tolerance,
the approximate pseudospectral abscissa can be com-
puted arbitrarily close to αǫ(F ) by applying the pre-
diction step only. However, this approach typically has
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a much larger numerical cost than the combined ap-
proach, not only because it requires a much larger value
of N than necessary for the corrector (to assure that
|αǫ(F ) − αN

ǫ (F )| sufficiently small), but also because
the tolerance in the prediction step must be chosen very
small (to assure that αN

ǫ (F ) is computed sufficiently ac-
curately). The latter implies that the number of itera-
tions becomes very large. Hence, working with the pre-
diction step only requires a much larger number of much
more expensive iterations than working with the com-
bined approach.

In our implementation, the mesh points in the approxi-
mation of F , discussed in Section 2, are chosen as scaled
and shifted Chebyshev extremal points, i.e.,

θN,i =
τmax

2

(

cos

(

iπ

N

)

− 1

)

, i = −N, . . . , 0 (46)

since the corresponding interpolating polynomial has
less oscillation towards the end of the interval compared
to choices of grid points different from (46), see [4].

Finally, we note that the prediction step is based on ap-
proximating F by FN , defined in (22), hence, on approx-
imating the exponential functions λ 7→ exp(−λτi) by
the rational functions λ 7→ pN (−τi; λ). Because these
approximations are essentially approximations around
λ = 0, our implementation incorporates the following
substitution in F (λ) to shift the center of the approxi-
mation to λ = α(F (λ)):

λ← λ+ α(F (λ)),

as well as a corresponding adaptation of the weights in
the pseudospectrum definition. For the computation of
the spectral abscissa α(F ) we use the package DDE-
BIFTOOL, [10].

6 Example

We tested the numerical method on several benchmark
problems. We chose the following high-order example
with many delays to give further details about the al-
gorithm. We consider a time-delay system in (1) with
the dimensions m = 7, n = 10 with delays τ1 = 0.1,
τ2 = 0.2, τ3 = 0.3, τ4 = 0.4, τ5 = 0.5, τ6 = 0.6, τ7 = 0.8.
The weights wi are set to 1 and ǫ = 0.1. The pseudospec-
trum is shown with black lines and black stars indicate
part of the characteristic roots of (2) in Figure 2.

The tolerance in the bisection algorithm is set to 0.1
and the discretization parameter is chosen as N = 10.
Each iteration of the while loop in the prediction step
computes σM and updates σL or σR shown as the verti-
cal dashed and solid lines respectively. The approximate
pseudospectral abscissa as a result of the prediction step

−1 −0.5 0 0.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

ℜ (λ)

ℑ
(λ

)

Pseudospectral abscissa computation

Fig. 2. The pseudospectrum and the pseudospectral abscissa.
The stars indicate the characteristic roots of the time-delay
system and the black curves are the pseudospectra contours.
Vertical lines are lower and upper bounds in the bisection
algorithm shown as dashed and solid lines respectively.

is αN
ǫ (F ) = −0.0525 and the corresponding critical fre-

quencies are ω̃1 = 1.4069, ω̃2 = 1.6718. These approxi-
mate values are improved in the correction step and the
computed pseudospectral abscissa is αǫ(F ) = −0.0307
at ωǫ = 1.5383 shown as black dots in Figure 2.

In Table 1 we present the results of benchmarking of our
code with 10 time-delay plants with various perturba-
tion sizes and perturbation weights. The second column
shows the size of matrices Ai, n, and the number of state
delays, m. The third column gives the minimum value
of N such that in the correction step the desired solu-
tion is computed. The fourth and fifth columns contain
the predicted and corrected pseudospectral abscissa of
the corresponding time-delay system. The last column
shows the computation time for each plant in seconds on
a PC with an Intel Core Duo 2.53 GHz processor with 2
GB RAM. The plant 6 corresponds to the problem con-
sidered in this section.

Plants (n,m) N αN

ǫ αǫ time

1 (3, 1) 6 1.7784 1.7790 0.047

2 (1, 1) 6 4.1497 4.1498 0.048

3 (3, 3) 3 5.5034 5.5131 0.061

4 (4, 9) 6 6.4172 6.4173 0.075

5 (8, 20) 5 7.2918 7.2496 0.27

6 (10, 7) 3 −0.02840 −0.03071 0.19

7 (20, 9) 7 3.4569 3.4570 3.05

8 (40, 3) 4 1.2104 1.2105 4.66

9∗ (5, 1) 3 1.9985 1.9985 0.10

10∗ (4, 3) 20 1.5170 1.5172 0.60

Table 1
Benchmarks for the pseudospectral abscissa computation.
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For the plant 9 a warning is generated when using the
default tolerance value of the prediction step tol = 10−3,
indicating that the difference between final lower and
upper bound values for the approximate pseudospectral
abscissa is too large for the problem. The warning is re-
moved when a smaller tolerance is chosen tol = 10−4.
The plant 10 gives a warning when the number of dis-
cretization points is set to the default valueN = 15. The
warning is removed when N = 20 is set. We note that
both examples, plants 9 and 10, are difficult constructed
cases. For most practical problems, the default values
for the number of discretization points N = 15 and the
tolerance of the prediction step tol = 10−3 is sufficient.

The problem data for the above benchmark exam-
ples (system matrices Ai, state delays τi, perturbation
weights wi for i = 0, . . . ,m, the perturbation size ǫ and
options if necessary) and a MATLAB implementation
of our code for the pseudospectral abscissa computation
are available at the website

http://www.cs.kuleuven.be/~wimm/software/psa/

7 Concluding Remarks

An accurate method to compute the pseudospectral
abscissa of retarded time-delay systems with an arbi-
trary number of delays is given. The method is based
on two steps: the prediction step calculates an ap-
proximation of the pseudospectral abscissa based on a
finite-dimensional approximation of the problem. The
correction step computes the pseudospectral abscissa
by solving nonlinear equations that characterize the
rightmost points of the pseudospectrum. The method
has been successfully applied to benchmark problems
demonstrating its effectiveness.

After the pseudospectral abscissa of the time-delay plant
is computed, the gradient of the pseudospectral abscissa
with respect to system matrices and delays can be cal-
culated for the complex point where pseudospectral ab-
scissa is achieved. By embedding the pseudospectral ab-
scissa computation in an optimization loop, a fixed struc-
ture controller minimizing the pseudospectral abscissa
can be designed inspired by the approach of [12] for the
finite dimensional case. This is our future research di-
rection.
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A Proof of Theorem 2.2

We need the following proposition to prove the Theorem
2.2.

Proposition A.1 We can express

pN (−τi; λ) =
ri(λ)

s(λ)
, 1 = 1, . . . ,m, (A.1)

where s is a monic polynomial of degree N and ri, i =
1, . . . ,m are polynomials of degree smaller than or equal
to N . Furthermore, we have

s(λ) = det(λI −D1,1) (A.2)

and











pN (θN,−N ; λ)
...

pN (θN,−1; λ)











= (λI −D1,1)
−1D1,2. (A.3)

where D1,1 and D1,2 are given in (16).

Proof. In a Lagrange basis we can express

pN (t; λ) =
0
∑

i=−N

cilN,i(t),

where, for the simplicity of the notations, we suppress
the dependence of the coefficients ci on λ. The conditions
(20) can be expressed as c0 = 1 and

(λI −D1,1)











c−N

...

c−1











= D1,2,

which implies that

pN (t; λ) = lN,0(t)+[lN,−N(t) · · · lN,−1](λI−D1,1)
−1D1,2.

The assertions follow. ✷

Proof of Theorem 2.2. Using the formula for the de-
terminant of a two-by-two block matrix based on Schur

complements and with AN andD given in (19) and (16)
respectively, it follows that

det(λI −AN) = det((λIN −D1,1)⊗ In) det(λIn−Γ0

− [Γ−N · · ·Γ−1]((λIN −D1,1)⊗ In)
−1(D1,2 ⊗ In)),

= s(λ)n det

(

λIn − Γ0 −
−1
∑

i=−N

ΓiIn pN (θN,i; λ)

)

,

= s(λ)n det (λIn −A0

−

0
∑

i=−N

m
∑

l=1

AllN,i(−τl)pN (θN,i; λ)

)

,

= s(λ)n det

(

λIn −A0 −

m
∑

l=1

Al

0
∑

i=−N

lN,i(−τl)pN (θN,i; λ)

)

,

= s(λ)n det

(

λIn −A0 −

m
∑

l=1

AlpN (−τl; λ)

)

. (A.4)

Furthermore, using the same approach, we can derive
for k, l ∈ {1, . . . , n}:

∆k,l
N (λ) :=

{

BN
∗ adj(λI(N+1)n −AN)BN

}

k,l
,

= det((λIN−D1,1)⊗In) det(λĨn−1−Γ̃0−[Γ̃−N · · · Γ̃−1]

((λIN −D1,1)⊗ In)
−1(D1,2 ⊗ Ĩn)), (A.5)

where the superscript ~ denotes that an appropriate
row and/or column have been removed. Using Proposi-
tion A.1 and following the steps in (A.4), this expression
can be written as

∆k,l
N (λ) = s(λ)n det

(

λĨ − Γ̃0 −
∑−1

i=−N Γ̃iĨ pN (θN,i; λ)
)

= s(λ)n {adj (λI −A0 −
∑m

l=1 Al pN (−τl; λ))}k,l .

(A.6)
Using (A.4)-(A.6) we can derive:

BN
T (λI −AN)−1BN = BN

T adj(λI−AN)
det(λI−AN)BN

=
adj(λI−A0−

∑

m

i=1
AipN (−τi; λ))

det(λI−A0−
∑

m

i=1
AipN (−τi; λ))

= (λI −A0 −
∑m

i=1 AipN (−τi; λ))
−1.

This completes the proof. ✷
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