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a b s t r a c t

This paper studies the static output-feedback (SOF) stabilization problem for discrete-time Markovian
jump systems from a novel perspective. The closed-loop system is represented in a system augmentation
form, in which input and gain-output matrices are separated. By virtue of the system augmentation, a
novel necessary and sufficient condition for the existence of desired controllers is established in terms of
a set of nonlinear matrix inequalities, which possess a monotonic structure for a linearized computation,
and a convergent iteration algorithm is given to solve such inequalities. In addition, a special property of
the feasible solutions enables one to further improve the solvability via a simple D-K type optimization
on the initial values. An extension to mode-independent SOF stabilization is provided as well. Compared
with some existing approaches to SOF synthesis, the proposed one has several advantages that make it
specific for Markovian jump systems. The effectiveness and merit of the theoretical results are shown
through some numerical examples.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Discrete-time Markovian jump linear systems (DMJLSs), mod-
eled by a set of discrete-time linear systems with transitions
among the models determined by a Markov chain taking val-
ues in a finite set, have appealed to a lot of researchers in the
control community. This is partially due to their widespread ap-
plications to modeling various practical processes that experi-
ence abrupt changes in their structure and parameters, possibly
caused by phenomena such as component failures or repairs, sud-
den environmental disturbances, and changing subsystem inter-
connections. Stability of DMJLSs has been investigated thoroughly
in Costa and Fragoso (1993), and the equivalence of different sec-
ond moment stability has been established in Ji, Chizeck, Feng,
and Loparo (1991). The linear quadratic optimal control problem
for DMJLSs has been studied in Chizeck, Willsky, and Castanon
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(1986) and Costa and de Paulo (2007), and the filtering problem
has been considered in Costa andMarques (2000). Some results on
the H2 and H∞ control problems are available in Costa and Mar-
ques (1998), Seiler and Sengupta (2003) and references therein.
Recent advances and applications related to networked control
systems have been provided in Xiong and Lam (2007) and Huang
and Dey (2007). As for robust stability analysis, we refer readers
to de Souza (2006), Karan, Shi, and Kaya (2006) and references
therein.More details onDMJLSs can be found in Costa, Fragoso, and
Marques (2005).
In most of the literature, it is often assumed that the system

state and mode are completely accessible to the controller. This
assumption, however, may not be always true in practice, and it
is necessary to consider the more practical case that the system
state andmode are partially accessible. Our goal to seek an effective
and easy-to-use approach to SOF control of DMJLSs is motivated
not only by the fact that the system state and mode are not
always accessible, but also by the simplicity of SOF to implement
in practice. Moreover, many dynamic output-feedback synthesis
problems can be reformulated as an SOF control design involving
augmented plants. Although Costa, Do Val, and Geromel (1997)
proposed a nonconvex cutting-plane algorithm based on the
output structural constraint approach (Geromel, Peres, & Souza,
1993) to solve the SOFH2 control problem for DMJLSs, there is still
much room for improvement. Themajor obstacles in SOF synthesis
of DMJLSs are not only the nonconvexity of the SOF problem
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itself, but also the coupled linear matrix inequality condition for
stochastic stability of DMJLSs, which poses a severe problem in
nonconservative controller synthesis (Lee & Dullerud, 2006).
In this paper, we investigate the SOF stabilization problem

for DMJLSs from a new point of view. The closed-loop system
is represented in a system augmentation form with algebraic
constraints. A new stability characterization of the closed-loop
system is then established. Based on this new characterization,
a necessary and sufficient condition with redundant matrix
variables for mode-dependent SOF stabilizability is proposed, and
an iteration algorithm is given to solve the condition. An extension
tomode-independent SOF stabilization is provided as well. Several
numerical examples are provided to show the effectiveness and
merit of the theoretical results. In addition, the problems of H∞
control, H2 control and mixed H2/H∞ control with the SOF
controllers can be readily treated under the framework (Shu,
Lam, & Xiong, 2008). Compared with some existing approaches
to SOF synthesis, the proposed one has several advantages
that make it specific for DMJLSs. First, the proposed approach
does not employ any coordination transformation often used by
other approaches, and thus can avoid any difficulty caused by
multi-mode transformation matrices. Second, since the proposed
approach does not use the Lyapunov matrices to parametrize
controller gains anddoes not involve any controller reconstruction,
it can copewithmode-independent control readily. In addition, the
proposed approach may be numerically more desirable over those
relying on the solution of Riccati equation due to the arduousness
of solving coupled Riccati equations for DMJLSs.

Notation. Throughout this paper, for real symmetric matrices X
and Y , the notation X > Y means that thematrix X−Y is positive-
definite. ‖ · ‖ denotes the Euclidean norm for vectors and the
spectral norm for matrices, respectively. E{·} stands for the
mathematical expectation with some probability measure. For a
real matrix C , C⊥ denotes an orthonormal basis of the null space
of C , namely, CC⊥ = 0 and (C⊥)TC⊥ = I . The symbol # is used
to denote a matrix which can be inferred by symmetry. Matrices,
if their dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. Preliminaries

Consider the following class of discrete-time Markovian jump
systems:{
x(k+ 1) = A(r(k))x(k)+ B(r(k))u(k),
y(k) = C(r(k))x(k), (1)

where x(k) ∈ Rn, u(k) ∈ Rl, and y(k) ∈ Rm are the system state,
the control input, and the measured output, respectively, and
A(r(k)), B(r(k)), and C(r(k)) are the system matrices of the
stochastic jumping process {r(k), k ≥ 0}; the parameter r(k)
represents a discrete-time, discrete-state Markov chain taking
values in a finite set S = {1, 2, . . . , s}with transition probabilities
πij, πij ≥ 0 and

∑s
j=1 πij = 1,∀i ∈ S. To simplify the notation,

M(r(k)) and MN(r(k)) will be denoted by Mr(k) and MNr(k),
respectively, and, for a set of matricesMi, i ∈ S,

M̂i ,
s∑
j=1

πijMj.

Definition 1. The system in (1) is said to be stochastically stable if,
when u(k) ≡ 0, there exists a scalar M̃(x0, r0) > 0 such that

lim
ν→∞

E

{
ν∑
k=0

‖x(k)‖2
∣∣∣∣∣ x0, r0

}
≤ M̃(x0, r0).
The SOF controller under consideration is of the form u(k) =
Kr(k)y(k). Connecting this controller to (1) yields the closed-loop
system

x(k+ 1) = Aclr(k)x(k), (2)

where Aclr(k) = Ar(k)+Br(k)Kr(k)Cr(k). Our goal is to design Ki,∀i ∈ S,
such that the system in (2) is stochastically stable. Since Kr(k) is
embedded in themiddle of twomatrices, it is hard to parametrize it
by matrix variables. Hence, our fundamental idea is to extract Kr(k)
from the middle of two matrices. To this end, we view the input
u(k) as a state component and choose

[
xT (k) uT (k)

]Tas the new
state variable, and rewrite the closed-loop system as follows:

Eξ(k+ 1) = Ar(k)ξ(k), (3)

where ξ(k) =
[
xT (k) uT (k)

]T , E = [
I 0
0 0

]
, and Ar(k) =[

Ar(k) Br(k)
Kr(k)Cr(k) −I

]
.

Remark 1. An advantage of the system augmentation lies in the
separation of Br(k) and Kr(k)Cr(k), which enables us to parametrize
Kr(k) by free parameter matrices. It is noted that if we choose[
xT (t) yT (t)

]Tas a new state variable, we can also obtain a similar
system augmentation, which we call dual system augmentation.
In this paper, we do not intend to present any results on dual
system augmentation, due to the page length consideration, and
further discussion on this issue will appear in our future work. In
addition, many dynamic output-feedback synthesis problems can
be reformulated as an SOF control design involving augmented
plants (Syrmos, Abdallah, Dorato, & Grigoriadis, 1997), and thus
the approach presented in this paper is applicable to the dynamic
output-feedback case as well.

3. Closed-loop stability condition and equivalent characteriza-
tion

Theorem 1. The system in (2) is stochastically stable if and only if
there exist matrices P1i = PT1i, P4i = P

T
4i, P2i, Q4i > 0, and a scalar

α > 0 such that, ∀i ∈ S,

ATi P̂iAi − EPiE+ QiAi + ATi Q
T
i < 0, (4)

where

Pi =
[
P1i PT2i
P2i P4i

]
> 0, Qi =

[
0 −αCTi K

T
i Q4i

0 αQ4i

]
. (5)

Proof. (Sufficiency) Note that Ai has the following decomposition:

Ai =
[
Acli Bi
0 −I

] [
I 0
−KiCi I

]
. (6)

With this and algebraic manipulations, one has that

ATi P̂iAi − EPiE+ QiAi + ATi Q
T
i =

[
I 0
−KiCi I

]T

×


ATcliP̂1iAcli − P1i #

BTi P̂1iAcli − P̂2iAcli

 BTi P̂1iBi
−P̂2iBi − BTi P̂

T
2i

+P̂4i − 2αQ4i


[ I 0
−KiCi I

]
.

(7)

This togetherwith (4) yields that ATcliP̂1iAcli−P1i < 0, which implies
that the system in (2) is stochastically stable (Costa & Fragoso,
1993; Ji et al., 1991).
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(Necessity) If the system in (2) is stochastically stable, then,
according to the second moment stability criterion, there exist
matrices P1i > 0, i ∈ S, such that ATcliP̂1iAcli − P1i < 0. Now define
matrices Pi and Qi as

Pi =
[
P1i 0
0 P4i

]
, Qi =

[
0 −αCTi K

T
i P̂4i

0 αP̂4i

]
, (8)

where P4i, ∀i ∈ S, is any positive-definite matrix, and α > 0 is a
sufficiently large scalar such that, ∀i ∈ S,

BTi P̂1iAcli
(
P1i − ATcliP̂1iAcli

)−1
ATcliP̂1iBi

+ BTi P̂1iBi + (1− 2α)P̂4i < 0. (9)

Then, directly manipulating together with (7), (9), and using Schur
complement equivalence yield that (4) holds with P1i = PT1i, P4i =
PT4i, P2i = 0, Q4i = P̂4i, and a sufficiently large scalar α > 0. �

Remark 2. Since only −αQ4i are required to be negative definite,
another choice is to let α < 0 and Q4i < 0, and a corresponding
necessary and sufficient condition can be similarly derived. In fact,
it is easy to show that the case of α < 0 and Q4i < 0 is equivalent
to the case of α > 0 and Q4i > 0. For simplicity, we only present
the results for α > 0 and Q4i > 0 throughout the paper.

In the following theorem, we provide an equivalent characteri-
zation on stability of the closed-loop system, which will play a key
role in the subsequent controller synthesis.

Theorem 2. The system in (2) is stochastically stable if and only if
there exist matrices P1i = PT1i, P4i = P

T
4i, P2i, Q4i > 0, H1i, H2i, G1i, G2i,

and a scalar α > 0 such that, ∀i ∈ S,(HiAi + ATi H
T
i − EPiE

+QiAi + ATi Q
T
i

)
#

GiAi − HTi P̂i − Gi − GTi

 < 0, (10)

where Pi > 0 and Qi are defined in Theorem 1, and

Hi =
[
H1i 0
H2i 0

]
, Gi =

[
G1i 0
G2i Q4i

]
. (11)

Proof. (Sufficiency) Pre- and post-multiplying (10) by
[
I ATi

]
and

its transpose yields that (4) holds.
(Necessity) Assume that the system in (2) is stochastically

stable, then, according to Theorem 1 and its proof, there exist
matrices

Pi =
[
P1i 0
0 P4i

]
> 0, Qi =

[
0 −αCTi K

T
i Q4i

0 αQ4i

]
,

with α > 0 and Q4i = P̂4i > 0 being a large enough scalar and
positive definite matrices, respectively, such that ATi P̂iAi − EPi
E + QiAi + ATi Q

T
i < 0, which, by Schur complement equivalence,

implies[
−EPiE+ QiAi + ATi Q

T
i ATi P̂i

P̂iAi −P̂i

]
< 0. (12)

Now define Hi =
[
0 0
0 0

]
, Gi =

[
P̂1i 0
0 Q4i

]
.Then, we obtain that

(10) holds with P1i = PT1i, P4i = P
T
4i, P2i = 0, Q4i = P̂4i, H1i = 0,

H2i = 0, G1i = P̂1i, G2i = 0, and a sufficiently large scalar α > 0.
This completes the proof. �
Remark 3. In most existing LMI formulations, the multiplication
of the Lyapunov matrices and the controller matrices may induce
additional constraints on the Lyapunov matrices when the con-
troller matrices are parametrized, and thusmakes the correspond-
ing results conservative. The significance of the condition in (10)
lies not only in the separation of Bi and KiCi, but also in the sep-
aration of the Lyapunov matrices P1i and the controller matri-
ces Ki, which avoids imposing any constraint on P1i when Ki is
parametrized. In addition, redundant matrix variables H1i, H2i, G1i,
and G2i, which are expected to reduce the conservatism and to im-
prove the solvability of the iterative calculation to be presented
later, are introduced by following the idea proposed in de Oliveira,
Bernussou, and Geromel (1999).

Remark 4. One may argue that the idea to introduce slack
matrices (or multipliers) proposed in de Oliveira et al. (1999)
has already been used to solve the control and filter problems
for MJLSs or the usual discrete-time systems (do Val, Geromel,
& Goncalves, 2002; Du, Xie, Teoh, & Guo, 2005; Gao, Lam, Xie,
& Wang, 2005; K.H. Lee, J.H. Lee, & Kwon, 2006). However, our
characterization has essential differences from theirs. On one hand,
the matrix coupled with the controller matrix in do Val et al.
(2002); Du et al. (2005) and Gao et al. (2005); Lee et al. (2006)
has to be equal (or related) to the Lyapunov matrix when the
necessity needs to be proved, whereas the parametrization matrix
Q4i in (10) has nothing to do with the Lyapunov matrix. This
can avoid introducing the conservatism when additional design
specifications are involved. On the other hand, without coordinate
transformation or additional constraints, their approachesmay not
parametrize the controller matrices, whereas, based on the system
augmentation, (10) can directly as revealed later.

4. Controller synthesis

We present a necessary and sufficient condition for mode-
dependent SOF stabilizability in the following theorem.

Theorem 3. The system in (1) is SOF stabilizable by a mode-
dependent controller if and only if there exist a scalar α > 0, and
matrices P1i = PT1i, P4i = P

T
4i, P2i, H1i, H2i, G1i, G2i, Q4i > 0, Li, Mi, such

that, ∀i ∈ S,[
P1i PT2i
P2i P4i

]
> 0, (13)

Ωi (α,Mi) ,

Ω11i # # #
Ω21i Ω22i # #
Ω31i Ω32i Ω33i #
Ω41ii Ω42i Ω43i Ω44i

 < 0, (14)

where

Ω11i = H1iAi + ATi H
T
1i − P1i

+ 2αMTi Q4iMi − 2αC
T
i L
T
i Mi − 2αM

T
i LiCi,

Ω21i = H2iAi + BTi H
T
1i + 2αLiCi,

Ω22i = H2iBi + BTi H
T
2i − 2αQ4i,

Ω31i = G1iAi − HT1i,

Ω32i = G1iBi − HT2i,

Ω33i = P̂1i − G1i − GT1i,
Ω41i = G2iAi + LiCi,
Ω42i = G2iBi − Q4i,

Ω43i = −G2i + P̂2i,

Ω44i = P̂4i − 2Q4i.
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Under the conditions, an SOF control law can be obtained as

Ki = Q−14i Li. (15)

Proof. (Sufficiency) Since Q4i > 0, (15) is meaningful and Li =
Q4iKi. Substituting this into (14) and noticing that

− 2αCTi K
T
i Q4iKiCi ≤ −2α(C

T
i K
T
i Q

T
4i)Mi − 2αM

T
i (Q4iKiCi)

+ 2αMTi Q4iMi, (16)

we obtain that (10) holds. This proves the sufficiency.
(Necessity) Assume that (10) holds. Then, by choosing Mi =
KiCi, we have that −2αCTi K

T
i Q4iKiCi = −2α(C

T
i K
T
i Q

T
4i)Mi − 2αM

T
i

(Q4iKiCi)+ 2αMTi Q4iMi. Substituting this into (10) and letting Li =
Q4iKi, we obtain that (14) holds. This completes the proof. �

Remark 5. It is noted that, without loss of generality, the matrices
P4i, Q4i, and Li in Theorem 3 can be set to be mode-independent,
that is, P41 = P42 = · · · = P4s, Q41 = Q42 = · · · = Q4s, L1 =
L2 = · · · = Ls, and the corresponding stability conditions are still
necessary and sufficient. In view of this feature, it is easy to design
a mode-independent controller for the case that the jump variable
r(k) is not available without imposing any restriction on the
Lyapunov matrices P1i, which may cause excessive conservatism.
Indeed, the parametrization of the controller matrices by our
approach is fairly flexible, and P4 and Q4 can be further set to be
the identitymatrixwhile not causing loss of generality. In this case,
many synthesis problems, such as simultaneous stabilization and
structural controller synthesis, can be treated readily under the
same framework.

When α and Mi are fixed, (14) becomes a strict LMI for each
mode, which could be verified easily by conventional LMI solver.
According to the previous analysis, the larger the α, the higher
the reduction in conservatism of (14). If (14) does not hold for
a sufficiently large α > 0, it is plausible to conclude that the
system is not SOF stabilizable. It is not difficult to show that, when
Mi = Q−14i LiCi, the left side of (14) is amonotonic decreasingmatrix
function with respect to α. Hence, we can set α to be large values.
The remaining problem is how to selectMi. It can be seen from the
proof of Theorem 3 that the scalar γ satisfying Ωi(α,Mi) < γ I
achieves its minimum when Mi = Q−14i LiCi, which can be used to
construct an iteration rule. We summarize briefly our analysis on
α andMi in the following proposition.

Proposition 1. When P1i > 0, P4i > 0, P2i, H1i, H2i, G1i, G2i, Q4i > 0,
and Li are fixed, the following relationship holds for any Mi and α1 >
α2 > 0,

Ωi(α1,Q−14i LiCi) ≤ Ωi(α2,Q
−1
4i LiCi) ≤ Ωi(α2,Mi).

Proof. The second ‘‘≤’’ follows immediately from the proof of
Theorem3. As for the first ‘‘≤’’, direct algebraic operations give that

Ωi(α1,Q−14i LiCi)−Ωi(α2,Q
−1
4i LiCi)

= 2(α2 − α1)

−C
T
i L
T
i

Q4i
0
0

Q−14i
−C

T
i L
T
i

Q4i
0
0


T

≤ 0. �

Therefore, the following iteration algorithm is constructed to
solve the condition of Theorem 3.

Algorithm 1.
1. Set ν = 1 and α to be a sufficiently large value (for example,
α = 104). Select initial values M(ν)

i such that x(k + 1) =
[Ar(k) + Br(k)M
(ν)

r(k)]x(k) is stochastically stable.
2. For fixed α and M(ν)

i , minimize γ
(ν) subject to (13), Q (ν)4i > 0,

and

Ωi(α,M
(ν)
i ) < γ (ν)I,

γ (ν) ≥ −c,

where Ωi(α,M
(ν)
i ) is defined in (14), and c is any prescribed

positive real number. If a γ (ν)ltz ≤ 0 is found during solving
the convex optimization problem, then the system is SOF
stabilizable, and a control law can be obtained as (15). STOP.

3. Denote γ (ν)∗ as the optimal value of γ (ν). If |γ (ν)∗ − γ
(ν−1)
∗ | ≤ δ,

where δ is a prescribed tolerance, then goto next step, else
updateM(ν+1)

i as

M(ν+1)
i = (Q (ν)4i )

−1L(ν)i Ci,

and set ν = ν + 1, then goto step 2.
4. The systemmay not be SOF stabilizable. STOP (or choose larger
α and other initial valuesM(1)

i , then run the algorithm again).

Remark 6. The sequence γ (ν)∗ is monotonic decreasing with
respect to ν, that is, γ (ν)∗ ≤ γ

(ν−1)
∗ , and lower bounded from −c ,

and thus the convergence of the iteration is guaranteed.

Remark 7. The initial values M(1)
i are the state-feedback stabiliz-

ing controllermatrices, which can be found by existing approaches
(Costa et al., 1997; Ji et al., 1991). If no such matrices are found, we
can conclude immediately that the system is not SOF stabilizable.
Like many other iterative algorithms (Cao, Lam, & Sun, 1998; Cao,
Sun, &Mao, 1998; Fujimori, 2004;Gadewadikar, Lewis, Xie, Kucera,
& Abu-Khalaf, 2007; Iwasaki, 1999), the sequence of iterates de-
pends on the selection of initial values, and appropriate selection
of M(1)

i will improve the solvability. In addition, it should be em-
phasized that the tuning parameter α may affect the optimum of
the converged value γ (∞)∗ , although larger α make the condition
less stringent. More specifically, for α1 > α2, it is possible that
γ
(∞)
∗1 ≥ γ

(∞)
∗2 , which means that γ may not always converge to its

global minimum. According to the authors’ numerical experience,
α should be chosen between 103 and 106 for most cases.

Remark 8. For each iteration,Ωi(α,M
(ν)
i ) < 0 is no longer neces-

sary for the existence of the desired controllers, since α and M(ν)
i

are fixed. Therefore, it is expected thatH1i,H2i,G1i, andG2i are help-
ful for finding a lower γ (ν).

Remark 9. Due to the separation of the Lyapunov matrices and
the system matrices, the results can be extended to polytopic
uncertain model with parameter-dependent Lyapunov matrices
in a straightforward manner. If one is only concerned with the
model without uncertainties, one may eliminate H1i, H2i, G1i, and
G2i via the nonconservative projection (Boyd, El Ghaoui, Feron, &
Balakrishnan, 1994) to reduce computation burdens.

Based on the proposed approach, the problems ofH∞ control,
H2 control andmixedH2/H∞ controlwith the SOF controllers can
be readily treated under the same framework. Further results on
these topics are available in Shu et al. (2008).
By setting Q4i to be mode-independent, as stated in Remark 5,

and following the same derivation, we establish a necessary and
sufficient condition for mode-independent SOF stabilizability in
the following theorem.

Theorem 4. The system in (1) is SOF stabilizable by a mode-
independent controller if and only if there exist a scalar α > 0, and
matrices P1i = PT1i, P4i = P4 > 0, P2i, H1i, H2i, G1i, G2i, Q4i = Q4 > 0,
Li = L, Mi, such that, ∀i ∈ S, (13) and (14) hold. Under the conditions,
an SOF control law can be obtained as K = Q−14 L.
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An algorithm similar to themode-dependent case (Algorithm1)
can be constructed, but omitted here for brevity.

5. Optimization of initial values

As mentioned in Remark 7, the initial valuesMi and the tuning
parameter αmay affect the optimum of the iteration. To see this in
a detailed way, let us consider (16), namely,

−2αCTi K
T
i Q4iKiCi ≤ −2αC

T
i K
T
i Q4iKiCi

+ 2α(Mi − KiCi)TQ4i(Mi − KiCi).

It follows from this inequality that desired α and M(1)
i should

make ‖2α(Mi − KiCyi)TQ4i(Mi − KiCyi)‖ small. The reduction of α,
however, contradicts with the requirement of α being sufficiently
large, which makes the condition less stringent. Hence, the only
way is to reduce ‖M(1)

i −KiCi‖ by choosing appropriateM
(1)
i . To this

end, we provide the following proposition, which plays a central
role in selectingM(1)

i .

Proposition 2. For the system in (1) and matrices Fi, the following
statements are equivalent.
(I) There exist K ∗i , ∀i ∈ S, such that (2) is stochastically stable, and
‖Fi − K ∗i Ci‖ ≤ ε1, where ε1 > 0 is a sufficiently small scalar.

(II) x(k + 1) = (Ar(k) + Br(k)Fr(k))x(k) is stochastically stable and
‖FiC⊥i ‖ ≤ ε2, where ε2 > 0 is a sufficiently small scalar.

Proof. ((I)⇒ (II)) It follows from (I) that

‖(Ai + BiFi)− (Ai + BiK ∗i Ci)‖ = ‖Bi(Fi − K
∗

i Ci)‖

is sufficiently small, and stochastic stability of x(k + 1) =(
Ar(k) + Br(k)Fr(k)

)
x(k) can be inferred from this and stability

analysis provided in Costa and Fragoso (1993). In addition, we have
that

‖FiC⊥i ‖ = ‖FiC
⊥

i − K
∗

i CiC
⊥

i ‖ ≤ ε1 , ε2.

((II)⇒ (I)) It is noted that if rank(Ci) = mi < m, then Ci can
be QR-factorized as Ci = Ui

[
CT1i 0

]T , where Ui ∈ Rm×m is an
orthogonal matrix, and C1i ∈ Rmi×n is a matrix with full row rank.
Now define K ∗i as

K ∗i ,

{
FiCTi (CiC

T
i )
−1, if rank(Ci) = m,[

FiCT1i
(
C1iCT1i

)−1
0
]
UTi , if rank(Ci) < m,

which implies that FiCTi − K
∗

i CiC
T
i = 0, when rank(Ci) = m,

and FiCT1i − K
∗

i CiC
T
1i = 0, when rank(Ci) < m. By this and noting

C⊥1i = C
⊥

i , we obtain that

(Fi − K ∗i Ci)
[
CTi C⊥i

]
=
[
0 FiC⊥i

]
, rank(Ci) = m,

(Fi − K ∗i Ci)
[
CT1i C⊥1i

]
=
[
0 FiC⊥i

]
, rank(Ci) < m,

which, together with the invertibility of
[
CTi C⊥i

]
and

[
CT1i C⊥1i

]
,

infers to

‖Fi − K ∗i Ci‖ ≤ ε2maxi∈S

{
max

{∥∥∥[CTi C⊥i
]−1∥∥∥ , ∥∥∥[CT1i C⊥1i

]−1∥∥∥}}
, ε1.

Similar to the derivation in ((I) ⇒ (II)), we further obtain that
x(k+ 1) = (Ai + BiK ∗i Ci)x(k) is stochastically stable. �

On the basis of this proposition, a D-K type optimization
algorithm is provided to find appropriate initial valuesM(1)

i .

Algorithm 2.

1. Set ν = 1, and select matrices F (1)i , i ∈ S, such that x(k+ 1) =(
Ar(k) + Br(k)F

(1)
r(k)

)
x(k) is stochastically stable.
2. For fixed F (ν)i , find P
(ν)
i such that

(Ai + BiF
(ν)
i )T P̂ (ν)i (Ai + BiF

(ν)
i )− P (ν)i < 0.

3. For fixed P (ν)i , minimize ε
(ν) subject to[

−ε(ν)I #
F (ν)i C

⊥

i −I

]
< 0, −P (ν)i

(
Ai + BiF

(ν)
i

)T
P̂ (ν)i

P̂ (ν)i
(
Ai + BiF

(ν)
i

)
−P̂ (ν)i

 < 0.
4. Denote ε(ν)∗ and F (ν)i∗ as the optimal value of ε

(ν) and F (ν)i . If
ε
(ν)
∗ ≤ δ1, a prescribed tolerance, then desirable initial values
M(1)
i = F

(ν)
i∗ can be found. STOP.

5. If
∣∣∣ε(ν)∗ − ε(ν−1)∗

∣∣∣ ≤ δ2, a prescribed tolerance, then goto next

step, else set ν = ν + 1, F (ν)i = F
(ν−1)
i∗ , and goto step 2.

6. Desired initial values cannot be found. STOP.

It can be shown readily that ε(ν) is decreasing with respect to ν
and bounded from below by zero, and thus the convergence of the
iteration is guaranteed. The effect of the optimization algorithm
will be shown in the next section.
For the mode-independent case, we provide the following

proposition.

Proposition 3. For the system in (1) and matrices Fi, the following
statements are equivalent.

(I) There exists K ∗ such that (2) is stochastically stable, and
‖F− K ∗C‖ ≤ ε1, where ε1 > 0 is a sufficiently small scalar.

(II) x(k + 1) = (Ar(k) + Br(k)Fr(k))x(k) is stochastically stable and∥∥FC⊥∥∥ ≤ ε2, where ε2 > 0 is a sufficiently small scalar, where
F =

[
F1 F2 · · · Fs

]
, C =

[
C1 C2 · · · Cs

]
.

The proof is similar to that of Proposition 2, and thus omitted
here for brevity.

6. Numerical examples

Example 1. Consider a 2-mode Markovian jump system with the
following system matrices

A1 =

[1.5 0 2.0
1 0 0.5
0 0.2 −0.5

]
, A2 =

[ 1.8 0.5 2.0
−0.2 0.1 1.0
0.15 −0.2 −0.2

]
,

B1 =

[1.2 0
0 1.5
1 0.2

]
, B2 =

[ 0.1 0.9
−0.2 0.8
0.8 0.1

]
,

C1 =
[
1 0 1

]
, C2 =

[
1 1 −0.5

]
,

and a transition probability matrix Π =
[
0.6 0.4
0.7 0.3

]
. It can be ver-

ified easily that the system is not stochastically stable. Choosing
α = 105 and setting state-feedback stabilizing matrices solved
by the approach proposed in Ji et al. (1991) as initial values, a
γ
(2)
ltz = −0.6242 < 0 is obtained after one iteration, and a
mode-dependent SOF control law can be computed as K1 =[
−0.5270 −0.5989

]T and K2 = [
−0.6360 0.1013

]T . Further-
more, by employing Theorem 4 and the corresponding algorithm
with the same α and initial values, a mode-independent SOF con-
trol law K =

[
−0.3882 −0.4070

]T is obtained after one itera-
tion.
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Table 1
Numerical results for Example 3.

β = 2.9 β = 3.3 β = 3.7 β = 3.9 β = 4.0

Bara and Boutayeb (2005) with TC1 ×
*

× × × ×

Bara and Boutayeb (2005) with TC2 3 × × × ×

Lee et al. (2006) with TB1 × × × × ×

Lee et al. (2006) with TB2 3 3 × × ×

SA with 3 3 3 3 3

α (1 iteration) 9× 104 9× 104 9× 104 1.1× 105 1.11× 105

and obtained K
[
−0.9456
−0.1164

] [
−1.0607
−0.1852

] [
−1.1842
0.0005

] [
−1.1390
0.1125

] [
−1.2085
0.0898

]
* 3means a controller can be found, while×means cannot.
Example 2. This example is used to show how to optimize the
initial values. Consider a 2-modeMarkovian jump systemwith the
following system matrices

A1 =

[ 2 0.1 −1
0.9 0.2 0.5
−0.3 0.1 −0.1

]
, A2 =

[ 1.1 0.2 1.9
−0.2 0 1.0
0.1 0.2 0

]
,

B1 =

[
−1
0
0.1

]
, B2 =

[ 0.1
0
−0.5

]
,

C1 =
[
0.8 0.1 1

]
, C2 =

[
0 1 1

]
,

and a transition probability matrix Π =

[
0.1 0.9
0.6 0.4

]
. We firstly

found a set of state-feedback stabilizing matrices by the approach
in Ji et al. (1991) as M(1)

1 =
[
2.01 0.29 −1.16

]
and M(1)

2 =[
0.80 0.53 1.22

]
. With these initial values, no solution can be

found by Algorithm 1, and thus Algorithm 2 with F (1)i = M
(1)
i are

used to find new initial values. After 5 iterations, a set of
new initial values satisfying

∥∥∥M(1)
inewC

⊥

i

∥∥∥ ≤ 1 is obtained as M(1)
1new

=
[
1.91 0.21 0.85

]
and M(1)

2new =
[
0.49 0.61 0.70

]
. Then,

usingAlgorithm1withα = 104 and thenew initial values, aγ (2)ltz =
−0.5791 is obtained after one iteration, and a mode-dependent
SOF control law is computed as K1 = 2.6511 and K2 = 0.3863.

Example 3. When Markovian jumps disappear, the obtained
results are also applicable to linear discrete-time systems. Consider
the following discrete-time system cited from Lee et al. (2006):

x(k+ 1) =

[
β 0.3 2
1 0 1
0.3 0.6 −0.6

]
x(k)+

[1 0
0 1
1 0

]
u(k),

y(k) =
[
1 1 0

]
x(k). (17)

The larger β is, the more unstable the system (17) becomes. For
comparison,we take into account two recent LMI approaches (Bara
& Boutayeb, 2005; Lee et al., 2006), which both require full rank
constraints and coordinate transformation on the system matrix
B or C . For the approach in Lee et al. (2006), we choose the
transformation matrices

TB1 =

[0.5 0 0.5
−2 1 2
−1 0 1

]
, TB2 =

[ 0.5 0 0.5
0 1 0
−0.5 0 0.5

]
,

such that TB1B = TB2B =
[
I 0

]T . For the approach in Bara and
Boutayeb (2005), we choose the transformation matrices

TC1 =

[1 1 0
0 0.4 0.4
1 2 0

]
, TC2 =

[ 1 1 0
−0.5 0.4 1.4
0 0 0.2

]
,

such that CT−1C1 = CT
−1
C2 =

[
I 0

]
. For our system augmentation

(SA) approach, the initial valueM(1) is obtained by directly solving
the following LMI[
−X (AX + BL)T

AX + BL −X

]
< 0, (18)

and settingM(1)
= LX−1.

Table 1 gives the numerical results for different approaches.
It can be seen easily that the approaches in Lee et al. (2006)
and Bara and Boutayeb (2005) are sensitive to the choice of
the transformation matrices. These two approaches may not be
applied to Markovian jump systems in a straightforward manner,
since the full rank requirements on Bi or Ci may not be satisfied
for each mode, and finding appropriate coordinate transformation
matrices may not be an easy task. As for the conservatism, our
approach, at least for this example, gains the advantage over theirs
as well.

Example 4. In this example, we test different iterative approaches
using randomly generated systems. These approaches include
the widely used iterative LMI (ILMI) approach (Cao et al., 1998),
the cone complement linearization (CCL) approach (El Ghaoui,
Oustry, & AitRami, 1997), and a recently developed Newton-like
approach (Orsi, 2005; Orsi, Helmke, & Moore, 2006) for solving
rank constrained inequalities with better performance. For each
case of different system dimensions, 500 unstable SOF stabilizable
system with a stability degree ρ are randomly generated by
following the approach used in de Oliveira and Geromel (1997).
The closer of ρ to 1, the more difficult for the system to be
stabilized. For ILMI and SA, the maximal allowed iteration number
is set to 200, and the stopping criterion is when the relative change
of the objective function value is less than 0.0001. For LMIRank, we
use the default settings in the software provided by Orsi (2005).
For SA, α is set to 105, and the initial value M(1) is obtained by

solving (18) directly. If the iteration fails to find a solution with the
initial value, Algorithm 2 will be used to obtain an optimized one.
Since the considered models have no uncertainties, we eliminate
H1, H2, G1, and G2 in (14) via the nonconservative projection. For
LMIRank, the initial value will be generated and optimized via the
default trace heuristic provided in the software. For CCL, the initial
value will be generated by the standard approach provided in El
Ghaoui et al. (1997), and if it fails, the following traceminimization
procedure suggested in Iwasaki (1999)will be used to optimize the
initial value

Minimize trace(P + X), subject to
(C⊥)T (ATPA− P)C⊥ < 0,
((BT )⊥)T (AXAT − X)(BT )⊥ < 0,[
P I
I X

]
≥ 0.

For ILMI, the initial value is generated by the approach provided
in Cao et al. (1998). If it fails, the algorithm will be restarted with
another possible initial value.
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Table 2
Numerical results for Example 4.

(n, l,m, ρ) Failures Average CPU time
ILMI CCL LMIRank SA ILMI CCL LMIRank SA

(3, 1, 1, 0.99) 22 3 3 1 0.1831 0.3542 0.3674 0.2304
(4, 3, 1, 0.66) 19 0 0 0 0.2062 0.3968 0.5458 0.6075
(5, 1, 2, 0.99) 21 6 1 0 0.4408 0.6792 1.0184 0.3370
(6, 4, 2, 0.66) 5 0 0 0 0.5823 0.7651 1.4527 0.4412
(7, 1, 3, 0.99) 21 2 0 0 0.8311 1.8214 1.8078 0.8410
(8, 3, 4, 0.66) 70 0 0 0 5.2210 1.3887 2.9802 0.8156
(9, 1, 2, 0.99) 58 2 0 0 4.5650 2.3267 4.7001 1.7624
It follows from Table 2 that, for the ‘‘easy’’ cases, the 4
approaches work well except ILMI for (8, 3, 4, 0.66), whereas, for
the ‘‘difficult’’ cases, only SA remains possessing high solvability
with a mild increase in CPU time. On the whole, SA (that is, our
approach) performs best at least for the tested data. It should be
stressed that this rough comparison is NOT an accurate predictor
of algorithm performance. For specific problems in practice, it is
hard to declare that one approach is definitely better than another,
and one ought to make a choice according to different situations.

7. Conclusions

The SOF stabilization problem for discrete-time Markovian
jump systems has been investigated based on a novel repre-
sentation of the closed-loop system. By virtue of the repre-
sentation, a new characterization on stochastic stability of the
closed-loop system has been established in terms of ma-
trix inequalities. Necessary and sufficient conditions for mode-
dependent and mode-independent SOF stabilizability have been
proposed, and an iteration algorithm has been given for their so-
lution. An optimization to initial values may further improve the
solvability. Compared with some existing approaches to SOF syn-
thesis, the proposed one has several advantages that make it spe-
cific for Markovian jump systems. Numerical examples are used to
illustrate the effectiveness and merit of the theoretical results.
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