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ABSTRACT

The problem of identifying Hammerstein-like systems containing dynamic nonlinearities, of the switch
or backlash types, is considered. Interestingly, the nonlinearity borders are nonparametric borders (i.e. of
unknown structure) and so are allowed to be noninvertible and cross each other. A semi-parametric
identification approach is developed to estimate the linear subsystem parameters and m points on both
nonlinearity borders. It relies on two main experiments designed so that during each one, the focus is on
one lateral border exciting m specific points. Doing so, the initial nonparametric identification problem is
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1. Introduction

Nonlinear block-oriented models have proved to be useful in
capturing nonlinear behaviors of many physical systems e.g. Eski-
nat, Johnson, and Luyben (1991), Greblicki and Pawlak (2008), Kim
and Konstantinou (2001) and Palanthandalam-Madapusi, Bern-
stein, and Ridley (2006). They are composed of linear dynamic
blocks and nonlinear static operators connected together in several
ways. The most well known of such structures is the Hammerstein
model focused on in this paper (Fig. 1). Though several identifica-
tion methods have been developed for this class of models, most
of the solutions were developed supposing the nonlinear opera-
tor F[.] to be static. In such a case, one has u = F[v] & u(t) =
¢ (v(t)) for some function ¢(.); see e.g. Hasiewicz, Sliwinski, and
Mzyk (2008) and the references listed therein. The proposed solu-
tions can be classed into two categories depending on the nature
of the function ¢(.). The first one includes methods addressing the
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decomposed into two simpler problems involving static parametric nonlinearities. The new problems are
dealt with independently using least squares type estimators. It is formally shown that the experiments
generate persistently exciting signals ensuring the consistency of all involved parameter estimators.

case of parametric nonlinearities i.e. ¢(v) = ¢y (v). Then, the iden-
tification purpose is to estimate all unknown parameters, those of
the linear subsystem and those of the nonlinearity. The function
@ (v) may be linear in the unknown coefficient vector 6 (Bai &
Li, 2004; Narendra & Gallman, 1966; Stoica, 1981; Stoica & Soder-
strom, 1982) or nonlinear (Bai, 2002; Giri, Chaoui, & Rochdi, 2004;
Voros, 1997 and Gu, Bao, & Lang, 1988). In the case of nonparamet-
ric nonlinearity, the aim is to estimate the linear subsystem param-
eters as well as a finite number of points (vi, (v;)) (i=1,...,m)
of the nonlinearity characteristic, (Chaoui, Giri, Rochdi, Haloua, &
Naitali, 2005; Giri, Chaoui, & Rochdi, 2001; Greblicki & Pawlak,
2008, 1994; Hasiewicz & Mzyk, 2009).

The identification of Hammerstein-like! systems with dynamic
nonlinearities is a more challenging problem. In this work, the fo-
cus is made on backlash and switch operators. These behaviors
characterize many physical systems, especially mechanical equip-
ments involving Coulomb’s friction (switch) or gears (backlash).

1 The Hammerstein model was introduced in 1930 by the German mathemati-
cian Hammerstein (1930). It is composed of a ‘static’ nonlinear element followed in
series with an integral operator. In the present work, the model has the same struc-
ture as the Hammerstein model but it involves dynamic nonlinearities. Then, it is
referred to “Hammerstein-like”.



For instance, it is well known that transmission systems cannot
work without backlash i.e. the clearance between mating com-
ponents, sometimes also called lash or play. In the discrete-time
context, the switch and backlash behaviors can be described by a
first-order difference equation of the form: u = F[v] & u(t) =
@ (u(t — 1), v(t)). Accordingly, the value u(t) of the inner signal
at a given time is not uniquely determined by the value v(t) of
the input at the same instant. The function ¢(., .) is such that
the working point (v(t), u(t)) only moves along two fixed curves,
(v, Cg(v)) and (v, C4(v)), and (in the backlash case) on horizon-
tal lines connecting these curves (Figs. 2a-2b). As the movement
takes place on (v, C;(v)) when the input signal v(t) increases and
on (v, Cy(v)))when v(t) decreases, these curves are referred to ‘as-
cendent’ and ‘descendent’ borders. Few solutions are by now avail-
able for Hammerstein-like system identification in the presence of
switch and backlash elements (Bai, 2002; Chaoui et al., 2005; Giri,
Rochdi, Chaoui, & Brouri, 2008). Furthermore, the existing solu-
tions have focused on nonlinearities bordered by straight lines. The
identification problem has been dealt with using separable nonlin-
ear least squares (Bai, 2002), the bounded error method (Cerone &
Regruto, 2007) or periodic excitation based approach (Giri, Rochdi,
Chaoui et al., 2008). The last method has recently been adapted to
backlash elements with polynomial borders (Giri, Rochdi, Elayan,
Brouri, & Chaoui, 2008). In this study, we develop a quite dif-
ferent and more powerful identification approach to cope with
general switch and backlash nonlinearities (Figs. 2a-2b). The
originality lies in the fact that the nonlinearity ascendent and de-
scendent borders, C, and Cy, are not necessarily straight lines. This
phenomenon does exist in practice as shown by Fig. 3. There, the
leaf-spring and Coulomb friction coefficients are let to be what they
really are i.e. nonlinear functions of the position x. This leads to
the switch behavior with nonstraight borders (Fig. 3c). More inter-
estingly, the present study allows the borders to be nonparamet-
ric, noninvertible, nonsmooth and crossed by each other (Fig. 4).
Allowing borders’ crossing constitutes a quite useful feature of
the present study. Actually, any identification method conceived
for Hammerstein-like systems with switch/backlash nonlinearities
must be able to work well in the presence of static nonlinearities.
Obviously, static nonlinearities can simply be viewed as dynamic
nonlinearities with superposed (ascendent and descendent) bor-
ders. But, superposed curves are crossing at an infinite number of
points. On the other hand, it is useful to account for nonmonotonic
borders because this may arise when a component gets defective
modifying the operation mode of the system it belongs to. Then, an
identification approach that is able to identify such behavior can be
used in fault detection and diagnostic whenever switch/backlash
nonlinearities are involved. The identification purpose is the de-
termination of the (parametric) linear subsystem model as well as
m points on each border of the (nonparametric) nonlinearity. The
abscissas of these points are arbitrarily selected in a given work-
ing interval, denoted [v, vy] (with —oc0 < vy, < vy < 400).
Our identification method consists of two independent, but
structurally-symmetric, identification schemes. The first one,
called descendent identification scheme (DIS), determines m
points located on the descendent border C; as well as the param-
eters of the linear subsystem. The second, referred to ascendent
identification scheme (AIS), determines m points located on the as-
cendent border C, and the parameters of the linear subsystem. The
two identification schemes operate independently and can be used
separately. Each scheme relies on one major experiment designed
so that, within the created operational conditions, the considered
nonparametric dynamic nonlinearity can be assimilated (with no
error) to a parametric static nonlinearity reducing considerably the
complexity of the identification problem. The key idea is to use
pulse-type periodic input signals so that only the points of inter-
est are excited on each border. Two fully parameterized identifi-
cation problems are thus got and dealt with separately, using least

&) l
1

Nonlinear Linear Ag - )
operator subsystem
- (1)
v(@®) FL] 4@} B(g I)
A(q )

Fig. 1. Hammerstein-like model.

Fig. 2b. General backlash nonlinearity.

squares type estimators. The pulse nature of the input signals is for-
mally shown to provide these estimators with persistent excitation
guaranteeing their consistency. The paper is organized as follows:
the identification problem is formulated in Section 2; in Section 3,
we synthesize the descendent identification scheme and analyze
its consistency; the ascendent identification scheme is briefly de-
scribed in Section 4.

2. Identification problem statement

2.1. Class of identified systems

We are interested in discrete-time systems that can be de-
scribed by the Hammerstein-like model (Fig. 1):

A(@ My (t) = B(g Hu(t) + &(t) withu = F[v]

AqH=14+aq "+ +aq™
Blg ") =biqg '+ +bq "

where v(t) and y(t) designate the system input and output; u(t)
is an internal signal inaccessible to measurement; {£(t)} is a zero-
mean stationary sequence of independent equally distributed ran-
dom variables. The linear subsystem is stable, controllable and of
known order n. Controllability of (2.1) is ensured if A(g~!) and
B(q™") are coprime; this will be used to establish persistent exci-
tation (Appendix). The nonlinear operator F[.] is either a switch
or backlash element characterized by its descendent and ascen-
dent lateral borders (v, C4(v)) and (v, C4(v)), respectively. These

(2.1)

(2.2)
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Fig. 3. (a) Leaf spring suspension system exhibiting the switch behavior. (b) Ideal situation with constant coefficients Fc and ky. (c) Real situation where Fc and k, are
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Fig. 5. Example of unsuitable choices of the working interval [v, vy] when
backlash nonlinearities are considered. In this example, none of the borders can
be identified as a constant signal u(t) is rapidly obtained when v(t) spans [vy, vy].

borders assume no particular structure (unlike in Bai (2002), Giri,
Rochdi, Elayan et al. (2008) and Chaoui et al. (2005)) and we seek
their identification within a given working interval [v,, vy]. This
may be arbitrarily chosen in the case of switch nonlinearities.
When a backlash element is concerned, the working interval must
be sufficiently large to make possible the identifiability of both bor-
ders. This point will be made precise latter. Let us first model the
switch nonlinearity.

Switch operator modeling. In this case, the working point (v(t), u(t))
moves either on C4(v) or C,(v), but never outside. It simply jumps
from one border to the other each time the sign of the increment
(v(t) — v(t — 1)) changes. Analytically, a switch element u = F[v]
is simply described by the following expression:

Co(v(t)) ifv(t) >v(t—1)
u(t) =3Jut—1 ifv@)=vt—-1) (2.3)
Ca(v(t)) ifv(t) <v(t—1).

Backlash operator modeling. In the backlash case, the working point
(v(t), u(t)) moves not only along the lateral borders but also on

horizontal lines connecting these borders. To make clear the op-
eration mode, suppose that the working point (v(t), u(t)) (v, <
v(t) < wvy) is currently moving along the border C,(.), which
means that the input signal v(t) is increasing. If v(t) changes it
variation sense at a time t, then the working point will leave the
current border (C,;(.)) and moves horizontally towards the oppo-
site border C4(.). If the input keeps decreasing a sufficiently long
time, the working point (v(t), u(t)) should get to the opposite bor-
der C4(.) and moves along it. For the point (v(t), u(t)) to actually
reach the border Cy4(.), the working interval must be sufficiently
wide as this is illustrated by Figs. 2b and 4. In such cases, a full
exhibition of the backlash behavior is ensured whenever the in-
put signal v(t) fully spans the interval [v,, vy] several times in
both senses. Then, the trajectory of the working point (v(t), u(t))
is a closed (and connected) cycle including the lateral branches
{(v, GG(v)), vm < v < vy} and {(v, G(v)), vy < v < vy} as well
as the top and bottom horizontal straight lines connecting the
above branches (Fig. 7). The opposite case (i.e. not sufficiently wide
[vm wvn]) is illustrated by Fig. 5 (see also Remark 1, Part b). To
formalize the wideness requirement, we need the following nota-
tions:

Umin = N lgfv (Cd(v)7 Ca(v))
m=V=Uym
Umax = Sup (Cd(v)7 Ca(v))
Un<UV=Uym
Ca(vo_) = Ull)% Ca(v) and Ca(U(T) = Ull)% Ca(v)
l7<l70 l7>l70

Ca(vg) and Cd(vgr) are similarly defined. It is clear that C,(vy) =
Ca(vg) = Ca(vo) (resp. C4(vy) = Ca(vg) = Ca(vo)) whenever C,
(resp. Cq) is continuous at vg. Introduce also the definitions:

Crla) € {v/ min(Cy(v), Cvh)) < u < max(Ca(v™), Cawh))};
¢ ) € {v/ min(C,(v), 1)) < u < max(Cu(v™), CiwH))).

The distinction between v~ and v* in the above expressions is
considered to deal with noncontinuous functions C, and Cg. In
the case of continuous borders, the above definitions simplify to
the usual expressions: Cd_l(u) = {v/u= G(v)} and Ca‘l(u) =

{v/u=GC(v)}.

Assumption 1 (Backlash Only). The working interval [v,, vy] must
be wide enough so that, when the input signal spans this interval
several times, in both senses, the measured output does not remain
constant (up to noise effect) after a transient period. This statement
is formalized as follows:

(a) Yu € [Umin, Umax], v € [max Cd_l(u) vy ] such that:
min(Co(v7), Cu(v™)) < u < max(G(v7), Go(v™h)).

The above expression obviously reduces to u = C,(v) when C,
is continuous at v.



(b) Yu € [Umin, Umax), IV € [vm min C; ' (u)] such that:
min(Cs(v7), Ca(v")) < u < max(Ca(v™), Ca(v™)).

Of course, the above expression simply reduces to u = C4(v) if
Cy is continuous at v.

Under such assumption, a backlash element u = F[v] undergoes
within the working interval [v,,, vy ] the following equation:

Ca(v(t)) ifv(t) < max{[vy, v(t — 1)]N C;l(u(t - 1)}
u(t) = § Gu(t)) ifv(t) > min{{v(t — 1) vy] N Ca’l(u(t — 1)} (2.4)
u(t — 1) otherwise.

The above system description is completed with the following
assumption:

Assumption 2 (Switch and Backlash). The functions C, and C; are
bounded in the interval [vy,;, vy] and satisfy the property:

tm Z Ca(vm) # Calom) L up. (2.5)

Property (2.5) simply ensures that, when v(t) jumps from vy, to vy
(or vice versa) the internal signal u(t) = F[v](t) changes value.
This property is subsequently based upon to produce persistent
excitation at the entry of the linear subsystem.

Remark 1. (a) The mathematical definitions of the switch and
backlash nonlinearities (i.e. Eqs. (2.3) and (2.4)) are introduced for
completeness of the present treatment. In particular, (2.4) may
look somewhat complex for not familiar readers. For this reason,
the forthcoming developments are presented in a way that makes
them comprehensible knowing only the intuitive behaviors of
the switch and backlash operators as these were commented on
previously.

(b) The somewhat complex appearance of Assumption 1 comes
from the fact that the mathematical formulation must apply
to complex cases i.e. nonlinearities with noninvertible and/or
noncontinuous borders. Recall that this assumption only concerns
the backlash case and is introduced to ensure (in that case) the
identifiability of the nonlinearity borders. Specifically, situations
like those illustrated by Fig. 5 must be discarded. The question is:
how these situations can be recognized in practical applications?
This is answered noticing that when v(t) spans the interval
[vm vm] several times in both senses then, just after one cycle,
the signal u(t) becomes constant. Consequently, the working point
(v(t), u(t)) moves along a horizontal segment located between
by the points (v, uy) and (v, uy) in Fig. 5. In the light of this
observation it is seen that, in situations like that pointed out by
Fig. 5, if v(t) spans (several times in both senses) a not sufficiently
wide interval [v,, wvy] then the system output y(t) becomes
constant (up to noise effect) after a transient period.

(c) Except for Assumptions 1 and 2, the bordering functions
Cq(.)) and C4(.) can be arbitrary. In particular, they may be
noninvertible and nonsmooth making possible to take into
consideration rely-type nonlinearity (Fig. 6). Interestingly, the
nonlinearity borders are even allowed to cross each other (Fig. 4).
Therefore, the present work clearly represents a major progress
compared to previous works (Bai, 2002; Cerone & Regruto, 2007;
Chaoui et al., 2005; Giri, Rochdi, Chaoui et al., 2008; Giri, Rochdi,
Elayan et al., 2008).

2.2. Identification objective and relevance of periodic exciting inputs

The purpose is to determine, as accurately as possible, both
the linear parametric subsystem model B(g~')/A(g") and the
nonlinear dynamic operator F[.]. Since the latter is nonpara-
metric, the last objective amounts to determine a finite set of

Uy

Un

Fig. 6. Relay type operator.

points on each lateral borders. This is the usual practice when
nonparametric nonlinearities are concerned. The points of in-
terest are respectively denoted {(V/", C4(V));j=1,...,m} and

{vr, GVM)i=1,..., m}. The number m is chosen by the
user and may (in theory) be arbitrarily large. The abscissas
{vi,...,vi@}and {V{,..., V&} arearbitrarily selected by the user
within the working interval [v;,, vy ]. A common difficulty to all
Hammerstein systems lies in the inaccessibility of the inner se-
quence u(t). System identification then must solely relies on the
available data, namely the measurements of v(t) and y(t). A spe-
cific difficulty to the case of switch/backlash nonlinearities is that
the working point (v(t), u(t)) can move along both nonlinear-
ity borders and, in the backlash case, also along horizontal paths
connecting these borders. Obviously, the shape of the trajectory
{(w(), u(t)),0 <t < Ty} (for a given T, > 0) differs from one
experiment to an other, depending on the input signal. Presently,
periodic signals are privileged not only for their simplicity but also
because they generate steady-state limit cycles. Limit cycles that
coincide with one (and only one) of the nonlinearity borders are
presently preferred, because the operator F[.] can then be assimi-
lated to a static nonlinearity. As a matter of fact, not any periodic
input signal leads to such kind of limit cycle. To illustrate this point,
consider the following simple triangular signal (of period T):

Vi fort=t+(G—DT/2p;j=1,....p

Vi fort=t+(G—DT2p;j=p+1,....2p (26)

v(t) = {

wheret, = kT (k =0, 1, 2, ...) and p is any positive integer such
that (T/2p) is in turn an integer. The Vj“'s and de's are such that
v < V! < VI < -0 < V; = vy and vy > V§+1 > V§+2 >
- > Vzd = vp,. This signal increases from v, to vy during the
first half of each period and decreases from vy, to v, during the
rest of time. The working point (v(t), u(t)) then spans the limit cy-
cle including the lateral branches, {(v, C;(v)), vm < v < vy} and
{(v,C4(v)), vy = v > vy}, and, in the backlash case only, the two
(top and bottom) horizontal lines connecting these borders (Fig. 7).
If the inner signal u(t) were accessible to measurement, then the
above experiment would make it possible to determine a finite
number of points of the above lateral branches based on the mea-
surements of (v(t), u(t)) and get an input-output representation
(of the linear subsystem) involving linearly the unknown param-
eters (a;, b;). Unfortunately, u(t) is not accessible and is not nec-
essarily persistently exciting (this in fact depends on the shape of
the nonlinearity branches). This discussion emphasizes how much
challenging the identification problem is when switch/backlash
nonlinearities of arbitrary shape are involved. Then, it is not ob-
vious to get limit cycles consisting of one (and only one) border.
The present work aims at designing experiments such that the
switch/backlash nonlinearity can actually be assimilated to a static
nonlinearity and the involved excitation is persistent.



3. Descendent Identification Scheme (DIS)

The DIS is conceived to determine the linear subsystem
parameters (a;, b;) as well as m points located on the nonlinearity
descendent border. The number m and abscissas of points are
arbitrarily chosen by the designer (within the interval [v,, vy]).

3.1. Descendent Periodic (DP) experiment

The DP-experiment involves a T-periodic input v%(t) such that,

forallty, =kT (k=10,1,2,...)and allt € {t, ..., ty,r1 — 1}:
d .
drpy VJ fort =t +1;j=1,...,m
i) = {UM otherwise G.1)

where the real numbers V" are such that v, = V{{ < V§ < ... <
V,;i1 < vy and the m integers ; satisfy:

1n>1, 1-751>2(=2,...,m) and T, <T.
The input signal v9(t) is a pulse type because it equals vy all time
except at instants ty + 7; § = 1,2,...,m). At these instants
the input takes different values, namely V? € {v{, vy, ... vd},
which all are smaller than vy. Fig. 11 iflustrates the shape of
this class of signals. In view of (2.3)-(2.4) and Assumption 1
(or simply inspecting Figs. 2a-2b), it follows from (3.1) that
the working point (v%(t), u(t)) never gets to the ‘ascending’
branch {(v, C;(v)), vim < v < vy}, except for the particular point
(v, upy) (the only of that branch that is presently excited). Fur-
thermore, note that the working point moves like in a ‘satellite-
communication’ process i.e. it never goes directly from one position
(V{, Ca(vh) to the nextone (Vf,, C4(Vfi, )); it must transit by the
‘satellite’ position i.e. the point (vy, up) (Figs. 8a-8b). It is clearly
seen that the working point (ve(t), u(t)) stays all time within a
limit cycle, denoted D, and referred to ‘descendent limit cycle’. In
the case of backlash nonlinearities, D). is composed of the descen-
dentbranch { (v, C4(v)), vm < v < max C; ' (uy) } and the top hor-
izontal line connecting the above branch to the point (vy, uy). In
the switch case, D). is composed of the single point (vy, uy) and
the descendent branch {(v, C4(v)), vm < v < maxCy '(uy)} de-
limited by the vertical lines v = v;; and v = max Cd_l(uM) = vy
In both cases, the domain Dj is a simple curve inducing a
standard function, denoted F?(.), such that D, = {(v, F?(v)),

um < v < vy }. Specifically:

Ca(v)  if vy < v <maxC; ' (uy)

3.2
Uy if maxCd_l(uM) < v <uy. (3.2)

Fl(v) = {
The data collected in the DP-experiment will next be used to
estimate the points (V/', F/(V)) (i = 1,2, ..., m), as well as the
linear subsystem parameters (a;, b;).

Remark 2. [t is seen (Fig. 8b) that, for switch nonlinearities, all
m points (V{, F(V")) are located on the descendent border. In

the backlash case (Fig. 8a), some of the m points (V, F*(V")),
specifically those with higher abscissas, may be on the horizontal
segment delimited by the points (max Cd_l(uM), uy) and (vy, uy).
To enlarge the set of useful points (those belonging to the
descendent branch), the abscissas de should not be too close to
vy. The pulse and nonmonotonic nature of the sequence (3.1) will
prove to be crucial in making this sequence persistently exciting
(Theorem 3.1, parts 1 and 2). If the aim of the experiment were
simply to keep the point (v(t), u(t)) moving on the descendent
border, one could use simpler sequences.

v

Fig. 7. Complete limit cycle obtained, with backlash operators, when v(t) spans
the interval [v,, vy] several times in both senses.
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Fig. 8a. Movement of the working point (v(t), u(t)) on the limit cycle D, during
the DP-experiment—case of backlash nonlinearity.
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Fig. 8b. Movement of the working point (v(t), u(t)) on the limit cycle D;. during
the DP experiment—case of switch nonlinearity.

3.2. System parameterization

DPE-model. It has already been mentioned that the trajectory of
(v4(¢), u(t)) stays all time on Dj., occupying there the specific
positions: (vy, uy) and (V, FY(V{)) (j =1, ..., m). Then, during
the DP-experiment, the quantity F¢(v¢(t)) may be substituted to
F[v9](t) in the initial model (2.1) yielding a new model, referred to
DPE-model:

A(@ Hy(®) = B(g HF'(v(D) + £(t) withv(®) =v'(t)  (3.3)

where F4(.) is defined by (3.2). Note that the substitution of
F4() to F[.] involves no error. Furthermore, the fact that the
couple (v4(t), F4(v%(t))) only occupies the positions (vy, uy)



and (V/, F/(V)) G = 1,...,m) will make it possible to fully
parameterize the model (3.3). In order to achieve such full model
parameterization, F9(.) is first centered so that the obtained
centered nonlinearity, denoted Fd(.), satisfies Fd 0) =0.
DPE-model centering. Let yg(t) denote the response of (2.1) to the
following step input:

(3.4)

def | v ift=0
u(t) = vl = {UI"\; > 1.

It follows from (2.3)-(2.4) (or alternately from Figs. 8a-8b) that
ud(o) o F[vd1(t) = upy, for all t > 1, whatever ud(0). As the
point (vy, uy) belongs to the domain D, one also has ug(t) =
F4(vd(t)) = uy, forall t > 1. Therefore, the couple of signals v (t)

and yg(t) can be related by the general model (2.1) as well as by
the DPE-model (3.3). Thus, one has forall t > 1:

A(@ y5(6) = Bl@ Hug () + &5(©) (35)
where sg(t) denotes the realization of &£(t) during the present
experiment. As ug(t) = uy (forallt > 1)it follows time-averaging
both sides of (3.5) (over the interval 1 < t < L) that?:

A F5(L) = B() up + &5 (L). (36)
As sg(t) is zero mean and ergodic, one has ég(L) — 0asL — oc.
Then, it follows from (3.6) that:

A(D) 73 = B(1) uy (3.7)

where y¢ denotes the limit of y4(L) when L — oo. Practically,

378 can be computed from a large data sample {y(t),t =1,..., L}.
Subtracting both sides of (3.7) from the corresponding sides in
(3.3), gives:

forallt > 0
A@™") (y® = ¥5) =B@ ) (F(®) — um) + & (0). (38)
For convenience, let us introduce the following notations:

O Lo —om, 7O ZL yo -, (3.9a)
Flw) € Fw + vy) — up. (3.9b)
It is readily seen that:

FL o) € F (u(t)) — up. (3.9¢)

Then, (3.8) can be given the following compact form, called
centered DPE- model:

A(@ Hy(t) = B(a~ ) F1 (5(0)) + £(D). (3.10)

Note that the Hammerstein-like model (3.10) holds solely within
the DP-experiment context (i.e. when v = v?).Itinvolves the static

nonlinearity 1:“1(.) that is analytically defined in (3.9b). Further-
more, using (3.2), (3.9a) and (3.9c), one readily gets:

Fl)=0
FIWY) =t —uy #0

(3.11a)
(3.11b)

with W{i « Vld — Uy = Up — Up.
The fact that u,, — uy; # 0 is guaranteed by Assumption 2.
Properties (3.11a)-(3.11b) will prove to be crucial in achieving a

2 Throughout the paper, x(L) denotes the arithmetic average of a sequence x(t)
over the time interval [0 L] i.e. X(L) = % Zf;é x(t).In the case of stationary ergodic

random sequences, one has E (x(t)) = lim;_,, x(L), for all t.

persistent excitation property (Theorem 3.1). For now, recall that
the Hammerstein model (3.10) is not uniquely defined. Indeed, if

the triplet <A(q‘1), B(g™V), Fd[.]) is representative of the system,

then so is any triplet of the form <A(q‘1), KB(g™1, F‘d[.]/K) with
K # 0.

To get off of such model multiplicity we will, from now on, focus
on the unique model that satisfies>:

Flwd = —1. (3.11c)

The existence and uniqueness of such model is guaranteed by
(3.11b). Recall that the initial identification purpose is to determine
the coefficients of the polynomial pair (A(g~!), B(g~!)) and the m
points (V{, FY(V)) = 1,2,...,m) of the Fi-graphical charac-
teristic. It follows from (3.9b) that the last requirement amounts
to determining the following m points of F:

WL W) j=12,....m (3.12)
with W 2 v — uy.

To this end, we let v(t) = v?(¢) so that 5(t) = o(t) ¥

vi(t) — vy is in turn a pulse-type periodic signal with the same
period as v9(t). Specifically, one obtains from (3.1) and (3.12) that,
forallty =kT (k=0,1,2,...)andall t; <t < tgs1:

d
() = {(‘;VJ

where the t’s are as in (3.1). Clearly, v4(t) takes values in
the set {0, Wjd;j = 1,2, ..., m} and, consequently, the trajectory

fort=t,+1,j=1,2,...,m

otherwise (3.13)

(), Fd(ﬁd(t))) t> O] consists of m 4 1 points: the m points
of the set in (3.12) and the origin (0, 0). Therefore, the function

F d(p4(t)) can be given (within the present experiment context) an
exact representation with a mth-degree polynomial.

Polynomial representation of F?(i(t)). Let P%(w) denotes the
unique mth-degree polynomial interpolating the set of points
including the origin (0, 0) and (W¢, Fd(M/jd)); G=1,2,...,m).
Such polynomial is described using the Vandermonde formula:

m

Plw) =w Y c'P(w) (3.14a)
j=1

Fiwy) def 1o w — W

d j d ef w i

cd = - Pl BT — 3.14b

] ijd J ( ) L ijd _ Wid ( )

i

It is easily seen that:

d dy __ g def 1 ifi =]

Pj W) =6 = {O ifi £ j (3.15)

PY0)=0; P'WH=F'W'): j=1....m (3.16)

Presently, 9(¢) only takes values in the set {0, W;j = 1,2,

..., m}. Then, we have F¢(74(t)) = PU(v*(t)), for all t. Therefore,
P4(%9(t)) can be substituted to F¢(3%(t)) in the DPE-centered
model (3.10), implying for all t > 0:

A@ Hy(®) = B(@ HP!@U(D) + £(©). (3.17)

30f (3.11¢) is not satisfied then (3.11a)-(3.11b) suggests that we focus on the
unique model (A(q™"), KB(qg™"), F4/K) with K = —(u, — uy).



The main advantage of (3.17) (over (3.10)) lies in the parametric
feature of its nonlinearity (i.e. P4(.)) making possible the achieve-
ment of regression forms. It is worthy pointing out that the passage
from (3.10) to (3.17) entails no error, as long as the system is ex-
cited by the input sequence v(t), generated according to (3.1).

DPE regression form. Using (3.14a), one obtains from (3.17):

A I =YY uh o — D@~ ) + 80

i=1 j=1

(3.18)

with ,ufj =b; cjd. Eq. (3.18) is given the following linear regression
form:

J(t) = 24T @4 + £(1) (3.19a)
') =[-yt—1)... = J(t —n)

54t — DPIEU(E — 1)) ... 54t — n)PI(D(t — n))

54t — DPL @t — 1)) ... 2t — n)PL (@4 (t —n))] (3.19b)
0! = [ar ... ap pnfy oooopndy pdo ,ugm]T. (3.19¢)

As ©¢ comes in linearly, Eq. (3.19a) turns out to be an adequate
parameterization to get estimates of the parameters a; and ,uf}.

But, the question is how to recover estimates of (b;, cjd) from those

of ug? A subsidiary question is how to recover F(V) from the
previous estimates? These questions are now answered making
use of the available information. First, one gets from (3.14b) and
(3.11¢):

szFd(wld) =_L.
wi wi

(3.20a)

That is, the coefficient c‘li is perfectly known (because so is Wld).
Then, using (3.18) one obtains:

d
_ Hix

d
51

b; =—uhwd (i=1,....n). (3.20b)

The c¢®s are in turn obtained multiplying the second equation
in (3.18)7 by b; and summing the resulting equalities over i =
1, ..., n.Doing so, one gets:

n
Z b; M?j
o = ‘=1n G=2,...,m). (3.20c)
> b

Finally, (3.14b)-(3.16) yields Fd(M/jd) = ¢'W/ which, together
with (3.9b), (3.12) and (3.7), implies:

Al
(V) = ctw? (_))—’d

B(1) 0o (G=1,...,m).

(3.20d)

3.3. Parameter estimation

Based on the regression (3.19a)-(3.19c), the vector ®¢ can be
estimated using the least squares estimator:

N -1 N
OUN) = [% Z <1>d(i)<1>d(i)Ti| [% Z <Dd(i)j/(i)Ti| . (321)
i=1 i=1

Estimates a;(N), 1;;(N) of a; and p;; are immediately obtained
from (:)d(N), using (3.19c). Then, relations (3.20b)-(3.20d) suggest

the following estimators for b;, ¢; and Fd(de) Gi=2,....,mi=
1,...,n):

bi(N) = —n(N)WE (i=1,...,n) (3.22a)
> bi(N)2(N)
Ny =" (=2,....m) (3.22b)
> b
i=1
Fi, N = Nnw! + Ad, N)yg(N). (323)
B(1,N)

To show that all estimators are consistent, let us consider the
undisturbed version of model (3.17), i.e.

A(q ") z¢) = B(gHP!@4(t)).

Introduce the following undisturbed version of the regression
vector @4(t):

220" =[-2¢t—-1)...— 2%t —n)
b4t — DPI@E — 1) ... 54t — n)PL (@4 (t — n))

(3.24a)

24t — DPL @t — 1)) ... 2%t —n)PL @I (t —n))].  (3.24b)

With these notations, the main consistency results are formulated
as follows:

Theorem 3.1. Consider the system (2.1), subject to Assumptions 1
and 2, and excited by the periodic signal v®(t) defined by (3.1). Let
the period T and the numbers t; in (3.1) be chosen as follows:

T =n(m+ 3);
=@2+hHn

71 = 2n;

G=2,...,m). (3.25)

(1) The state vector Z%(t), defined by (3.24a)-(3.24b), has the
following strong persistent excitation property:

T
sz(rk + 2%t + )" > AL, forallk
i=0
where I denotes the identity matrix (with appropriate dimension)
and A > 0 is a real constant.

(2) The state vector ®°(t) defined by (3.19b) possesses the following
weak persistent excitation property:

1N
lim — ) &4 t) 1 p.1
NLHQON; ®'0" > pI, w.p.1,

for some real constant 8 > 0.

(3) The estimators (3.21) to (3.23) are consistent i.e. (:)d(N), B,-(N),
Ejfi(N) and Fd(de, NYGi=1,...,n,j=1,...,m)all converge
(w.p.1) to their true values.

Proof of Part 1. This part is the key step towards the aimed
consistency results. The main difficulty to prove it lies in the
fact that the regressor @¢(t) in (3.19a) depends nonlinearly on
the input sequence v4(t) i.e. (3.19a) is not a linear regression
though ®9(t) comes in linearly. The same remarks apply to
Z4(t) in (3.24a)—(3.24b). The detailed proof that Z¢(t) is strongly
persistently exciting (Part 1) is a bit long and technical. To alleviate
the paper presentation, that proof is placed in the Appendix. Note
simply that it relies on a technical lemma in Giri, Chaoui, and
Rochdi (2002) where interval excitation by impulse sequences is
analyzed.



Proof of Part 2. Comparing, on one hand, (3.17) and (3.24a) and,

on the other hand, (3.19b) and (3.24b), it follows that:
"()+ E(t—n)0...0]"

oU(t) = (5 —=1)..

-1
Y 7906) + x(t — 1).

Squaring both sides of (3.26) and summing the obtained equalities

(3.26)

overt =1,...,N,gives:
1d

d d T
N ;71 D5 (t) P°(t)

N

L o P e L
=52 2020+ S

N
Y oxe=x-1"
t=1

1 & 1 &
+—§ zd(r)x(r—l)T+—§ xt—10z40".  (3.27)
N t=1 N t=1

As the sequence {£ (t)} is ergodic and uncorrelated with z%(t), the
last two terms on the right side of (3.27) converge in probability to
zero as N — oo. Then, one gets:

N

. 1

11m Z o) olt) = N11—>H;o N
=1

—)OO

N
P AGYAGY
t=1
li 1y t—1D xt =17
+N1—>H;oﬁ ;X( -Dxt-1

1N
> lim — Y z4t)z4e)T.
—NLHQON; GYAG)

This, together with Part 1, proves Part 2 using the fact that ;. ; —
ty =T (Vk).

Proof of Part 3. It is well known that the least squares estima-
tor (3.21) is consistent in the presence of the persistent excita-
tion property of Part 2. Furthermore, comparing (3.22a) and (3.20b)
yields B,-(N) —b; = (i1 — i1 (N)) Wld. The consistency of (3.22a)
is a direct consequence of the consistency of (:)d(N) (as this partic-
ularly ensures that u;1 — 11 (N) converges in probability to zero as
N — o0). The consistency of (3.22b) is proved similarly using the
fact that both [i;1(N) and B,-(N) are consistent estimators. Finally,
comparing (3.23) and (3.20d) yields:

rd oy ,d dysd
B v Ny — FUv

A(1,N) _,

A(l
= \/de (ff(N) _cjd) + 5 A(1) 7.

LNy 0 T By

The consistency of (3.23) then follows from the consistency of
&(N), &(N), b(N) and J4(N) O

3.4. DIS practical considerations

Practical procedure. The application of the DIS is performed follow-
ing the next steps:

1. Working interval choice. The interval [v,, vy] is arbitrary in
the presence of switch operators. In the backlash case, [v,;, vy]
must be sufficiently large to allow the identifiability of the
nonlinearity borders. To this end, proceed as follows:

(a) apply any signal oscillating between v,, and v, and observe
the system output y(t);

(b) if y(t) is constant (up to noise) in steady state then enlarge
the interval [v, vy ] and go to (a);

(c) else, keep the current interval and select therein the
abscissas de (j=1,...,m) of the points to be determined
on the descendent border, respecting the condition v, =
V1d<V2d< ~<V#1<UM.

2. Apply the step input signal v(t) = vg(t) defined by (3.4) and
compute the mean value jzg of the resulting system response,
over a sufficiently large observation interval.

3. Apply the sequence v%(t) defined by (3.1) taking into account
Theorem 3.1 regarding the choice of the 7;’s. Get a sample of the
resulting system response y(t) (t = 1, ..., N, for a sufficiently
large N).

4. Construct the centered signals defined by (3.9a) (i.e. v(t) =
v(t) — vy and y(t) = y(t) — yd)fort = 1, ..., N. Construct
the vector sequence @4 (t) defined by (3.19b).

5. Compute the estimates @4(N), b;(N), ¢4(N) and F4(V?, N) (i =
1,...n,j=1,..., m) using the estimators (3.21) to (3.23).

6. End of the identification procedure.

For numerical computations reason, the number m should not be
too large. If a large set of points is desired, it would be preferable
torepeat the above identification procedure several times focusing
each time on a different subset of points.

On polynomial interpolation of identified points

The DIS design involves the substitution of P9(3¢(t)) to
F4(94(t)) in the DPE-centered model (3.10). It must be emphasized
that this substitution, introduced to parameterize the considered
identification problem, entails no error as long as the model
(3.10) is excited by a sequence that takes its values in the
set {0, Wjd;j =1,2,...,m}, which is precisely the case of the
sequence 7%(t) due to (3.13). However, one must not conclude
that the polynomlal Plw) = w > &P (w), induced by the
estimates ¢¢, approximates well the nonlinear function F? over
the whole interval [v,, vy]. The identification scheme aim was
not the determination of the whole descendent border but just
m points on it. This goal has actually been achieved since the
couples (Wjd, pd (Wjd)) are shown to be consistent estimates of the
points of interest i.e. (WS, FI(W"); (G = 1,2,...,
one seeks a polynomial approximation of F4, it must be resorted
to suitable methods involving e.g. spline interpolation using the
obtained estimates (W}, 13‘1(Wjd)), see e.g. Phillips (2003).

m). Now, if

3.5. DIS simulation

The proposed identification approach is now illustrated consid-
ering a Hammerstein-like system with a backlash nonlinearity F[.]
(that may represent e.g. an actuator). The linear subsystem is ini-
tially characterized (before system rescaling) by:

Amie(@) =14q'4+0.21¢7%

Binie(q™") = q~' +0.5¢72. (3.28)
The initial operator F[.] is bordered by the functions:

m(v) =134+ 350% +2.75v + 4.625;

mzt(v) - mzt(v ) (329)

The error £(t) in (2.1) is presently a band-limited white-noise with
variance 16. The working interval is [vy, vy] = [-3 4] and the
number of points to be determined on the descendent border is
m = 6 and their abscissas are:

d . d . d .
vm=Vi=-3  vi=-2; vi=_1

(3.30)
vi=1, vi=2, vi=3.



One readily gets u, = C%, (vm) = 0.875 and uy = C%;\(vy) =
71.375. The initial model, (3.28)-(3.29), is now rescaled so that
property (3.11c) holds. Accordingly, the polynomial By (q~") is
multiplied by K = uy — u,,;, and F[.] is divided by the same scaling
factor. Doing so, one gets a new model which is also representative
of the system. It is readily checked that K = uy — up,, = 70.5. The
new linear subsystem model turns out to be characterized by the

polynomial operators:
AQ D) =Anic(@H) =1+q"4021g%
B(g™") = K Binit(g"1) = 70.5¢7 ! + 35.25¢ 2. (3.31)

The new nonlinearity is characterized by the following borders
(see Fig. 9):

Cinie () Cinie ()
T —_.

d —
C'(v) = K

and C%U) = (3.32)

3.5.1. DIS application
Following the identification procedure in Section 3.4, the step
signal (3.4) is first applied. From the resulting step response we

obtain the estimate 573 = 16.15 ofj/g, with L = 2000 in (3.7). Then,
the signal v9(t) defined by (3.1), and characterized by (3.25) and
(3.30), is applied and the obtained system response is plotted in
Fig. 11. We then proceed with data centering according to (3.9a).
The obtained centered data are used to construct the regressor se-
quence ®4(t) (t = 1, ..., 2000). Using this sequence in the esti-
mator (3.21) one gets the following estimate:

®?% =[1.0005 0.2122 10.0769 —5.0439 11.1040
—5.5432 13.4025 —6.7368 19.8480 —10.027
19.8956 —10.0071 0.6476 —0.0617]. (3.33)

This is based upon to get the remaining estimates using the estima-
tors to (3.22)—(3.23). The obtained estimates are shown, together
with their true values, in Tables 1 and 2. Finally, the estimated
points on the descendent border are shown by Fig. 10. Such good
estimation quality is further illustrated by Fig. 11 which shows the
responses of the true system and the estimated model when the
signal vd(t) is applied to both.

3.5.2. DIS consistency checking

To check the consistency of the estimator (3.21), the above ex-
periment has been repeated 1000 times with different realiza-
tions of the noise £(t). The estimate of ®¢ obtained at the ith
experiment is denoted @%' (i = 1---1000). Fig. 12 shows the
distribution of the third component of &% which represents the
estimate of uf ; = byc{ (see (3.19)). It is seen that the estimates
remain in the vicinity of the true parameter value, equal to 10.07
(see (3.31)). On the other hand, let P, denotes the probability that
®4 — et H / H(~)dH < ¢ and P, ; the estimate of P, obtained using

the results of the first L experiments (i.e. DIS repetitions). From the
above 1000 experiments, we got the following values:

{0.97 with ¢ = 0.02 and L = 100
PS,L =

0.995 withe =0.02 and L = 1000.

This confirms the consistency of the estimator (3.21), despite the
not negligible noise (variance 16).

3.5.3. DIS robustness checking

To complete the identification scheme evaluation, let us check
its robustness to modeling error. Specifically, suppose that the true
system is rigorously described by the following model:

A Hy(t) = B(g~ Hu(t) + £(t) (3.34)
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Fig. 9. Lateral borders of the considered backlash operator (simulation of
Section 3.5).

1E
09}
08}
0.7+t
06
< o5}
0.4}
03}
02t
0.1+t

¢

-3 -2 -1 0 1 2 3

Fig. 10. Descendent nonlinearity border; the circles indicate the estimated points
(V1 FAv).

Table 1
Parameters of the linear subsystem characterized by (3.31) and their estimates.
j q g by b,
1 1 1.001 70.5 70.48
2 0.21 0.2111 35.25 35.27
Table 2
Parameters of the nonlinearity characterized by (3.32) and their estimates.
v -3 -2 -1 1 2 3
Fd (V,-d) 0.0124 0.073 0.062 0.168 0.456 1.01
Fd v 0.0122 0.068 0.061 0.167 0.447 1.00

withu = F[w] and w(t) = G(g~")v(t). Compared to the supposed
model, i.e. (2.1), (3.34) involves a first order dynamics, preceding
the backlash operator F[.]. Typically, G(g™!) = (1—A)/(1—Aq™ ")
with small 0 < A < 1. Obviously, the presence of the dynamics of
G(g~ 1) is totally ignored in the identification scheme DIS which is
applied exactly as in Section 3.5.1. In particular, the input signal
and system reforming characterized by (3.30)-(3.32) are kept
unchanged. The only change is that the output y(t) is presently
influenced by the neglected dynamics G(q~"). Table 3 shows the
estimates obtained by the DIS scheme for different values of 0 <
A < 1. The estimates obtained when A # 0 deviate slightly from
those of the case A = 0. This proves the robustness of the DIS
scheme to input modeling errors.



Table 3
Parameter estimates in the presence of the dynamics G(q~").

a a by by Fvg) Favs) Flvg) Favd) Flvd)
True values 1 021 705 —353 —0.939 —0.950 —0.844 —0.557 0
Estimates when A = 0 0.996 021 705 —354 —0.938 —0.9560 —0.844 —0.552 0.002
Estimates when A = 0.005 0.968 0.19 709 —340 —0.9343 —0.9564 —0.854 —0.565 —0.012
Estimates when A = 0.01 1.04 024 67.7 —36.48 —0.9306 —0.955 —0.861 —0.575 —0.026
0 ' " 300 al=1 300 a2=0.21 300 b1=70.5
200 200 200
. ] 100 100 100
-2 0.98 1 T2 %02 o0z 0 71
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Fig. 11. Signals generated in the DP-experiment (over two periods). Above: input
signal v?(t) generated by (3.1). Below: system outputs y(t) (solid) and model output
induced by AUN) (dashed). For the sake of clarity, the plotted signals are in fact
hold-versions of the discrete-time signals and a zoom is made on the time interval
[55 75].

4. Ascendent Identification Scheme (AIS)

The AIS aims at determining the linear subsystem parameters
(a;, b;) as well as m points located (totally or partly) on the
nonlinearity ascendent border. It presents a structural symmetry
with the previous DIS scheme and is designed following the
same steps. For space limitation, the detailed design procedure is
skipped making the focus on the resulting practical identification
procedure, emphasizing there the changes with respect to the DIS
procedure. It is worthy pointing out that the two schemes are
independent i.e. none of them relies on the results of the other.
Therefore, it is up to the user to decide which one is applied first.

4.1. Brief presentation of the AIS

The AIS procedure follows similar steps as the DIS:

—00.86 -0.84  -0.82 0 -0.56 -0.54 —(9.02 0 0.02

Fig. 12. Histograms of the estimates obtained when running up the DIS scheme
1000 times. The true value of each estimated quantity is indicated in the corre-
sponding histogram. The notation Ft refers to F.

1. Choose a working interval [v, vy] (as in Step 1 of the DIS) and
select therein the abscissas V' (j = 1, ..., m) of the points to be
determined on the ascendent border observing the condition:

v =V >V >

2. Apply the step input signal v(t) = v(t) defined by

a
- > Vo > v

def Jv ift=0
v(f)—vo(f) = {UI,: ift > 1.

(4.1)
Compute the mean value yg of the system response, over a
sufficiently large observation interval.

3. Apply the periodic pulse sequence v®(t) defined by:

vl fort=t+15j=1,...,m
a — j ] ) )
V(D) {vm otherwise (42)
where the t;’s are as in Theorem 3.1. Get a sample of the resulting
system response y(t) (t =1, ..., N, foralarge N).
4. Construct the following centered signals and vector:

() =v(t) —vm, YO =y(0) — ¥,
def

FC@) = FC () —up (t=1,...,N) (4.3)
o) =[—J(t —1)...—J(t —n)
5Ot — DPY@(E — 1)) ... DUt — n)PL(B(t — n))
5ot — DPE@Ut — 1)) ... D%t —mPL@Y(t —n)]  (4.4)
a,. . def - Wy adef
P (w) = ]_[ Wi s wa’ W' Z Y,
I#J
G=1,...,m). (4.5)

5. Compute the estimates @°(N), éja(N) and 1:‘“(\/j“, NG=1,...,
m) replacing in the estimators (3.21), (3.22b) and (3.23) the upper
script ‘d’ by ‘a’. Compute the estimates Bi(N) (i=1,...,n)using
the estimator: bi(N) = 11 (N) Wi,

6. End of the identification procedure.
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Fig. 13. Lateral borders of the considered switch nonlinearity.

Using similar arguments as in Theorem 3.1, one gets the consis-
tency results formalized in the next statement.

Theorem 4.1. Consider the system (2.1), subject to Assumptions 1
and 2 and excited by the signal v(t) defined by (4.2). Let the period
T and the indexes tj in (4.2) be as in Theorem 3.1. Then one has:

(1) The vector sequence @°(t) defined by (4.4) possesses the weak
persistent excitation property i.e. limy_, o % Zf’;l )P
> Bl w.p.1, forsome 8 > 0.

(2) All estimators are consistent i.e. ®°(N) — ©°, B,-(N) — b,
E4(N) — cf, FA(V®,N) — FA(V®) as N — oo (w.p.1).

4.2. AlS simulation

The AIS is illustrated considering a Hammerstein-like system
with a switch nonlinearity F[.]. The linear subsystem is initially
(before scaling) characterized by:

Aimic(@H =1—=1.25¢"" +0.375¢"% and
Buie(q"") =4q ' —q°.

The switch nonlinearity is initially characterized by the following
lateral curves:

Ciie (v) = log(—4v> — 27v — 30);
cd. (v) = log(4v®> — 120 — 15v + 53)

where log(.) denotes the natural logarithm function. The error & (t)
in (2.1) is presently chosen to be a band-limited white-noise with
variance 0.15. The effect of £(t) on the output y(t) is amplified by
1/A(g~ ") whose static gain is 8. The working interval is [v,, vy] =
[—2 2] implying following relations: u, = Ci‘fm(vm) = 1.0986,
uy = G (vy) = 3.9512and K = uy — uyn = 2.8526. Given
model multiplicity, the focus is made on the unique model that
satisfies the property (3.11c). The corresponding linear subsystem

is characterized by the polynomials:
A@Y) =Ame(@H =1—1.25¢"" +0.375¢"%;
B(@™") = KBint(q™)) =K(4q'—q?)
= 11.4105q7' — 2.8526 ¢ 2. (4.6)

The new nonlinearity is a switch type bordered by the following
curves (Fig. 13):

Cinie () 3
Ca(v) = 7= = 0.3506 log(—4v® + 27v + 30);
Chie (V) 3 2
Ca(v) = ~M7= = 03506 log(4v — 1207 — 150 +53).  (47)

Vi)
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55
50 J n L ,

45

y(t)

40

35

30

t

Fig. 14. Signals obtained over five periods in the AP-experiment. Above: input
signal v?(t) defined by (4.1). Below: system output y(t) (solid) and output of the
model induced by the estimate @ (dashed). For clarity, the output signals are
represented by their zero-order hold versions.

The identification objective is to estimate the linear subsystem
parameters as well as m = 6 points of the nonlinearity ascendent
border. Let us focus on the points of abscissas:

V] = 1.5; Vi=1;
Ve =—1.

w =V{ =2
V8 = —0.5;

Vi =0;

Following the AIS procedure (Section 4.1), the step input (4.1) is
first applied and the mean value (over a sufficiently large interval
[0 L]) of the resulting system response is computed. This presently

yields (with L = 2000) the estimates fzg = 26.37 of the (unknown)
true output mean value yj. Then, the periodic pulse signal (4.2)
is applied over the interval [0 N], with N = 8000. This is repre-
sented, together with the resulting response y(t), by Fig. 14. These
input-output data, (v%(t), y(t)), are then centered according to
(4.3) and used to construct the regressor sequence @“(t) defined
by (4.4). The latter is then based upon to estimate @“ using the
least squares estimator (3.21) replacing there the upper script ‘d’
by ‘a’. The obtained estimate is:

©® = [—1.2517 0.3764 2.8500 —0.7195 3.3656

—0.8502 3.8295 —0.9672 4.6098 —1.1602

4.6213 —1.1487 3.3877 —0.8719].
Finally, using the estimators (3.22a) to (3.23), where the upper
script ‘d’ is replaced by ‘a’, we get the remaining estimates. Tables 4
and 5 show that the obtained estimates are quite close to their true

values. This is further illustrated by Fig. 14 which shows the out-
puts of the true system and the estimated model. Finally it is seen
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Fig. 15. Nonlinearity ascendent border. The circles indicate the identified points
Ve, B ).

from Fig. 15 that all estimates of the points (V*, F“(Vj“)) are actu-
ally located on the true nonlinearity ascendent border.

Remark 3. (a) Note that, in Step 5 of the procedure AIS, the
estimates B,-(N) (i=1 ... n) are not obtained from the estimator
(3.22a) substituting there the subscript ‘a’ to ‘d’ (as this is the case
for the other estimated quantities in Step 5). The reason is that the
model focused on presently must be the same as the one focused
on in Section 3. But, this model is characterized by (3.11c) which
implies the following relations:

~ 1 ud
FFwiH =1, = W bi = C—; = puf, we
i=1,...,n).

It is the last relation that suggests the estimator used in Step 4
of AIS.

(b) An immediate consequence of the symmetry that exists
between the AIS and DIS is that the linear subsystem parameters
are estimated by both schemes. This may be a quite interesting
feature in practical applications. Indeed, in case the true system
nonlinearity is not what it is supposed to be (i.e. switch or
backlash), the two schemes will not yield the same parameter
estimates for the linear subsystem. Then, one has to look for an
alternative identification method.

(c) In those practical situations where there is no doubt on the
switch/backlash nature of the system nonlinearity then, provided
that the linear subsystem is minimum phase, the AIS may be
simplified so that this subsystem is not estimated again. Actually,
if the system is minimum phase, the internal signal u = F[v] can
be recovered (up to noise) from the output y(t). Roughly, Eq. (2.1)
suggests the following estimator to get u = F[v]:

B(@ () ~ A(@ MHy(t) (4.8)

where A(qg™1) ~ A(g~') and B(q~!) ~ B(q~!) are the estimates
provided by the DIS (in Section 3). Then, the ascendent border is
easily identified, based on the relation &t ~ F[v], using an input
signal v(t) like (4.2) that makes the operating point (v(t), ti(t))
only move on that border.

5. Conclusion

A new identification approach has been developed to cope with
Hammerstein-like systems that include dynamic nonlinearities

Table 4
Parameters of linear subsystem characterized by (4.6) and their estimates.
i g aj bj b
1 —1.25 —1.2579 11.4105 11.4146
2 0.375 0.3813 —2.8526 —2.8528
Table 5
Parameters of the nonlinearity characterized by (4.7) and their estimates.
v 4 3 2 1 -1 -2
FY(V 1.3851 14173 1.3918 1.1923 0.9932 0.6821
ﬁ“(v;') 1.3852 1.4170 1.3873 1.1900 0.9939 0.6808

of the switch or backlash types. The originality lies in the fact
that the nonlinearity borders are not parametric and so are not
necessarily straight lines. Interestingly, the borders are allowed
to be nonsmooth and noninvertible. The proposed approach
consists of two independent and perfectly symmetric schemes.
The first one, the DIS presented in Section 3, estimates the
linear subsystem parameters as well as m points (totally or
partly located) on the descendent border. The second scheme,
the AIS presented in Section 4, estimates the linear subsystem
parameters as well as m points (totally or partly located) on the
ascendent border. Experiment design is a key feature in the design
of these identification schemes. The experiments are conceived
so that the initial identification problem, involving a dynamic
and nonparametric nonlinearity, is decomposed into two simpler
problems characterized by parametric static nonlinearities. The full
parameterization of the identification problem made possible the
construction of linearly parameterized representations, namely
(3.19a) and the corresponding one in the AIS (obtained by just
replacing upper script ‘d’ by ‘a’). The generated signals are also
shown (Theorems 3.1 and 4.1) to be persistently exciting, ensuring
the consistency of all involved estimators.

Appendix. Proof of Theorem 3.1 (Part 1)

From (3.24b), it follows that Z9(t) can be decomposed as
follows:

240" =[z207 2©O"...Z.0"] (A1)
with:
ziO" === 1).... —z%t —n)

34t — PRt — 1)) ... 0% —m)PY @t — n))] (A2)
Z(o)" = — HPI @'t — 1))

SN =PI — )], (A.3)
The rest of the proof is divided in three steps. First, we show
that the vector sequence Z; (t) possesses the persistent excitation
(PE) property. In step 2, it is shown that the vector sequences
Zi(t) = 2...m) share in turn such property. Finally, it will be
demonstrated that the global vector Z%(t) satisfies the PE property
as stated in Part 1 of Theorem 3.1.
Step 1: Proof that Z,(t) is persistently exciting (PE)
Let us show that, there a positive real g, such for any integer k:
4n
Y Lt + D)2+ 1) > gl
=1

(I, is the 2n x 2n identity matrix). (A.4)
From (3.13) one has, fork = 1,2,3,...and ty —n < t < t + 4n:

d _
50y = {W1 fort =ty + 14

0 otherwise. (A-3)



Then, it follows from (3.13) and (3.15):
P@()) =0 (A6)
forj=2...mandty, —n <t <ty + 4n.

Then, Eq.(3.14a)reduces in the time interval ty—n < t < ty+4n
to:
PA@Y(0)) = o ()P (@ (1)). (A7)
In view of (A.6), Eq. (3.24a) in turn reduces to:
A@H 240 = c{B@ H(OP{ @' (1))
forty —n<t<ti+4nandk=1,2,3,.... (A.8)

Inview of (3.18) and (A.2), Eq. (A.8) can also be given the following
regressive form:

24(t) = Zu(t)" Of

forty —n<t<ty+4nandk=1,2,3,... (A.9)
T

of=lar...anpf;...n%] - (A.10)

Applying the Technical Excitation Lemma (Giri et al., 2002) to (A.8)
it follows from (A.5) and (A.9) that the regression vector Z;(t),
defined by (A.2), is persistently exciting in the sense of (A.4).
Step 2: Proof that Z;(t) (j = 2...m) are PE

Let us demonstrate that, for all k:

n
Y Zi+ni+2)+0ZO+nGi+2) + 1) = ey
=1

forj=2,...,m (A.11)

44444

matrix.
Using (3.13) and (3.15), it follows from (A.3) that, for any j =
2,....m;k=1,2,3,..;t=1,...,n:

Zj(te+nG+2) + 0 Z (te+nG +2) +1)f

-0 --- 0 0 0 --- O
0 0 0 O 0
_ |0 0 vi 0 0] < rawrt
= |o 0 0 o 0 (A.12a)
: .o 0
Lo --- 0 0 O 0
4 column 7
with
v Y WIPI W) = W (A.12b)

(A.11) clearly follows from (A.12a)-(A.12b).
Step 3: Proof that Z4(t) is PE

Let us now demonstrate, by contradiction, that Z¢(t) is PE in the
sense of Part 1 of Theorem 3.1. To this end, suppose that Z4(t) is not
PE. Then for any sequence of positive real numbers {¢ (i)} such that:

lim ¢(i) =0 (A.13)
1—00
there exists a unit vector sequence {X (i)} (i.e. | X(i)|| = 1) and a
subsequence t, such that for all i:

max |2t + )X (0| < &(). (A14)

0<7<n(3+N)
Following the partition (A.1), X(i) can in turn be decomposed as
follows:

X0 = [} %0 ... x®)] (A.15)

where the subvector x;(i) is of the same dimension as Zjd. On the
other hand, using (3.13), (3.15), (A.1)-(A.3) and (A.15), 1t follows
that, for any integer numbers k and i:

2t + 0)'X(0) = Z{ (t + ) X1 ()

fort=1,...,4n

2t +nG+2) + 0)'X0) = Z{ (6 + nG 4+ 2) + )1 (D)
+Z{(te + nG + 3) + 1))

forj=2,.... myt=1,...,n

(A.16)

(A17)

Using (A.4), one gets from (A.16) that, for all k and all i
4n

Ix: () < — max ]Zd(tk + )X () ]2
Eo 1=t=<4n

which, together with (A.13)-(A.14), implies that:

lim || x;()|*> = 0.

1—00

(A.18)

Similarly, using (A.11), one gets from (A.17) that for all integers k,
iandj=2,...,m:

max |zt +nG+2) + 1)'X0 |

1<t<n

ol < -
max | Z; (6 + nG +2) + )% ()|

1<t<n

(A.19)
€1

Using (A.14),(A.18) and the fact that the sequence Z; (t) is bounded,
it follows from (A.19) that:

lim |x@)| =0 forj=2,...,m. (A-20)
1—>00

Combining (A.18) and (A.19), one gets from (A.20) that
lim;_ o [IX ()| = 0which contradicts the fact that X (i) is unit vec-
tor. Hence, Part 1 of Theorem 3.1is proved. O
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