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Abstract

In this paper, a distributed tracking control scheme with distributed estimators has been developed for a leader-follower
multi-agent system with measurement noises and directed interconnection topology. It is supposed that each follower can
only measure relative positions of its neighbors in a noisy environment, including the relative position of the second-order
active leader. A neighbor-based tracking protocol together with distributed estimators is designed based on a novel velocity
decomposition technique. It is shown that the closed loop tracking control system is stochastically stable in mean square
and the estimation errors converge to zero in mean square as well. A simulation example is finally given to illustrate the
performance of the proposed control scheme.
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1 Introduction

In recent years cooperative distributed control of multi-
agent systems has been a research focus in control com-
munity. An important control strategy among many
others is the leader-following coordination among a
team of agents. The leader-follower approach has been
widely used in many practical applications such as
formation control in robotic systems (Wang P. K. C.
(1991); Das,Fierro,&Kumar (2002)), unmanned aerial
vehicle (UAV) formation (Vanek,Peni,et al. (2005);
Anderson,Fidan,et al. (2008)), target tracking in sen-
sor network (Gupta,Cao,&Haering (2008); Hu,&Hu
(2008)), and so on.

The major issues addressed in the study of leader-
follower multi-agent systems include the varieties of
topological consensus conditions (Jadbabaie,Lin,&Morse
(2003); Ren,&Beard (2005)), the roles of multiple lead-
ers in guiding the followers (Lin,Francis,&Maggiore
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(2005); Shi,&Hong (2009)), the time-delayed control de-
sign (Hu,&Hong (2007); Lin,Jia, et al. (2008)), and the
distributed estimation strategies (Fax,&Murray (2004);
Hong,Hu,&Gao (2006)). A common feature of these
existing works on distributed control for leader-follower
multi-agent systems is that the measurement noises are
not considered. However in practice,the measurements
and information communication are always subject to
noises and/or perturbations, such as sensor noise, chan-
nel fading, quantization errors, etc. More recently con-
sensus control problems with measurement noises have
been studied in Li,&Zhang (2009) and Huang,&Manton
(2009) with the fixed and undirected network topology.
Huang,&Manton (2009) proposed a consensus control
for a leaderless multi-agent system with the first order
discrete-time dynamics under noisy measurements and
proved that the average consensus can be achieved in
the sense of mean square by introducing a decreasing
gain if the network topology is a strongly connected cir-
culant graph. Li,&Zhang (2009) extended the result to
the first order continuous-time average consensus prob-
lem and obtained a sufficient and necessary condition.
To the best of our knowledge, there is no report in open
literature on design of distributed control for a leader-
follower multi-agent system with measurement noises
and time-varying directed interconnection topology.
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In this paper, we will consider a distributed control
design for a leader-follower multi-agent system under
partial and noisy measurements and time-varying di-
rected network topology. A novel velocity decomposi-
tion technique, inspired by the stochastic approxima-
tion approach (Nevelson,&Hasminskii (1976)), and a
distributed estimation algorithm for the velocity of the
active leader have been proposed to deal with those
partial and noisy measurements. It has been shown that
the estimation is convergent in mean square and the
resulting closed loop control system is stochastically
stable in mean square.

The remainder of this paper is organized as follows. In
Section 2, some concepts in algebraic graph theory are
briefly reviewed and a leader-following problem is formu-
lated. In Section 3, a tracking control along with a dis-
tributed estimation algorithm is firstly designed for the
leader-follower multi-agent system based on the velocity
decomposition technique. Then the stochastic stability
of the closed-loop tracking error system is analyzed un-
der switched directed topology. A numerical example is
given to illustrate the distributed tracking control for the
leader-follower multi-agent system in Section 4. Finally,
some concluding remarks and future research directions
are given in Section 5.

Throughout this paper, we will use the following no-
tations. I denotes an appropriate dimensioned identity
matrix; 1 denotes a column vector with all ones. For
a given matrix A, AT denotes its transpose; tr(A) its
trace; ‖A‖ its Frobenius norm; λmax(A) and λmin(A) its
maximum and minimum eigenvalues respectively. For a
given set S, χS denotes the indicator function of S. E[·]
is the expectation operator; col(·) denotes the concate-
nation. For any given real numbers a and b, a∧b denotes
min{a, b}.

2 Problem formulation

2.1 Preliminaries

In order to describe the interconnection topology of a
leader-follower multi-agent system, we need to intro-
duce some preliminaries from algebraic graph theory
Godsil,&Royle (2001).

Let G = (V , E) be a directed graph (or digraph
for simplicity) consisting of a finite set of vertices
V = {0, 1, ..., n} and a finite set of arcs E ⊆ V × V . The
order of G is the number of vertices in G and denoted
by |G|. An arc of G is denoted by (i, j), which starts
from i and ends on j and represents the information
flow from agent j to agent i. A path in G is a sequence
i0, i1, · · · , iq of distinct vertices such that (ij−1, ij) is an
arc for j = 1, · · · , q. If there exists a path from vertex i
to vertex j, we say that vertex j is reachable from vertex

i. Furthermore, if there exists a path from every ver-
tex to vertex j, then vertex j is a globally reachable
vertex of G. A digraph G is strongly connected if there
exists a path between any two distinct vertices. A di-
graph Gf is a subgraph of G if its vertex set V(Gf ) ⊆ V ,
arc set E(Gf ) ⊆ E and every arc in E(Gf ) has both end-
vertices in V . A subgraph Gf is an induced subgraph
if two vertices of Gf are adjacent in Gf if and only if
they are adjacent in G. An induced subgraph Gf that
is strongly connected and maximal (i.e., no more ver-
tices can be added while preserving its connectedness)
is called a strong component of G. In this paper we will
use the vertex set V(Gf ) = {1, · · · , n} of subgraph Gf

to label the follower-agents. For a vertex i of Gf , we call
Ni = {j : (i, j) ∈ E} the neighbor set of vertex i. A non-
negative matrixA = [aij ] ∈ Rn×n is called an adjacency
matrix of subgraph Gf if the element aij associated
with the arc (i, j) is positive, i.e. aij = 1 ⇔ (i, j) ∈ E .
Moreover, we assume aii = 0 for all i ∈ V . Notice that
the adjacency matrix A may not be a symmetric matrix

for a digraph. If
n
∑

j=1

aij =
n
∑

j=1

aji for i = 1, · · · , n, then

the digraph Gf is called balanced. A diagonal matrix
D = diag{d1, ..., dn} ∈ Rn×n is called the degree ma-

trix whose diagonal elements di =
n
∑

j=1

aij for i = 1, ..., n.

Then the Laplacian matrix of subgraph Gf is defined as

L = D −A, (1)

which may not be a symmetric matrix either. By this
definition every row sum of the Laplacian matrix L is
zero. Therefore, L always has a zero eigenvalue corre-
sponding to a right eigenvector 1 = col(1, · · · , 1) ∈ Rn.
Moreover, if subgraph Gf is balanced, L has a zero eigen-
value corresponding to a left eigenvector 1 ∈ Rn.

When the digraph G is used to describe the interconnec-
tion topology of a multi-agent system consisting of one
active leader-agent and n follower-agents, we can define
a diagonal matrix B = diag{a10, · · · , an0} ∈ Rn to be
a leader adjacency matrix, where ai0 = 1 if follower i is
connected to the leader across the communication link
(i, 0), otherwise, ai0 = 0.

If we define a new matrixH = L+B ∈ Rn, the following
lemma plays a key role in sequel.

Lemma 1 (Hu,&Hong (2007)) The following state-
ments are equivalent:

(1) Vertex 0 is a globally reachable vertex of digraph G;
(2) H is a positive stable matrix whose eigenvalues have

positive real-parts;
(3) Furthermore, if Gf is balanced, H + HT is a sym-

metric positive definite matrix.
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Remark 2 The topology connectedness in the sense that
vertex 0 is a globally reachable vertex of digraph G im-
plies that the information of the leader can be propagated
over the multi-agent network. Obviously, this notion of
connectedness is much weaker than the notion of strong
connectedness.

For the purpose of modelling the time-variation of the
interconnection topology G of the leader-follower multi-
agent system, we adopt the following general assump-
tions:

A1 There exists a switching signal σ : [t0,∞) → P =
{1, 2, · · · , N}, which is piecewise-constant. Here, N
denotes the total number of all possible interconnec-
tion topologies of the multi-agent system and t0 is the
initial time.

A2 If the time interval [t0,∞) is constituted by an infi-
nite sequence of bounded, non-overlapping, contigu-
ous time-intervals [tj , tj+1) for j = 0, 1, · · · with t0 =
0, there exists a positive constant τ such that tj+1 −
tj ≥ τ . The number τ is called a dwell time.

Then during each time-interval [tj , tj+1) the digraph
Gσ(t) is time-invariant and denoted by Gp for some p ∈ P .

2.2 Leader-following problem

In this paper we will study a distributed control de-
sign for a leader-follower multi-agent system with one
active leader-agent (just called leader in sequel for sim-
plicity and labeled 0) and n cooperative follower-agents
(just called followers in sequel for simplicity). Consider a
tracking control problem for a multi-agent system where
the followers are moving with the first-order dynamics

ẋi(t) = ui(t), (2)

for i = 1, · · · , n, and the dynamics of the leader is de-
scribed by the second-order differential equation







ẋ0(t) = v0(t),

v̇0(t) = a0(t),

y0(t) = x0(t).

(3)

The variables xi(t), ui(t) ∈ Rm (i = 1, · · · , n) denote
the states and inputs of n followers respectively while
x0(t), v0(t) ∈ Rm and a0(t) ∈ Rm denote the position,
the velocity and the acceleration of the the active leader
respectively, and y0(t) is the only output. Here for nota-
tion simplicity let m = 1.

It was assumed in most existing works that an informa-
tion exchange between agents is perfect, that is, each

agent can obtain the information of its neighbors pre-
cisely. In addition, it was assumed that the intercon-
nection topology of the followers are undirected. How-
ever, these assumptions are not valid in most practi-
cal situations due to various reasons, such as sensor
and/or communication constraints, link variations.Mea-
surement noises and time-varying directed graph have to
be considered for control of leader-follower multi-agent
systems.

Since the velocity v0(t) of the active leader cannot be
measured by followers, then each follower has to make
estimation of v0(t) for control design by using the noisy
measurements from its neighbors. Our objective is to
design a distributed control for the leader-followermulti-
agent system under partial and noisy measurements and
time-varying directed interconnection topology so that
each follower can track the active leader and the velocity
estimation errors are convergent to zero in the sense of
mean square, i.e.,

lim
t→∞

E[(xi(t)− x0(t))
2] = 0,

lim
t→∞

E[(vi(t)− v0(t))
2] = 0,

(4)

where vi(t) is the estimate of v0(t) for the ith follower.
In this case, the closed loop system is said to be stochas-
tically stable in mean square.

3 Distributed control of leader-follower system

In this section we will focus on designing a dynamic
tracking control for the leader-follower multi-agent sys-
tem such that the closed loop control system is stochas-
tically stable in mean square.

The typical information available for each follower is its
relative position with its neighbors. However as men-
tioned in section of introduction, the real information ex-
change among followers through a communication net-
work is often subject to different kinds of constraints
such as sensor noise, quantization errors, etc. In this
case, the information available for the ith follower with
respect to its neighbors can be described as:

zij(t) = aij(t)(xi(t)− xj(t) + ̺ijωij(t)) ∈ R, (5)

where j ∈ Ni(t) with Ni(t) being the neighbor set of fol-
lower i at time t, aij(t) is the connection weight between
agent i and agent j at time t, ωij(t) is an independent
normal white noise, ̺ij ≥ 0 is the noise intensity.

It is noted that since only the relative noisy position
measurements zij(t) can be used for the ith follower, the
construction of a distributed estimator and controller
turns out to be much more challenging than that in
Hong,Hu,&Gao (2006). To address the challenge, a novel
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decomposition scheme of the velocity v0(t) of the active
leader is proposed as follows:

{

v0(t) = α(t)v0(t),

v̇0(t) = a0(t),
(6)

where v0(t) is a continuous differentiable function called
nominal velocity and α(t) : [t0,∞) → (0,∞) is a contin-
uous differentiable function satisfying

∫∞

t0
α(s)ds = ∞

and
∫∞

t0
α2(s)ds < ∞. In addition, α(t) has an upper

bound µ in [t0,∞). We call a0(t) the nominal acceler-
ation. Then the relationship between the acceleration
a0(t) and the nominal one a0(t) can be expressed as

a0(t) = α̇(t)v0(t) + α(t)a0(t). (7)

Notice that α(t) in the decomposition (6) can be easily
found for a continuous differentiable function v0(t), for
example, α(t) = 1

t+1 with its upper bound µ = 1 in

time-interval [0,∞). In sequel we assume α(t) and a0(t)
are precisely known beforehand.

Remark 3 Let vi(t) = α(t)vi(t) be the estimate of v0(t)
by the ith follower. If vi(t)− v0(t) → 0, one has vi(t)−
v0(t) → 0 since α(t) has an upper bound µ during time-
interval [t0,∞).

On the basis of the decomposition (6), for the ith fol-
lower with dynamics (2), we propose the following local
dynamic control scheme with an estimator:











ui(t) = −kα(t)
∑

j∈Ni(t)

zij(t) + α(t)vi(t),

v̇i(t) = a0(t)− γkα(t)
∑

j∈Ni(t)

zij(t),
(8)

where vi(t) is an estimate of the nominal velocity v0(t)
for i = 1, · · · , n, 0 < γ < 1, the gain constant k > 0 is
to be determined in sequel.

Remark 4 It is noted that the estimator for the nomi-
nal velocity v0(t) of the active leader is a distributed one
based on measurements of relative positions of its neigh-
bors. The rationale for the estimator is to collect the po-
sition information of the leader within the neighborhood
of the ith follower during a time period and then make
a tendency prediction of the trajectory of the leader with
the gathered historical data through an integrator.

In the dynamic control (8) the neighbor setNi(t) at time
t of the ith follower may include the active leader. We
divide the neighbor setNi(t) into two subsets as follows:

Ni(t) = N f
i (t) ∪ N l

i (t), i = 1, · · · , n, (9)

whereN f
i (t) denotes the follower-neighbor set andN l

i (t)

denotes the leader-neighbor set of follower i. Then apply-
ing the dynamic control scheme (8) to system (2) yields:

ẋi(t) =− kα(t){
∑

j∈N f

i
(t)

aij(t)(xi(t)− xj(t))

+ ai0(t)(xi(t)− x0(t))} − kα(t)ai0(t)̺i0ωi0(t)

− kα(t)
∑

j∈N f

i
(t)

aij(t)̺ijωij(t) + α(t)vi(t),

v̇i(t) =a0(t)− γkα(t){
∑

j∈N f

i
(t)

aij(t)(xi(t)− xj(t))

+ ai0(t)(xi(t)− x0(t))} − γkα(t)ai0(t)̺i0ωi0(t)

− γkα(t)
∑

j∈N f

i
(t)

aij(t)̺ijωij(t).

(10)
Let a(i, ·) denote the ith row of the adjacency ma-
trix A = [aij ] ∈ Rn×n of digraph Gf . Denote x =
col(x1, · · · , xn) ∈ Rn,v = col(v1, · · · ,vn) ∈ Rn, ω0 =
col(ω10, · · · , ωn0) ∈ Rn, ωi = col(ωi1, · · · , ωin) ∈ Rn

for i = 1, · · · , n and ω = col(ω0, ω1, · · · , ωn) ∈ Rn(n+1).
Then system (10) can be rewritten in a compact form:

{

ẋ = −kαHσx+ kαBσ1x0 − kαΣσω + αv,

v̇ = a01− γkαHσx+ γkαBσ1x0 − γkαΣσω,

(11)
where σ is the piecewise-constant switching signal,
Hσ = Lσ + Bσ, Lσ is the Laplacian matrix associated
with the switched subgraph Gf

σ ,Bσ is the leader adja-
cency matrix associated with the switched digraph Gσ,
Σ0 = diag{̺10, · · · , ̺n0}, Σi = diag{̺i1, · · · , ̺in} for
i = 1, · · · , n, and the matrix Σσ is defined in equation
(12).

In order to show that all the followers can track the active
leader, we firstly make two variable changes x̄ = x−x01
and v̄ = v− v01. According to the spectrum properties
of graph Laplacian matrix, Lσ1 = 0 and then

−Hσx+Bσ1x0 = −Hσx̄.

With system (3) and (11), we have

{

˙̄x = −kαHσx̄− kαΣσω + αv̄,
˙̄v = −γkαHσx̄− γkαΣσω,

(13)

which can be rewritten in a compact form:

ε̇ = Fσε+Ωσω, (14)

where ε =

(

x̄

v̄

)

, Fσ =

(

−kαHσ αI

−γkαHσ 0

)

, and Ωσ =

(

−kαΣσ

−γkαΣσ

)

.
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Σσ =











a10̺10 a11̺11 · · · a1n̺1n

. . .
. . .

. . .
. . .

an0̺n0 an1̺n1 · · · ann̺nn











∈ R
n×(n(n+1))

=[BσΣ0 diag{a(1, ·)Σ1, · · · , a(n, ·)Σn}] ∈ R
n×n(n+1)

.

(12)

In sequel we will analyze the stochastic stability of
system (14). Two cases: time-invariant leader-follower
topology and time-varying leader-follower topology will
be considered.

3.1 Time-invariant topology

When the leader-follower interconnection topology Gσ(t)

is time-invariant, the subscript σ(t) will be dropped.

Here we give a main result as follows.

Theorem 5 If vertex 0 is globally reachable in G, then
with the dynamic tracking control (8) each follower can
track the active leader asymptotically in mean square,
that is,

lim
t→∞

E[(xi(t)− x0(t))
2] = 0,

lim
t→∞

E[(vi(t)− v0(t))
2] = 0.

Proof: To facilitate analysis, we write system (14) in the
form of Itô stochastic differential equation:

dε = Fεdt+Ωdw, (15)

where w(t) is an n(n+1)-dimensional standard Brown-
ian motion.

Choose a nonnegative function

V (t) = εT (t)Pε(t), (16)

where

P =

(

P̄ −γP̄

−γP̄ P̄

)

(17)

and P̄ is a symmetric positive definite matrix satisfying
HT P̄ + P̄H = In which is well defined due to Lyapunov
Theorem and Lemma 1.

It follows from the definition of P in (17) and F in (14)
that

PF + FTP =: −Q

= −α(t)

(

k(1− γ2)In −P̄

−P̄ 2γP̄

)

.
(18)

If we choose

k >
λmax(P̄ )

2γ(1− γ2)
, (19)

according to Schur complement formula, it can be shown
that Q is positive definite.

By Itô formula, we have

dV (t)|(15) =[εT (t)(PF + FTP )ε(t) + tr(PΩΩT )]dt

+ 2εT (t)PΩdw(t)

=[−εT (t)Qε(t) + tr(PΩΩT )]dt

+ 2εT (t)PΩdw(t)

≤
−λmin(Q)

(1 + γ)λmax(P̄ )
α(t)V (t)dt+ ρ0α

2(t)dt

+ 2εT (t)PΩdw(t),
(20)

where ρ0 = nλmax(P̄ )k2(1− γ2)max
σ∈P

‖Σσ‖2.

For the third term in the last inequality of (20), we will
prove that the mathematical expectation

E[

∫ t

t0

εT (s)PΩdw(s)] = 0, (21)

for all t ≥ t0.

For any t0 ≥ 0, T ≥ t0, let τ
t0
δ = inf{t ≥ t0 : V (t) ≥ δ}

where δ is a given positive number if V (t) ≥ δ for some
t ∈ [t0, T ]; otherwise, τ

t0
δ = T . From equation (20), one

can get

E[V (t ∧ τ t0δ )χ
t≤τ

t0
δ

]− E[V (t0)]

≤
−λmin(Q)

(1 + γ)λmax(P̄ )

∫ t

t0

α(s)V (s ∧ τ t0δ ))χ
s≤τ

t0
δ

ds

+ ρ0

∫ t

t0

α2(s)ds

≤ρ0

∫ T

t0

α2(s)ds,

(22)

which implies that there exists a constant ∆t0,T such

that E[V (t∧ τ t0δ )χ
t≤τ

t0
δ

] ≤ ∆t0,T , ∀t ∈ [t0, T ]. Then, by

Fatou lemma Chow,&Teicher (1997), we have

sup
t0≤t≤T

E[V (t)] ≤ ∆t0,T .
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Thus,

E[

∫ t

t0

α2(s)V (s)ds] ≤ sup
t0≤t≤T

E[V (t)]

∫ T

0

α2(s)ds < ∞.

In addition, we have

E[

∫ t

t0

‖εT (s)PΩσ‖
2ds] ≤ ρ0E[

∫ t

t0

α2(s)V (s)ds].

By the Itô integral formula Friedman A. (1975), we have
the equation (21).

Then based on equations (20) and (21), we have

E[V (t)]− E[V (t0)]

≤
−λmin(Q)

(1 + γ)λmax(P̄ )

∫ t

t0

α(s)E[V (s)]ds+ ρ0

∫ t

t0

α2(s)ds.

Then, by the comparison theorem Michel,&Miller
(1977), we have

E[V (t)] ≤ E[V (t0)] exp{
−λmin(Q)

(1 + γ)λmax(P̄ )

∫ t

t0

α(s)ds}

+ ρ0

∫ t

t0

α2(s) exp{
−λmin(Q)

(1 + γ)λmax(P̄ )

∫ t

s

α(ι)dι}ds

≤ E[V (t0)] exp{
−λmin(Q)

(1 + γ)λmax(P̄ )

∫ t

t0

α(s)ds}

+ ρ0

∫ t

t0

α2(s)ds.

Therefore, when t → ∞,
∫ t

t0
α(s)ds → ∞,

∫ t

t0
α2(s)ds →

0, and so E[V (t)] → 0.

Since V (t) ≥ (1− γ)λmin(P̄ )‖ε(t)‖2, one has

lim
t→∞

E(xi(t)− x0(t))
2 = 0,

lim
t→∞

E(vi(t)− v0(t))
2 = 0.

It then follows from 0 ≤ α(t) ≤ µ that lim
t→∞

E(α(t)vi(t)−

v0(t))
2 = 0. The proof is thus completed.

Remark 6 From the proof of Theorem 5 it can be seen
that the introduction of the gain function α(t) can en-
sure equation (21) and E[V (t)] → 0 as t → ∞. Thus the
tracking result presented in this paper is much more im-
proved in comparison with that in Hong,Hu,&Gao (2006)
for the leader-follower multi-agent system with directed
interconnection topology.

3.2 Time-varying topology

Now one is ready to present the following main re-
sult about leader-follower tracking control under time-
varying interconnection topology.

Theorem 7 If vertex 0 is globally reachable in Gσ and
Gf
σ is balanced during each time-interval [tj , tj+1), then

with the dynamic tracking control (8) each follower can
track the active leader asymptotically in mean square.

Proof: Take a nonnegative function V (t) = εT (t)Pε(t)
with symmetric positive definite matrix

P =

(

In −γIn

−γIn In

)

. (23)

It follows from the definition of P in (23) and Fσ in (14)
that

PFσ + FT
σ P =: −Qσ

= −α(t)

(

k(1− γ2)(Hσ +HT
σ ) −In

−In 2γIn

)

.
(24)

By assumptions in Theorem 7 and Lemma 1, Hσ +HT
σ

is positive definite. If we choose

k >
1

2γ(1− γ2)λ̄
, (25)

where λ̄ = min
σ∈P

{λσ : eigenvalues of Hσ + HT
σ } > 0,

according to Schur complement formula, it can be shown
that Qσ is positive definite.

The rest of the proof are similar to those in Theorem 5
by noting that P is a finite set, and hence omitted.

Remark 8 In Theorem 7, the condition that Gf
σ is bal-

anced is a sufficient condition. The subsequent numeri-
cal example shows that this condition is not necessary for
the mean square convergence of the tracking errors.

4 A simulation example

In this section a numerical example is given to illus-
trate the proposed dynamic tracking control algorithm.
Consider a leader-follower multi-agent system with one
active leader and three followers. Suppose that the
leader-follower interconnection topology Gσ is time-
varying with switching rule: G1,G2,G1,G2, · · · , where
G1 and G2 are described in Fig. 1. Then one has the
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Fig. 1. V = {0, 1, 2, 3} and V(Gf ) = {1, 2, 3}

following Laplacian matrices

L1 =









1 −1 0

−1 1 0

0 −1 1









, L2 =









1 −1 0

−1 1 0

0 0 0









,

and the leader adjacency matrices B1 = diag{1, 0, 0}
and B2 = diag{1, 0, 1}. It is not difficult to have the
minimal eigenvalue λ̄ = 0.3187 for H1 = L1 + B1 and
H2 = L2 +B2.

In the control (8) we choose α(t) = 1
t+1 , γ = 0.8 and

k = 6. In addition, let the intensity ̺ij = 1when aij = 1.
For system (14), the initial value of ε(t) is taken ran-
domly as col(2, 1,−1,−0.2,−2, 0.2). Then the tracking
errors x̄1(t), x̄2(t) and x̄3(t) are shown in Fig. 2. It can
be seen that the tracking control (8) ensures that the
followers track the active leader under noisy measure-

ments. Notice that even though digraph Gf
1 is not bal-

anced, the tracking errors still converge in mean square.
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Fig. 2. The evolution of tracking errors

5 Conclusions

In this paper we have studied the leader following prob-
lem of a multi-agent system with measurement noises
and directed interconnection topology. The neighbor-
based distributed control scheme with distributed esti-
mators has been developed. Algebraic graph theory and
stochastic analysis have been employed to analyze the
mean square convergence of the tracking errors. One pos-
sible future research topic is to study the leader-following

problem in a noisy environment when the dynamics of
each agent is described by a more general linear system.
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