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Abstract

In this paper, a passivity-based adaptive output feedback control for discrete-time nonlinear systems is considered. Output
Feedback Strictly Passive (OFSP) conditions in order to design a stable adaptive output control system will be established.
Further a design scheme of a parallel feedforward compensator (PFC) which is introduced in order to realize an OFSP controlled
system will be provided and an adaptive output feedback control system design scheme with a PFC will be proposed.
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1 Introduction

Since many practical systems contain some kind of non-
linearities, a great deal of attention has been attracted
to the control of nonlinear systems. Especially, of par-
ticular interest are passivity based controller designs
for the control problem on nonlinear systems (Hill and
Moylan, 1998; Byrnes et al., 1991; Krstic et al., 1994;
Jiang and Hill, 1998; Fradkov and Hill, 1998; Byrnes
and Lin, 1994; Lin and Byrnes, 1995). Although several
important results have been obtained concerning pas-
sivity based controls, most of the results however were
ones for continuous-time systems (Hill and Moylan,
1998; Byrnes et al., 1991; Krstic et al., 1994; Jiang and
Hill, 1998; Fradkov and Hill, 1998). Our interest here is
a discrete-time passive (or strictly passive) system. For
discrete-time nonlinear systems, passivity properties
has been investigated widely (Byrnes and Lin, 1994;
Lin and Byrnes, 1995; Monaco and Normand-Cyrot,
1997; Navarro-Lopez et al., 2002; Navarro-Lopez, 2007;
Monaco et al., 2008), however, only few passivity based
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controls have been investigated with respect to loss-
less or passive systems (Byrnes and Lin, 1994; Lin and
Byrnes, 1995; Chellaboina and Haddad, 2002; Navarro-
Lopez et al., 2002; Navarro-Lopez, 2007). In Byrnes
and Lin (1994); Lin and Byrnes (1995); Chellaboina
and Haddad (2002) feedback lossless or passivity were
developed and stabilization of discrete-time nonlinear
systems were investigated for input affine systems. In
Navarro-Lopez et al. (2002); Navarro-Lopez (2007),
dissipativity and/or passivity for general discrete-time
nonlinear systems have been investigated and feedback
passivity has also been developed. However, most these
known results are related only to properties via state
feedback. Considering the control design with a sim-
ple structure in view of practical application, it seems
useful and valuable to investigate the output feedback
passivity properties and to establish passivity-based
output feedback control for discrete nonlinear systems.

In this paper, we consider a passivity-based adaptive
output feedback control for discrete-time nonlinear sys-
tems. The passivity-based control schemes can be con-
sidered one of the Lyapunov-based controls. As for the
Lyapunov-based adaptive controls, several significant re-
sults have been provided for discrete-time non-linear sys-
tems(Hayakawa et al., 2004). However, the developed
methods were also only with state feedback forms. Unlike
the former works on the passivity-based control and the
Lyapunov-based adaptive control, the passivity-based
adaptive control dealt with in this paper is an output
feedback-based adaptive control in which only the out-
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put signal is utilized in the controller design. It is well
known that one can easily design an output feedback
based adaptive control for an output feedback strictly
(exponentially) passive (OFSP) system (Jiang and Hill,
1998; Fradkov and Hill, 1998; Michino et al., 2003; Mizu-
moto et al., 2005) and the obtained control system has a
strong robustness with respect to disturbances and un-
certainties. Its simple structure of the adaptive controller
and robustness are useful for practical applications. This
is a motivation of this research.

The system is said to be OFSP if there exists an out-
put feedback such that the resulting closed loop system
is strictly passive. Here we investigate the OFSP prop-
erty of discrete-time nonlinear systems, and consider
an output feedback-based adaptive control design prob-
lem for discrete-time nonlinear systems. To this end, we
first derive a discrete-time nonlinear version of Kalman-
Yakubovich-Popov (KYP) Lemma for a strictly pas-
sive system. The strict passivity of the control system
plays an important role in adaptive controls. The KYP-
Lemma for continuous-time nonlinear systems has been
interpreted (Hill and Moylan, 1998; Jiang and Hill, 1998)
and the KYP-Lemma for discrete-time nonlinear sys-
tems has been investigated for lossless and passive sys-
tems (Byrnes and Lin, 1994; Lin and Byrnes, 1995).
Recently, KYP-Lemma for discrete-time nonlinear sys-
tems is further investigated in relation to QS (Quadratic
Storage)-passivity (Navarro-Lopez, 2007). Here, we will
pay attention to the KYP-Lemma for strictly passive
discrete-time nonlinear systems in order to design an
adaptive control system. After that, OFSP conditions
for discrete-time nonlinear systems will be clarified, and
the design of output feedback-based adaptive control will
be shown. As it is well known, a passive discrete-time
system must have a direct feedthrough term of input,
that is, a passive system must have a relative degree of
0 (Byrnes and Lin, 1994). This indicates that the OFSP
system also has to have a direct feedthrough term of
the input (i.e. relative degree of 0). Since most practi-
cal systems do not have a direct feedthrough term of the
input, the OFSP condition provides severe restrictions
for practical applications of the considered adaptive de-
sign scheme. The introduction of a parallel feedforward
compensator (PFC) will be considered in order to alle-
viate OFSP condition and it is shown that there exists a
PFC which renders the augmented system with the PFC
OFSP if the system can be stabilizable by a dynamic
feedback. The inverse system of the dynamic controller
can be a PFC. Further an adaptive output feedback con-
trol system design with a PFC will be developed. The
OFSP condition which the system must have a relative
degree of 0 possibly results in a causality problem in the
controller design. A condition in which one can design
the adaptive controller without causality problems will
be provided as strong output feedback strict passivity,
and according to the obtained conditions, an adaptive
output feedback controller design scheme will be shown
for a discrete-time nonlinear system with a PFC.

2 Preparation: Strict passivity

Consider the following n-th order discrete-time SISO
nonlinear system with a relative degree of 0.

x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)) + J(x(k))u(k)
(1)

where x(k) ∈ Rn is a state vector, u(k), y(k)∈ R are the
input and output of the system. f(x(k)) : Rn → Rn,
g(x(k)) : Rn → Rn, h(x(k)) : Rn → R and J(x(k)) :
Rn → R are smooth in x(k), and we assume that f(0) =
0, h(0) = 0.

The passivity and the strict passivity of the system (1)
are defined as follows (Byrnes and Lin, 1994):

Definition 1 (Passivity) A system (1) is said to be pas-
sive if there exists a non-negative function V (x(k)) :
Rn → R with V (0) = 0, called the storage function, such
that

V (x(k + 1)) − V (x(k)) ≤ y(k)u(k) (2)

for all u(k) ∈ R, ∀k ≥ 0.

Definition 2 (Strict Passivity) A system (1) is said to
be strictly passive if there exists a non-negative function
V (x(k)) : Rn → R with V (0) = 0 and a positive definite
function S(x(k)) : Rn → R such that

V (x(k + 1)) − V (x(k)) ≤ y(k)u(k) − S(x(k)) (3)

for all u(k) ∈ R, ∀k ≥ 0.

The property of a passive or lossless system has been
studied in Byrnes and Lin (1994); Lin and Byrnes (1995).
Here we first investigate the strict passivity by means of
the discrete-time nonlinear version of the KYP-Lemma
in order to develop the adaptive controller for discrete-
time nonlinear systems.

Theorem 1 A system (1) is strictly passive if and only
if, there exists a non-negative function V (x(k)) : Rn →
R with V (0) = 0 such that
A1-1) There exist functions l(x), W (x) and a positive

definite function S(x) such that

V (f(x)) − V (x) = −l(x)2 − S(x) (4)
∂V (α)

∂α

∣∣∣∣
α=f(x)

g(x) = h(x) − 2l(x)W (x) (5)

gT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f(x)

g(x) = 2J(x) − 2W (x)2. (6)

A1-2) V (f(x) + g(x)u) is quadratic in u.
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Proof: The proof can be seen in Navarro-Lopez (2007)
in relation to the QS-passivity. A specific proof for the
strict passivity is given in Appendix A.

Remark 1: In Navarro-Lopez et al. (2002); Navarro-
Lopez (2007), general discrete-time nonlinear systems
have been dealt with in relation to KYP lemma. How-
ever, in order to establish the basic concept of the fol-
lowing passivity-based output feedback controls, here in
this paper, the input affine system is dealt with.

3 Output feedback strict passivity

Next, we define an output feedback strict passivity for a
system (1).

Definition 3 (Output feedback strictly passive: OFSP)
A system (1) is said to be output feedback strictly passive
(OFSP) if there exists an output feedback:

u(k) = α(y(k)) + β(y(k))v(k) (7)

such that the resulting closed loop system is strictly pas-
sive.

Further we define a strong output feedback strict pas-
sivity as follows:

Definition 4 (Strongly OFSP) A system (1) is said to
be strongly OFSP if the system is OFSP with a static
output feedback, i.e. there exists a static output feedback:

u(k) = −θ∗y(k) + v(k), θ∗ > 0 (8)

such that the resulting closed loop system from y(k) to
v(k),

x(k + 1) = f̄(x(k)) + ḡ(x(k))v(k)

y(k) = h̄(x(k)) + J̄(x(k))v(k)
(9)

with

f̄(x(k))=f(x(k))− θ∗

1+θ∗J(x(k))
h(x(k))g(x(k)) (10)

ḡ(x(k))=
1

1+θ∗J(x(k))
g(x(k)) (11)

h̄(x(k))=
1

1+θ∗J(x(k))
h(x(k)) (12)

J̄(x(k))=
1

1+θ∗J(x(k))
J(x(k)) (13)

is strictly passive and, in addition, a transformed closed
loop system with

v̄(k) =
1

1 + θ∗J(x(k))
v(k) (14)

as input,

x(k + 1) = f̄(x(k)) + g(x(k))v̄(k)

y(k) = h̄(x(k)) + J(x(k))v̄(k)
(15)

is also strictly passive.

Remark 2: In Definition 4, it should be 1+θ∗J(x) �= 0,
∀x ∈ R, so that the system to be strongly OFSP globally.

For linear discrete-time systems, this strongly OFSP
is recognized as strongly almost strictly positive real
(strongly ASPR) (Mizumotoa et al., 2007).

The sufficient conditions for a system (1) to be OFSP
are provided by the following theorem.

Theorem 2 A system (1) is OFSP with a static output
feedback (8) and a C2 positive definite storage function
if

A2-1) The system has relative degree of 0 and J(x(k)) >
0, ∀x(k).

A2-2) The zero dynamics of the system:

x(k + 1) = f∗(x(k)) (16)
is asymptotically stable with the following C2 pos-
itive definite function V satisfying

a) V (f∗(x)) − V (x) = −ζ(x) (17)
with a positive definite function ζ(x).

b) V (f∗(x) + g(x)u) is quadratic in u.

c) There exist positive definite matrices Γm, ΓM

such that

0 < Γm ≤ ∂2V (α)
∂α2

∣∣∣∣
α=f̄(x(k))

≤ ΓM (18)

A2-3) g(x(k))
J(x(k)) is bounded.

Proof: The zero dynamics of the system(1) is obtained
by (Byrnes and Lin, 1994)

x(k + 1) = f∗(x(k)) = f(x(k)) − h(x(k))
J(x(k))

g(x(k)) (19)

Since f̄(x) in the closed loop system (9) can be repre-
sented from (10) and (19) by

f̄(x) = f(x) − θ∗

1 + θ∗J(x)
h(x)g(x)

= f∗(x) + J̃(x)h(x)g(x) (20)

with

J̃(x) =
1

J(x) (1 + θ∗J(x))
, (21)
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from assumption A2-2), b), V (f̄(x)) can be expressed as

V (f̄(x)) = V (f∗(x)) + J̃(x)h(x)
∂V (α)

∂α

∣∣∣∣
α=f∗(x)

g(x)

+
1
2
J̃(x)2h(x)2gT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f∗(x)

g(x).

(22)

Thus we have from (17),(22) that

V (f̄(x)) − V (x)

= −ζ(x) + J̃(x)h(x)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

−1
2
J̃(x)2h(x)2gT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f̄(x)

g(x). (23)

Now, consider a function W̄ (x) that satisfies the follow-
ing relation:

W̄ (x)2 = J̄(x) − 1
2
ḡT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f̄(x)

ḡ(x). (24)

Such function W̄ (x) is certain to exist for a sufficiently
large θ∗ from assumptions A2-2),c) and A2-3). Further,
consider a function l̄(x(k)) that satisfies

∂V (α)
∂α

∣∣∣∣
α=f̄(x)

ḡ(x) = h̄(x) − 2l̄(x)W̄ (x). (25)

Since (25) yields that

l̄(x)2W̄ (x)2 =
1
4

{
h̄(x)2 − 2h̄(x)

∂V (α)
∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

)2

 , (26)

we have from (24) and (26) that

l̄(x)2
(

J̄(x) − 1
2
ḡT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f̄(x)

ḡ(x)

)

=
1
4

{
h̄(x)2 − 2h̄(x)

∂V (α)
∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

)2

 . (27)

Thus, we obtain from (27) that

h̄(x)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

=−2l̄(x)2
{
J̄(x)− 1

2
ḡT(x)

∂2V(α)
∂α2

∣∣∣∣
α=f̄(x)

ḡ(x)

}

+
1
2


h̄(x)2 +

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

)2

 . (28)

Furthermore, taking the definitions of ḡ(x) and h̄(x) in
(11) and (12) in to account, we have from (28) that

h(x)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

=−2l̄(x)2
{
(1+θ∗J(x))J(x)− 1

2
gT(x)

∂2V(α)
∂α2

∣∣∣∣
α=f̄(x)

g(x)

}

+
1
2


h(x)2 +

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

)2

 . (29)

Therefore, we obtain from (23) and (29) that

V (f̄(x)) − V (x)
=−ζ(x) − 2l̄(x)2

+
1

J(x) (1 + θ∗J(x))

[
1
2
{
h(x)2

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

)2



+
{

l̄(x)2 − 1
2

1
J(x) (1 + θ∗J(x))

h(x)2
}

×gT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

g(x)

]
. (30)

Finally, we have

V (f̄(x)) − V (x) = −l̄(x)2 − S̄(x) (31)

where

S̄(x) = ζ(x) + l̄(x)2

− 1
J(x) (1 + θ∗J(x))

[
1
2
{
h(x)2

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

)2



+
{

l̄(x)2 − 1
2

1
J(x) (1 + θ∗J(x))

h(x)2
}

×gT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

g(x)

]
. (32)

S̄(x(k)) is certain to be a positive definite function with
a sufficiently large θ∗. Thus we can conclude that, for a
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sufficiently large θ∗, there exists a positive definite C2

function V (x) with a property that V (f(x) + g(x)u) is
quadratic in u, functions W̄ (x(k)), l̄(x) and a positive
definite function S̄(x(k)) such that

V (f̄(x)) − V (x) =−l̄(x)2−S̄(x) (33)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x) = h̄(x)−2l̄(x)W̄ (x) (34)

ḡT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

ḡ(x) = 2J̄(x)−2W̄ (x)2, (35)

that is there exists a feedback gain θ∗ such that the re-
sulting closed loop system is strictly passive. Then the
system is output feedback strictly passive with a C2 pos-
itive definite function as the storage function.

Remark 3: The conditions A2-1) and A2-2) (b) are nec-
essary conditions to be OFSP. These conditions can be
seen in Byrnes and Lin (1994) as necessary conditions
on the feedback equivalent to lossless system. The con-
ditions A2-2)(a), (c) and A2-3) are conditions for the
existence of a static output feedback which renders the
resulting system strictly passive. Note that the condi-

tion 0 ≤ ∂2V (α)
∂α2

∣∣∣∣
α=f̄(x(k))

is one of the conditions with

which there exists a smooth state feedback such that
the resulting closed system is globally asymptotic stable
(Byrnes and Lin, 1994).

Moreover, we have the following lemma concerning the
strongly OFSP conditions.

Lemma 1 Assumptions A2-1), A2-2) and A2-3) in
Theorem 2 are satisfied with J(x(k)) = d > 0 then the
system (1) is strongly OFSP.

Proof: See appendix B.

The derived OFSP and/or strong OFSP conditions are
very restrictive for practical systems, since most practi-
cal systems do not have relative degree of 0 and it is diffi-
cult to choose adequate sampling period with which the
system is minimum-phase. In the following section, we
first show that there exists a parallel feedforward com-
pensator (PFC) which renders the augmented system
with the PFC OFSP, and then the passivity-based adap-
tive output feedback design for the OFSP augmented
system with a PFC will be proposed.

4 Realization of OFSP system

Consider the following system with J(x) = 0 in (1):

x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)).
(36)

+

+

Controlled
system

PFC

Augmented  system

y ya

yf

u +

+

Controlled
system

PFC

Augmented  system

y ya

yf

u

Fig. 1. Block diagram of the augmented system with a PFC

This system is not OFSP, so we consider introduction of
a PFC:

xf (k + 1) = Afxf (k) + bfu(k)

yf (k) = cT
f xf (k) + du(k).

(37)

which is implemented in parallel with the controlled sys-
tem (36) as shown in Fig. 1, so as to make the resulting
augmented system OFSP.

The resulting augmented system can be expressed by

xa(k + 1) = fa(xa(k)) + ga(xa(k))u(k)

ya(k) = y(k) + yf(k) = ha(xa(k)) + du(k).
(38)

where

xa(k) =

[
x(k)

xf (k)

]
, fa(xa(k)) =

[
f(x(k))

Afxf (k)

]

ha(xa(k)) = y(k) + cT
f xf (k) = h(x(k)) + cT

f xf (k)

The PFC (37) has to be designed such that the resulting
augmented system (38) is OFSP. Concerning the exis-
tence of such a PFC and design scheme of the PFC, we
have the following theorem.

Theorem 3 Assume that the system (36) can be stabi-
lized with a C2 positive definite function V by a dynamic
feedback given by

xd(k + 1) = Adxd(k) + bdy(k)

yd(k) = cT
d xd(k) + ddy(k)

u(k) = −yd(k)

(39)

Consider the inverse system of (39) with u(k) as input
and yf (t) = −y(k) as output expressed by

xf (k + 1) = (Ad − 1
dd

bdc
T
d )xf (k) − 1

dd
bdu(k)

yf (k) = 1
dd

cT
d xf (k) + 1

dd
u(k)

(40)

and consider an augmented system with this as a PFC
as shown in Fig. 1. Then the zero dynamics of the aug-
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mented system is stable with the C2 positive definite
function V .

Proof: The closed loop system with u(k) = −yd(k) as
the control input can be represented by
[

x(k + 1)

xd(k + 1)

]
=

[
f(x(k))

Adxd(k)

]

+

[
−g(x(k))(cT

d xd(k) + ddy(k))

bdy(k)

]

=

[
f(x(k)) − g(x(k))cT

d xd(k)

Adxd(k)

]

+

[
−ddg(x(k))y(k)

bdy(k)

]
(41)

This is a stable system from assumption.

Now, let’s consider the inverse system of (39) with u(t) as
the input and yf(k) = −y(k) as the output. The inverse
system can be given in (40). The augmented system with
the inverse system (40) as a PFC is then expressed by

[
x(k + 1)

xf (k + 1)

]
=

[
f(x(k))

(Ad − 1
dd

bdc
T
d )xf (k)

]
+

[
g(x(k))

− 1
dd

bd

]
u(k)

(42)
ya(k) = h(x(k)) + yf (k)

= y(k) +
1
dd

cT
d xf (k) +

1
dd

u(k) (43)

The zero dynamics of this augmented system is then
obtained by
[

x(k + 1)

xf (k + 1)

]
=

[
f(x(k))

(Ad − 1
dd

bdc
T
d )xf (k)

]

+

[
g(x(k))

− 1
dd

bd

]
(−cT

d xf (k) − ddy(k))

=

[
f(x(k)) − g(x(k))cT

d xf (k)

Adxf (k)

]

+

[
−ddg(x(k))y(k)

bdy(k)

]
(44)

This zero dynamics have the same structure as in (41).
Thus the zero dynamics of the resulting augmented sys-
tem is stable with C2 positive definite function V .

This theorem indicates that if a controller which stabi-
lizes the system with a C2 positive definite function V

satisfying the conditions given in Theorem 2, then de-
signing the PFC as a inverse system of the system sta-
bilizing controller, one can obtain a OFSP augmented
system.

5 Adaptive output feedback controller design

Assumption 4 (1) g(x(k)) is bounded for all x(k).
(2) There exists a known PFC given in (37) such that

the resulting augmented system is rendered OFSP
with a static output feedback, that is the aug-
mented system (38) satisfies the OFSP conditions
in the Theorem 2.

The objective here is to design an adaptive output feed-
back control system under Assumption 4.

Under Assumption 4, (2), from Theorem 2 and Lemma
1, there exists a static output feedback:

u∗(k) = −θ∗ya(k) + v(k) (45)

for the augmented system (38), such that the resulting
closed loop system with the transformed signal v̄(k) =
(1 + θ∗d)−1v(k) as the input:

xa(k + 1) = f̄a(xa(k)) + ga(xa(k))v̄(k)

ya(k) = h̄a(xa(k)) + dv̄(k)
(46)

f̄a(xa(k)) = fa(xa(k)) − θ∗

1 + θ∗d
ha(xa(k))ga(x(k)) (47)

h̄a(xa(k)) =
1

1 + θ∗d
ȳ(k), ȳ(k) = ha(xa(k)) (48)

is strictly passive with a C2 positive definite storage
function.

Thus, if one can design a control input by

u∗(k) = −θ∗ya(k), (49)

then a stable control system is obtained. However for
a system with uncertainties, of course, θ∗ is unknown,
and because of the existence a direct feedthrough term
of the input, the input (49) can not be implemented due
to causality problems.

To overcome these problems, we first consider the fol-
lowing equivalent input obtained from (38):

u∗(k) =− θ∗

1+θ∗d
ȳ(k) = −θ̃∗ȳ(k), θ̃∗ =

θ∗

1+θ∗d
. (50)

Then for this ideal control input, we design the control
input adaptively as follows:

u(k) =−θ̃(k)ȳ(k) (51)

6



where the feedback gain θ̃(k) is adaptively adjusted by
the following parameter adjusting law:

θ̃(k) = θ̃(k − 1) + γya(k)ȳ(k), γ > 0. (52)

In this case, the augmented output ya(k) can be obtained
from (38) by

ya(k) =

(
1 − dθ̃(k − 1)

)
ȳ(k)

1 + dγȳ(k)2
(53)

without causality problems. It should be noted that if
the controller is designed based on the input (49), then
causality problems will appear.

5.1 Stability analysis

The obtained closed loop system with the input (51) is
expressed by

xa(k + 1) = f̃a(xa(k)) + ga(xa(k))∆u(k)

ya(k) = ỹ(k) + d∆u(k),
(54)

where

f̃a(xa(k)) = fa(xa(k)) − θ̃∗ȳ(k)ga(xa(k)) (55)

ỹ(k) =
(
1 − dθ̃∗

)
ȳ(k) (56)

∆u(k) =−∆θ̃(k)y(k), ∆θ̃(k) = θ̃(k) − θ̃∗. (57)

From the definition of θ̃∗, we have

f̃a(xa(k)) = fa(xa(k)) − θ∗

1 + θ∗d
ȳ(k)ga(xa(k))

= f̄a(xa(k)) (58)

ỹ(k) =
(

1 − θ∗d
1 + θ∗d

)
ȳ(k) =

1
1 + θ∗d

ȳ(k)

= h̄a(xa(k)). (59)

This means that the system (54) is strictly passive with
C2 positive definite storage function.

Thus, there exists a C2 positive definite function V1,
functions l1(xa(k)),W1(xa(k)), and a positive definite
function S1(xa(k)) such that

C1) V1(f̄a(xa)) − V1(xa) = −l1(xa)2 − S1(xa)
∂V1(α)

∂α

∣∣∣∣
α=f̄a(xa)

g(x) = h̄a(xa) − 2l1(xa)W1(xa)

gT
a (xa)

∂2V1(α)
∂α2

∣∣∣∣
α=f̄a(xa)

ga(xa) = 2d − 2W1(xa)2

C2) V1(f̄a(xa) + ga(xa)∆u) is quadratic in ∆u.

Therefore, considering the difference of V1(xa(k)), it is
easy to show that we have

V1(xa(k + 1)) − V1(xa(k))
= ya(k)∆u(k) − S1(xa(k))

− (l1(xa(k)) + W1(xa(k))∆u(k))2 . (60)

Now, consider the following positive definite function V :

V (k) = V1(xa(k)) + V2(k) (61)

V2(k) =
1
2γ

∆θ̃(k − 1)2. (62)

Define a difference ∆V (k) as

∆V (k) = V (k + 1) − V (k)
= ∆V1(xa(k)) + ∆V2(k) (63)

∆V1(xa(k)) = V1(xa(k + 1)) − V1(xa(k)) (64)
∆V2(k) = V2(k + 1) − V2(k). (65)

The difference ∆V2(k) is represented by

∆V2(k) =
1
2γ

(
∆θ̃(k)2 − ∆θ̃(k − 1)2

)
. (66)

Since we have from (52) that

∆θ̃(k − 1) = ∆θ̃(k) − γya(k)ȳ(k), (67)

we obtain

∆V2(k) = −∆u(k)ya(k) − 1
2
γya(k)2ȳ(k)2. (68)

Consequently, the difference ∆V can be evaluated from
(60) and (68) by

∆V (k) =−S1(xa(k)) − (l1(xa(k)) + W1(xa(k))∆u(k))2

−1
2
γya(k)2ȳ(k)2

≤−S1(x(k)) ≤ 0. (69)

From this result, we can conclude that all the signals
in the control system are uniformly bounded. Further,
from (69), we have limk→∞ xa(k) = 0. Thus we obtain
limk→∞ y(k) = 0.

Finally, we have the following theorem.

Theorem 5 Under the Assumption 4, all the signals in
the resulting closed loop control system with control input
in (51) are uniformly bounded, and lim

k→∞
y(k) = 0 is

achieved.
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6 Conclusions

In this paper, we considered a passivity based adaptive
output feedback control design for discrete-time nonlin-
ear systems. We first clarified a discrete-time nonlinear
version of Kalman-Yakubovich-Popov (KYP) Lemma
for a strictly passive system, and then investigated the
OFSP property of discrete-time nonlinear systems. Fur-
thermore, conditions in which one can design an adap-
tive controller without causality problems were provided
as strong output feedback strict passivity, and according
to the obtained conditions, an adaptive output feedback
controller design scheme was shown for a discrete-time
nonlinear system.

A Appendix A: Proof of Theorem 1

(Necessity): If the system (1) is strictly passive, then
there exist a non-negative function V (x(k)) and a posi-
tive definite function S(x(k)) such that

V (x(k + 1)) − V (x(k)) ≤ y(k)u(k) − S(x(k)) (A.1)

Considering functions l(x(k)) and W (x(k)) to satisfy

V (x(k + 1)) − V (x(k))
= y(k)u(k) − S(x(k)) − (l(x(k)) + W (x(k))u(k))2 ,

(A.2)

we have

V (f(x)+g(x)u)=V (x)+h(x)u+J(x)u2−S(x)−l(x)2

−2l(x)W (x)u−W (x)2u2. (A.3)

Setting u(k) = 0, (4) is obviously satisfied. Further, from
(A.3) we have

∂V (f(x) + g(x)u)
∂u

=
∂V (α)

∂α

∣∣∣∣
α=f(x)+g(x)u

g(x)

= h(x) + 2J(x)u − 2l(x)W (x)
−2W (x)2u, (A.4)

∂2V (f(x)+g(x)u)
∂u2

= gT(x)
∂2V (α)

∂α2

∣∣∣∣
α=f(x)+g(x)u

g(x)

= 2J(x) − 2W (x)2. (A.5)

Setting u = 0 yields (5) and (6). A1-2) is obvious.

(Sufficiency): From A1-2), V (f(x) + g(x)u) can be ex-
pressed as

V (f(x) + g(x)u) = A(x) + B(x)u + C(x)u2 (A.6)

Applying the Taylor expansion formula at u(k) = 0, we
have from A1-1) that

A(x) = V (f(x) + g(x)u)|u=0 = V (f(x))

= V (x) − l(x)2 − S(x), (A.7)

B(x) =
∂V (f(x) + g(x)u)

∂u

∣∣∣∣
u=0

=
∂V (α)

∂α

∣∣∣∣
α=f(x)

g(x)

= h(x) − 2l(x)W (x), (A.8)

C(x) =
1
2

∂2V (f(x) + g(x)u)
∂u2

∣∣∣∣
u=0

=
1
2
gT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f(x)

g(x)

= J(x) − W (x)2. (A.9)

Thus we obtain

V (f(x)+g(x)u)
= V (x)+h(x)u+J(x)u2−S(x)− l(x)2

−2l(x)W (x)u−W (x)2u2

= V (x)+yu−S(x)−(l(x)+W (x)u))2 . (A.10)

This yields that

V (x(k+1))−V (x(k)) ≤ y(k)u(k)−S(x(k)). (A.11)

Finally we can conclude that the system (1) with as-
sumptions A1-1) and A1-2) is strictly passive.

B Appendix B: Proof of Lemma 1

Consider a system (1) with J(x(k)) = d satisfying as-
sumptions A2-1) to A2-3) in Theorem 2:

x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)) + du(k).
(B.1)

From Theorem 2, there exists a static output feedback
(8) such that the resulting closed loop system:

x(k + 1) = f̄(x(k)) + ḡ(x(k))v(k)

y(k) = h̄(x(k)) + d̄v(k)
(B.2)

with

f̄(x(k)) = f(x(k)) − θ∗

1 + θ∗d
h(x(k))g(x(k))

ḡ(x(k)) =
1

1 + θ∗d
g(x(k))

h̄(x(k)) =
1

1 + θ∗d
h(x(k)), d̄ =

1
1 + θ∗d

d

is strictly passive with a C2 positive definite storage
function. Thus from Theorem 1, there exist a C2 positive
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definite function V (x(k)), functions l̄(x(k)), W̄ (x(k))
and a positive definite function S̄(x(k)) such that

V (f̄(x)) − V (x) = −l̄(x)2 − S̄(x) (B.3)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x) = h̄(x) − 2l̄(x)W̄ (x) (B.4)

ḡT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

ḡ(x) = 2d̄ − 2W̄ (x)2 (B.5)

and V (f̄(x) + ḡ(x)v) is quadratic in v. In other words,
the following equality is satisfied.

V (x(k+1))−V (x(k))

=y(k)v(k)−S̄(x(k))−(l̄(x(k))+W̄ (x(k))v(k)
)2

. (B.6)

Considering the transformed input:

v̄(k) =
1

1 + θ∗d
v(k), (B.7)

(B.6) can be represented by

V (x(k+1))−V (x(k))
= y(k) (1+θ∗d) v̄(k)−S̄(x(k))

− (l̄(x(k))+W̄ (x(k)) (1+θ∗d) v̄(k)
)2

. (B.8)

Thus we have
V̄ (x(k+1))−V̄ (x(k))

= y(k)v̄(k)−S̃(x(k))−
(
l̃(x(k))+W̃ (x(k))v̄(k)

)2

(B.9)

where

V̄ (x(k)) =
1

1 + θ∗d
V (x(k)) (B.10)

S̃(x(k)) =
1

1 + θ∗d
S̄(x(k)) (B.11)

l̃(x(k)) =
1√

1 + θ∗d
l̄(x(k)) (B.12)

W̃ (x(k)) =
√

1 + θ∗dW̄ (x(k)). (B.13)

This means that the system with the transformed input
v̄:
x(k + 1) = f̄(x(k)) + g(x(k))v̄(k)

y(k) = h̄(x(k)) + dv̄(k)
(B.14)

is strictly passive with a C2 positive definite storage
function V̄ .
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