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a b s t r a c t

In this paperwe consider a long string of SISO systemswhich in the limit becomes a scalar infinite spatially
invariant system. We compare the LQR control for long-but-finite strings with the LQR control for the
corresponding infinite strings.We give analytical and numerical exampleswhere these are quite different
andwe investigate the cause. In addition,weobtain sufficient conditions for the LQR solutions to be similar
as the length of the string increases.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In Bamieh, Paganini, and Dahleh (2002) a general class of
spatially invariant systems was introduced as a useful model for
many applications. While large-scale finite-dimensional systems
are cumbersome to treat, spatially invariant systems are easier to
analyzemathematically. In Jovanović and Bamieh (2005) Jovanović
and Bamieh pointed out the shortcomings of previous models
of platoons of vehicles in Levine and Athans (1966) and Melzer
and Kuo (1971a,b), which were due to the lack of exponential
stabilizability or detectability of the infinite platoon model. They
also studied the LQR problem for a class of infinite spatially
invariant string of vehicles and showed that the LQR control
of the infinite model reflected well the behavior of the long-
but-finite vehicular platoons described in Levine and Athans
(1966) and Melzer and Kuo (1971a,b). In view of the attractive
mathematical features of the class of spatially invariant systems
and their applications (see Bamieh et al. (2002)), it is important to
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investigate when spatially invariant systems serve as good models
for long-but-finite strings. This paper serves as a first step in
addressing this very complex question.
We consider a long-but-finite string of 2N + 1 scalar

autonomous units

żr(t) =
N∑

l=−N

alzr−l(t)+
N∑

l=−N

blur−l(t), (1)

yr(t) =
N∑

l=−N

clzr−l(t), −N ≤ r ≤ N, t ≥ 0,

where only finitely many coefficients al, bl, cl ∈ C, −s ≤ l ≤
s � N , are nonzero and zk, yk and uk are set to zero for |k| > N .
We remark that the structure of the first s and the last s units
of the long-but-finite string (1) are different from the structure
of the other units. We compare the LQR control for (1) with
LQR control of the corresponding infinite string, which is a scalar
spatially invariant system. Clearly, it is important to clarify which
properties one is considering and whether or not the infinite
model does serve as a useful indicator for these properties. Among
the many properties one could consider of the LQR solution we
focus on the following two properties of the closed-loop generator
Acl: the growth bound which equals the spectral bound ωcl =
sup{Re(λ) : λ ∈ σ(Acl)} (since Acl is bounded) and the transient
bound Mω , which for any ω > ωcl is the smallest positive
number such that we have ‖eAclt‖ ≤ Mωeωt (see Curtain & Zwart,
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1995, Theorem2.1.6). Bymeans of two analytical counterexamples
and numerical counterexamples we show that finite and infinite
strings can exhibit quite different behavior. So for this class of
scalar systems the infinite case is not always a useful paradigm
to understand the long-but-finite case. More importantly, we
investigate the mathematical underpinnings of the LQR control
problem for both the finite and infinite cases. We give sufficient
conditions under which different types of long-but-finite strings,
such as circular configurations (see Theorem 3.10) and systems
for which two out of the three defining operators are constants
(see Propositions 3.6–3.8 and 4.4), exhibit similar behavior as the
corresponding infinite strings.
Model (1) with state space C2N+1 can also be written in a

compact formΣ(AN , BN , CN , 0)

żN(t) = ANzN(t)+ BNuN(t), (2)
yN(t) = CNzN(t), t ≥ 0,

where u, y, z are column vectors of size 2N + 1, e.g., zN(t) =[
z−N(t) z−N+1(t) · · · zN(t)

]T and AN , BN , CN are (2N + 1)×
(2N + 1) Toeplitz matrices. It is well known that large Toeplitz
matrices have bad numerical properties and so simulations are not
in general a reliable way to investigate the properties of Toeplitz
systems (see Böttcher and Silvermann (1999)). Consequently, it is
important to analyze these systems analytically. Now the limit as
N → ∞ produces a system that is amenable to mathematical
computations. This infinite-dimensional string falls into the class
of spatially invariant systems introduced in Bamieh et al. (2002) and
is given by

żr(t) =
∑
l∈Z

alzr−l(t)+
∑
l∈Z

blur−l(t), (3)

yr(t) =
∑
l∈Z

clzr−l(t), r ∈ Z, t ≥ 0, (4)

where al, bl, cl ∈ C and zr(t), ur(t) and yr(t) ∈ C are the state, the
input and the output vectors, respectively, at time t ≥ 0 and spatial
point r ∈ Z. As in Curtain, Iftime, and Zwart (2008, 2009) we can
formulate (3), (4) as a standard state linear systemΣ(A, B, C, 0)

ż(t) = (Az)(t)+ (Bu)(t), (5)
y(t) = (Cz)(t), t ≥ 0,

with the state, the input and the output spaces (Z , U and Y ,
respectively) are equal to `2(Z,C). A, B, C are Laurent operators
(see Appendix).
Taking Fourier transforms in the spatial direction (see Curtain

et al. (2009)) of the systemEq. (5),we obtain the state linear system
Σ(Ǎ, B̌, Č, 0)

˙̌z(t) = Fż(t) = Ǎž(t)+ B̌ǔ(t), (6)

y̌(t) = Fy(t) = Č ž(t), t ≥ 0.

Note that our standing assumption is that only finitely many of the
coefficients are nonzerowhichmeans that Ǎ(ejθ ), B̌(ejθ ), Č(ejθ ) are
uniformly continuous in θ on [0, 2π ] and Ǎ, B̌, Č ∈ L∞(∂D;C).
Hence Ǎ, B̌, Č define bounded operators on L2(∂D;C). The
system Σ(A, B, C, 0) is isometrically isomorphic to Σ(Ǎ, B̌, Č, 0)
with the state space, input and output spaces L2(∂D;C). Their
system theoretic properties are identical (see Curtain & Zwart,
1995, Exercise 2.5). For every θ ∈ [0, 2π ] the system (6) can be
written as

˙̌z(ejθ , t) = Ǎ(ejθ )ž(ejθ , t)+ B̌(ejθ )ǔ(ejθ , t) (7)

y̌(ejθ , t) = Č(ejθ )ž(ejθ , t), t ≥ 0.

In Section 2 we analyze the LQR control problem for two examples
and show that both the growth bounds and the transient bounds
of the closed-loop operators for the finite and infinite string
models are radically different. For one example the growth bounds
satisfy ωN < ω∞ and the transient factors increase without
bound as N → ∞, whereas for the other example ωN > ω∞
and it has a transient bound of one. Sufficient conditions under
which the solution to the LQR problem for the infinite string
will serve as a useful paradigm for the long-but-finite strings
are provided in Section 3. We also consider Riccati equations
for the circulant matrix approximating system Σ(ÃN , B̃N , C̃N , 0),
where ÃN is the circulant matrix approximant of the symbol Ǎ as
defined in the Appendix. The Riccati solutions for the circulant
approximating systems do exhibit very similar behavior to the
infinite-dimensional ones as N → ∞. In Section 4 we analyze
yet another class of approximating Riccati equations which have
been considered in the literature. They have similar convergence
properties to the Toeplitz approximants. All results are illustrated
by worked examples. Some Matlab simulations are presented in
Section 5 and conclusions are drawn in Section 6. Notations and
background results are collected in the Appendix.

2. Counterexamples

In this section we show that infinite string do not always
capture the essence of the long-but-finite strings. We analyze
two examples for which the growth bounds of the LQR closed-
loop finite and infinite strings are significantly different. The first
example illustrates the difference in stability between a finite and
an infinite string.

Example 2.1. Consider the uncontrolled finite string model with
real coefficients

żr(t) = a0zr(t)+ a1zr−1(t), −N + 1 ≤ r ≤ N
ż−N(t) = a0z−N(t), t ≥ 0

with the system matrix

AN =


a0 0 0 0 · · · 0 0
a1 a0 0 0 · · · 0 0
0 a1 a0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · a1 a0

 .
AN has the multiple eigenvalue a0 and the growth bound

ωN = max{Re(λ) : λ ∈ σ(AN)} = a0.

However the transient behavior depends strongly on N . We make
this explicit by decomposing AN = a0IN + a1FN , where IN is the
(2N+1) identitymatrix and FN is the (2N+1)×(2N+1) nilpotent
matrix with F 2N+1N = 0. This gives

eAN t = ea0t
(
IN + a1tFN + · · · +

1
(2N)!

(a1t)2NF 2NN

)
. (8)

Noting that ‖FN‖ = 1 we can obtain the estimates ‖eAN t‖ ≤
t2Nea0te|a1| for t ≥ 1 and for ε > 0

‖eAN t‖ ≤ e(a0+|a1|)t , t ≥ 0;
‖eAN t‖ ≤ Mε(N)e(a0+ε)t , t ≥ 0.

We now compare this with the infinite string model

żr(t) = a0zr(t)+ a1zr−1(t), r ∈ Z, t ≥ 0,

which is isomorphic to the system

˙̌z(t) = (a0 + a1e−jθ )ž(t), t ≥ 0, θ ∈ [0, 2π ].
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The system matrix Ǎ(ejθ ) = a0 + a1e−jθ has the continuous
spectrum σ(Ǎ) = {λ = x+ jy | (x− a0)2 + y2 = a21}. Thus

‖eAt‖ = ‖eǍt‖∞ = max
θ∈[0,2π ]

|e(a0+a1e
−jθ )t
| = e(a0+|a1|)t ,

and the growth bound ω∞ = sup{Re(λ) : λ ∈ σ(A)} = a0 + |a1|,
which is larger than ωN = a0. For a fixed positive ε < |a1|
any transient bound Mε(N) increases as N → ∞, whereas the
transient bound of the infinite string is one. Clearly the finite and
infinite strings exhibit very different stability behavior especially
in the case a0 < 0 and a0 + |a1| > 0. If a0 + |a1| < 0 this example
can serve as a (trivial) LQR example when A and AN represent the
closed-loop operators, B = 0 and C = I .

The above example emphasizes that when comparing the
behavior of finite and infinite stringmodels both the growth bound
and the transient factor are important indicators. In the following
LQR example the transient factors are both 1, but the growth bound
of the finite string is larger than that of the infinite string model.

Example 2.2. Let β > 1 be given. Consider the following finite
string of the form (1)

żr(t) = zr(t)+ ur(t)+ βur−1(t), −N + 1 ≤ r ≤ N
ż−N(t) = z−N(t)+ u−N(t),
yr(t) = zr(t), −N ≤ r ≤ N, t ≥ 0

which can be written in the compact form (2) with AN =

CN = IN and BN =

[ 1 0 0 . . . 0
β 1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . β 1

]
.The finite string is

obviously stabilizable and detectable for all N . Factorize BNB∗N =
WNdiag(βk(N))W ∗N , where WN is a (2N + 1) × (2N + 1) unitary
matrix. Then the solution QN to the corresponding control Riccati
equation is readily calculated QN = WNdiag(

1+
√
1+βk(N)
βk(N)

)W ∗N .

Hence ‖QN‖ = maxk=0,...,2N
1+
√
1+βk(N)
βk(N)

, which is achieved at
βmin(N), the minimum value of βk(N). The closed-loop operator
is given by

AN − BN(BN)∗QN = WNdiag
(
−
√
1+ βk(N)

)
W ∗N .

Hence ‖e(AN−BN (BN )
∗QN )t‖ = e−

√
1+βmin(N)t . We claim that for β > 1

one eigenvalue of BN(BN)∗ approaches 0 as N → ∞. It is readily
verified that BNB∗NvN = wN , where

vN = (−β
−1, β−2,−β−3, . . . , β−2N ,−β−2N−1)T ,

wN = (0, 0, 0, . . . , 0,−β−2N−1)T .

Since β > 1, one eigenvalue must become arbitrarily small as
N → ∞ which means that ‖QN‖ → ∞, and one eigenvalue of
AN−BNB∗NQN approaches−1 asN →∞. Hence the growth bound
ωN →−1 as N →∞ (see also Lemma A.2(2)).
We show below that this behavior is very different from that of

the infinite string

żr(t) = zr(t)+ ur(t)+ βur−1(t),
yr(t) = zr(t), r ∈ Z, t ≥ 0.

This system is isomorphic via Fourier transforms to

˙̌z(t) = ž(t)+ (1+ βe−jθ )ǔ(t),
y̌(t) = ž(t), t ≥ 0, θ ∈ [0, 2π ].

It is clearly exponentially detectable and it is exponentially
stabilizable, since the matrix [λ − 1 : 1 + βe−jθ ] has rank one
for all λ ∈ C, Re(λ) ≥ 0 and all θ ∈ [0, 2π ] (see Curtain et al.
(2008, 2009)). The LQR Riccati equation

Q̌ (ejθ )+ Q̌ (ejθ )− Q̌ (ejθ )(1+ βe−jθ )(1+ βe−jθ )∗Q̌ (ejθ )+ 1 = 0

has the unique positive solution Q̌ (ejθ ) = 1+
√
2+β2+2β cos θ

1+β2+2β cos θ
with

norm ‖Q̌‖∞ =
1+
√
1+(1−β)2

(1−β)2
. The closed-loop operator ǍQ =

Ǎ − B̌B̌∗Q̌ is ǍQ (ejθ ) = −
√
2+ β2 + 2β cos θ , θ ∈ [0, 2π ]. Hence

its growth bound ω∞ = −
√
2+ β2 − 2β < −1 and its transient

factor is 1. Notice thatω∞ decreases as β increases. In contrast, for
the finite string the growth bound satisfies ωN → −1 as N →∞
for all β > 1.

So for two examples we have shown that both the growth
bounds and the transient factors can be radically different. The
obvious conclusion is that the infinite-dimensional string is not
always a useful paradigm for understanding the behavior of long-
but-finite strings.

3. Main results

In this section we give conditions under which the solution
to the LQR problem for the infinite string will serve as a useful
paradigm for the long-but-finite strings. We use the notation and
assumptions from Section 2.
The standard result on Riccati equations Curtain and Zwart

(1995, Theorem 6.2.7) and the result on exponential stabilizability
and detectability Curtain et al. (2008; 2009, Theorems 4.1, 4.2)
yield the following result for the infinite-dimensional system
Σ(A, B, C, 0) defined in (5).

Theorem 3.1. The system Σ(A, B, C, 0) is exponentially stabilizable
(detectable) if and only if (Ǎ(ejθ ), B̌(ejθ ), Č(ejθ ), 0) is stabilizable
(detectable) for each θ ∈ [0, 2π ]. If the above holds, then the control
Riccati equation

A∗Q + QA− QBB∗Q + C∗C = 0 (9)

has a unique nonnegative solution Q and AQ = A − BB∗Q generates
an exponentially stable semigroup. Moreover, the control Riccati
equation

Ǎ∗Q̌ + Q̌ Ǎ− Q̌ B̌B̌∗Q̌ + Č∗Č = 0 (10)

has a unique nonnegative solution Q̌ ∈ L∞(∂D;C) and ǍQ =
Ǎ− B̌B̌∗Q̌ generates an exponentially stable semigroup. Furthermore,
Q̌ (ejθ ) is continuous in θ on [0, 2π ].

The continuity property follows from Lancaster and Rodman
(Lancaster & Rodman, 1995, Theorem 11.2.1).
The problem of approximating solutions to operator Riccati

equations has received much attention in the literature. However,
the strongest convergence results (see Ito (1987)) are achieved
only if the input and output spaces are finite-dimensional, which
is never the case for spatially invariant systems. However, we can
apply the theory in Kappel and Salamon (1990) applied to (5) with
(2) as a sequence of approximating control systems.
Denote by πN : Z = l2(Z,C) → C2N+1 the natural projection

with iN : C2N+1 → l2(Z,C) the corresponding injection map:
πN iN = I2N+1. Denote ZN := C2N+1 with the induced inner
product 〈x, y〉N = 〈iNx, iNy〉l2 . Then AN , BN , CN are Toeplitz matrix
representations of the maps πNA|ZN , π

NB|ZN , π
NC |ZN , with Z

N as
the state space, input space and output space. For simplicity of
notationwe use the same notation for themaps as for thematrices,
and we call Σ(AN , BN , CN , 0) the Toeplitz approximating systems
for the infinite-dimensional string Σ(A, B, C, 0). Moreover, by
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expressions like ‘‘AN converges strongly to A as N → ∞’’ we
shall mean the more precise limN→∞ ‖iNANπNz − Az‖ = 0 for
all z ∈ l2(Z,C). We say that the Toeplitz approximating systems
Σ(AN , BN , CN , 0) converge strongly to the infinite-dimensional
stringΣ(A, B, C, 0) if as N →∞, AN , BN , CN ,A∗N , B

∗

N , C
∗

N converge
strongly to the respective operators A, B, C, A∗, B∗, C∗. We also
need following properties.

Definition 3.2. The Toeplitz approximating systems Σ(AN , BN ,
CN , 0) are uniformly stabilizable and detectable if there exist
FN , LN ∈ C(2N+1)×(2N+1), F , L ∈ L(l2(Z,C)) such that
FN , LN , F∗N , L

∗

N converge strongly as N → ∞ to the respective
operators F , L, F∗, L∗, and there exist constants M ≥ 1, β > 0
such that for sufficiently large N ∈ N, ‖e(AN+BNFN )t‖ ≤ Me−βt ,
‖e(AN+LNCN )t‖ ≤ Me−βt , t ≥ 0.

An application of Kappel and Salamon (1990, Theorem 1,
Proposition 1) and Ito (1987) yields the following theorem.

Theorem 3.3. Suppose that Σ(A, B, C, 0) is exponentially stabiliz-
able and detectable and the sequence of the Toeplitz approximat-
ing systemsΣ(AN , BN , CN , 0) is uniformly stabilizable and detectable
and converges strongly to Σ(A, B, C, 0). For the state linear sys-
tems (5) and (2) let Q ∈ L(l2(Z,C)) and QN ∈ L(ZN) denote
the unique nonnegative solutions of their respective Riccati equa-
tion (9) and

A∗NQN + QNAN − QNBNB
∗

NQN + C∗NCN = 0. (11)

Then QN converges strongly to Q and so ‖QN‖ is uniformly bounded
in N. Denote AQ := A − BB∗Q and AQN := AN − BNB∗NQN . Then as
N →∞, AQN converges strongly to AQ and e

AQN t converges strongly
to eAQ t uniformly on compact time intervals.
Moreover, there exist positive constants M, µ such that

‖eAQ t‖ ≤ Me−µt , ‖eAQN t‖ ≤ Me−µt for all t ≥ 0, (12)

and for all u ∈ `2 as N →∞, we have

‖C(·I − AQ )−1Bu− iNCN(·IN − AN)−1BNπNu‖H2 → 0,

‖B∗Q (·I − AQ )−1Bu− iNB∗NQN(·IN − AN)
−1BNπNu‖H2 → 0.

Note that the counterexample (4.1) in Kappel and Salamon (1990)
shows that in general it is not true that

‖C(·I − AQ )−1Bu− iNCN(·IN − AQN )
−1BNπNu‖H∞ → 0

as N → ∞. We also remark that the solutions QN of (11) are not
Toeplitz in general.
Sufficient conditions for uniform stabilizability and detectabil-

ity are provided in the following propositions.

Proposition 3.4. The Toeplitz approximating systemsΣ(AN , BN , CN ,
0) are uniformly detectable if any of the following equivalent state-
ments is satisfied:

(1) The Toeplitz operator T (Č) (see (A.1)) is invertible.
(2) The Toeplitz operator T (Č) is a Fredholm operator of index zero.
(3) Č has no zeros on ∂D andwind (Č, 0) = 0. Moreover the stability
margin can be made arbitrarily large.

Proposition 3.5. The Toeplitz approximating systemsΣ(AN , BN , CN ,
0) are uniformly stabilizable if any of the following equivalent state-
ments is satisfied:

(1) The Toeplitz operator T (B̌) is invertible.
(2) The Toeplitz operator T (B̌) is a Fredholm operator of index zero.
(3) B̌ has no zeros on ∂D andwind (B̌, 0) = 0. Moreover the stability
margin can be made arbitrarily large.

By duality it suffices to prove Proposition 3.4.
Proof. The equivalence (1) ⇔ (2) ⇔ (3) follows from Böttcher
and Silvermann (1999) (Theorem 1.10, Theorem 1.17, ind(T (Č)) =
−wind (Č, 0), Č is continuous).
By Lemma A.2.(2), T (Č) is invertible if and only if there exists a

nonzero γ such that for sufficiently largeN , we have λmin(C∗NCN) ≥
γ 2. Note that the condition is equivalent to

〈CNzN , CNzN〉 ≥ γ 2‖zN‖2 for all zN ∈ ZN .

We show uniform detectability by using LN = −α2C∗N . Then by
Hinrichsen and Pritchard (2000, Lemma 5.5.11) we have that

‖e(AN−α
2C∗NCN )t‖ ≤ eλmax(AN+A

∗
N−2α

2C∗NCN )t/2.

Now for zN ∈ ZN we calculate

〈(AN + A∗N − 2α
2C∗NCN)zN , zN〉 ≤ 2(‖AN‖ − α

2γ 2)‖zN‖2

≤ −2β‖zN‖2

for arbitrarily large β by choosing α sufficiently large. Hence
‖e(AN−α

2C∗NCN )t‖ ≤ e−βt . �

Strong convergence is insufficient to draw conclusions about
the spectrum of AQN . However, we note that in our Example 2.2
we only have uniform stabilizability if β < 1. In this case we do
not even have strong convergence. If only one of Ǎ, B̌, Č depends
on θ , then we can prove better convergence results.

Proposition 3.6. Consider Ǎ = a0, B̌ = b0, Č ∈ H∞ and assume
that the conditions in Theorem 3.3 are satisfied. Then there holds

(1) lim supN→∞ ‖QN‖ = ‖Q‖ and ‖e
AQN t‖ ≤ e−|Re(a0)|t for all

t ≥ 0.
(2) For all t ≥ 0 there holds ‖eAQN t‖ ≤ eωN t , where ωN is the growth
bound of eAQN t .

(3) ωN → ω∞ as N →∞.

Proof. (1) First we note that the unique solution to the infinite-
dimensional Riccati equation is given by

Q̌ (ejθ ) =
(
Re(a0)+

√
(Re(a0))2 + |b0|2|Č(ejθ )|2

)
/|b0|2,

where Re(·)denotes the real part of a complex number. The growth
bound of the corresponding closed-loop operator is

ω∞ = −

√
(Re(a0))2 + |b0|2 min

θ∈[0,2π ]
|Č(ejθ )|2.

Using the factorization C∗NCN = VNdiag{γ 2k (N)}V
∗

N , where VN is
unitary, we obtain the unique solution of (11) to be

QN = VNdiag

Re(a0)+
√
(Re(a0))2 + |b0|2γ 2k (N)

|b0|2

 V ∗N ,
AQN = VNdiag

(
−

√
(Re(a0))2 + |b0|2γ 2k (N)

)
V ∗N .

Notice that

‖QN‖ =

Re(a0)+
√
(Re(a0))2 + |b0|2 max

k=0,...,2N
{γ 2k (N)}

|b0|2
.

So appealing to Lemma A.2(1) we have lim supN→∞ ‖QN‖ =
‖Q̌‖∞(= ‖Q‖). The growth bound of eAQN t is

ωN = −

√
(Re(a0))2 + |b0|2 min

k=0,...,2N
{γ 2k (N)}, (13)
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and

‖eAQN t‖ ≤ e
−t
√
(Re(a0))2+|b0|2 min

k=0,...,2N
{γ 2k (N)}

≤ e−|Re(a0)|t ,

and this is independent of uniform detectability.
(2) This follows since AQN is self-adjoint.

(3) We consider first the case when T (Č) is not invertible. Then
minθ∈[0,2π ] |Č(ejθ )| and ω∞ = −|Re(a0)|. From Lemma A.2(2) we
have that limN→∞mink=0,...,2N{γk(N)} = 0. Then ωN from (13)
converges to ω∞ as N →∞.
Assume now that T (Č) is invertible. The condition Č ∈

H∞ means that the corresponding Toeplitz operator is lower
triangular, and so T−1(Č) = T (Č−1) (see Böttcher & Silvermann,
1999, Proposition 1.13). Using now Lemma A.2(5) we obtain
limN→∞mink=0,...,2N{γk(N)} = 1

‖T−1(Č)‖
=

1
‖T (Č−1)‖

= minθ∈[0,2π ]

|Č(ejθ )|, where γk(N) are the singular values of CN . Hence ωN →
ω∞ as N →∞.

Proposition 3.7. Consider Ǎ = a0, Č = c0 and assume that the
conditions in Theorem 3.3 are satisfied.

(1) If Re(a0) > 0, thenΣ(AN , BN , CN , 0) is uniformly stabilizable if
and only if T (B̌) is invertible.

(2) For all t ≥ 0 there holds ‖eAQN t‖ ≤ eωN t , where ωN is the growth
bound of eAQN t .

(3) If T (B̌) is not invertible, then ωN →−|Re(a0)| as N →∞.
(4) If T (B̌) is invertible and B̌ ∈ H∞, then ωN → ω∞ as N →∞.

Proof. (1) For the sufficiency see Proposition 3.5. We prove
necessity by contradiction. Assume that T (B̌) is not invertible. From
Lemma A.2(2) we have that

lim
N→∞

min
k=0,...,2N

{βk(N)} = 0

where βk(N) are the singular values of BN . We can factorize
BNB∗N = VNdiag{β2k (N)}V

∗

N , where VN is unitary, to obtain the
unique solution of (11) to be

QN = VNdiag

Re(a0)+
√
(Re(a0))2 + |c0|2β2k (N)

βk(N)2

 V ∗N .
Thus ‖QN‖ → ∞ and QN cannot converge strongly to Q . So, by
Theorem 3.3,Σ(AN , BN , CN , 0) cannot be uniformly stabilizable.
The statements (2), (3) and (4) follow as in the proof of

Proposition 3.6, parts (2) and (3). �

Proposition 3.7 explains Example 2.2, since the T (B̌) is invertible if
and only if β < 1. We also remark that the apparent contradiction
between parts (1) and (3) lies in the fact that Definition 3.2 requires
a bounded feedback gain ‖FN‖, whereas ‖BNQN‖ → ∞ asN →∞.
The discretization of partial differential equations leads to

systems with a real Ǎ operator and constant B̌, Č operators (see El-
Sayed and Krishnaprasad (1981)). For such systems we also obtain
nice convergence results (see also Section 5, Example 5.1 case 2).

Proposition 3.8. Suppose that Ǎ = Ǎ∗, B̌ = b0 6= 0, Č = c0 6= 0.
Then limN→∞ ‖QN‖ = ‖Q‖ and the growth bound of eAQN t converges
to ω∞ with ‖eAQN t‖ ≤ eω∞t .

Proof. Note that the growth bound of the infinite-dimensional
system is

ω∞ = −

√
min

θ∈[0,2π ]
|Ǎ(ejθ )|2 + |c0|2|b0|2.
We diagonalize the self-adjoint AN = UNdiag(αk(N))U∗N and find
the solution to (11) to be

QN = UNdiag

αk(N)+
√
α2k (N)+ |c0|2|b0|2

|b0|2

U∗N ,
and so

‖QN‖ = max
k=1,...,2N

αk(N)+
√
α2k (N)+ |c0|2|b0|2

|b0|2

 .
The closed-loop operator

AQN = UNdiag
(
−

√
α2k (N)+ |c0|2|b0|2

)
U∗N

is self-adjoint. The rest of the proof is similar to that in
Proposition 3.6 with the important difference that

lim
N→∞

min
k=0,...,2N

αk(N) = min
θ∈[0,2π ]

Ǎ(ejθ )

and limN→∞maxk=0,...,2N αk(N) = maxθ∈[0,2π ] Ǎ(ejθ ), since AN is a
self-adjoint Toeplitz matrix (see Lemma A.1). �

In our simulations we obtained convergence also for Ǎ 6= Ǎ∗

(see Section 5, Example 5.2, except for case 4 in which T (B̌) is not
invertible). We conjecture that similar results to Propositions 3.8
and 3.7 can be obtained for the case Ǎ 6= Ǎ∗. We remark that when
A is not self-adjoint the convergence rate of the growth bound is
often slow (see Section 5, Example 5.2, cases 1, 3 and 8).

Example 3.9. A spatial discretization of the bi-infinite heated rod

∂z
∂t
(t, x) = α

∂2z
∂x2

(t, x)+ u(t, x), x ∈ R, t ≥ 0, α 6= 0.

with zr(t) := z(t, r), ur(t) := u(t, r), yr(t) := z(t, r), r ∈ Z, leads
to the spatially invariant system

żr(t) = α(zr−1(t)− 2zr(t)+ zr+1(t))+ ur(t), r ∈ Z, t ≥ 0.

The solution to its Riccati equation is given by

Q̌ (ejθ ) = 2α(cos θ − 1)+
√
4α2(1− cos θ)2 + 1, θ ∈ [0, 2π ],

and the closed-loop operator

ǍQ (ejθ ) = −
√
4α2(1− cos θ)2 + 1, θ ∈ [0, 2π ],

has the growth bound of −1. The corresponding Toeplitz
approximating system has the solutions QN = VNDNV ∗N , where VN
is a unitary matrix,

DN = diag
(
2α(τk(N)− 1)+

√
4α2(1− τk(N))2 + 1

)
,

and τk(N) = cos (k+1)π2N+2 , k = 0, . . . , 2N . Moreover, the closed-
loop operator is given by

AQN = VNdiag
(
−

√
4α2(1− τk(N))2 + 1

)
V ∗N ,

and the growth bound is

ωN = −

√
4α2

(
1− cos

π

2N + 2

)2
+ 1.

We remark that ωN converges to−1 as N →∞.

In order to gain more information about the spectra of
the approximating systems we examine the related circulant
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approximants of Ǎ, B̌, Č of dimension n = 2N + 1 denoted by
ÃN , B̃N , C̃N (see (A.3) in Appendix).

Theorem 3.10. Consider the exponentially stabilizable and de-
tectable systemΣ(A, B, C, 0) with Q the unique self-adjoint solution
to the Riccati equation (9)
(1) The Riccati equation

Ã∗N Q̃N + Q̃N ÃN − Q̃N B̃N B̃
∗

N Q̃N + C̃
∗

N C̃N = 0 (14)

has a unique self-adjoint stabilizing solution Q̃N which is the
circular approximant of Q̌ .

(2) lim supN→∞ ‖Q̃N‖ = ‖Q̌‖∞ = ‖Q‖.
(3) The growth bound ω̃N of eÃQN t satisfies

ω̃N ≤ ω∞, lim sup
N→∞

ω̃N = ω∞,

where ω∞ = sup{Re(λ), λ ∈ σ(A− BB∗Q )}, the growth bound
of eAQ t . Moreover, for all nonzero N ∈ N we have

‖eÃQN t‖ ≤ eω∞t , ∀t ≥ 0 and

‖(λI − ÃQN )
−1
‖∞ ≤

1
Re(λ)− ω∞

for Re(λ) > ω∞.

(4)

lim sup
N→∞

∥∥∥∥[ C̃NB̃∗N Q̃N
]
(λIN − ÃQN )

−1B̃N

∥∥∥∥
=

∥∥∥∥[ CB∗Q
]
(λI − AQ )−1B

∥∥∥∥
for all λ ∈ C, Re(λ) > ω∞.

Proof. (1) Note first that we have explicit formulas for the
circulant approximants of Ǎ, B̌, Č , for example,

ÃN = UNdiag
(
Ǎ(ej(

2πk
2N+1 ))

)
U∗N , k = 0, . . . , 2N.

Hence (ÃN , B̃N)will be stabilizable if and only if

(λ− Ǎ(ejθ ))B̌(ejθ ) 6= 0 for θ =
2πk
2N + 1

, k = 0, . . . , 2N,

and (∀)λ ∈ C, Re(λ) ≥ 0. A similar statement holds for
detectability and these are implied by the exponential stabilizabil-
ity and detectability ofΣ(Ǎ, B̌, Č, 0). Hence (14) has a unique solu-
tion for all N . Taking circulant approximants term by term in (10)
andproperties (P2), (P3) show that the circulant approximants of Q̃
satisfy (14) and so Q̃N is the unique self-adjoint stabilizing solution
of (10).
(2) From the proof of part (1) we can also write

Q̃N = UNdiag
(
Q̌ (ej(

2πk
2N+1 ))

)
U∗N , k = 0, . . . , 2N,

where UN is a unitary matrix. Since Q̃N is nonnegative definite
we have that lim supN→∞ ‖Q̃N‖ = lim supN→∞maxk=0,...,2N Q̌
(ej(

2πk
2N+1 )) = maxθ∈[0,2π ] Q̌ (ejθ ) = ‖Q̌‖∞ = ‖Q‖.

(3) Since Q̃N is a circulant matrix, so is ÃQN . Arguing as in the proof

of part (1) we obtain eÃQN t = UNdiag
(
eλ
(N)
k t
)
U∗N where λ

(N)
k =

ǍQ (ej(
2πk
2N+1 )), k = 0, . . . , 2N . Hence ω̃N = maxk=0,...,2N{Re(λ

(N)
k )} ≤

ω∞, lim supN→∞ ω̃N = ω∞, and ‖e
ÃQN t‖ ≤ eω∞t . Finally, we have

‖(λI − ÃQN )
−1
‖ ≤

∫
∞

0
‖eÃQN te−λt‖ dt ≤

∫
∞

0
eω∞te−Re(λ)t dt

=
1

Re(λ)− ω∞
, Re(λ) > ω∞,

which proves part (3).
(4) Note that ω̃N ≤ ω∞ and so, for Re(λ) > ω∞, we have

C̃N(λIN − ÃQN )
−1B̃N = UNDNU∗N ,

where DN = diag{(Č(λI − Ǎ)−1B̌)(ej(
2πk
2N+1 ))}, and similarly for the

other transfer function. Consequently, the limit is obtained. �

In Willems (1971, Section 3) solved an LQR problem for a string
model with diagonal ÃN , B̃N matrices and a circulant C̃N matrix.
Although this is attractive from a computational viewpoint, it
seems hard to justify from a modeling viewpoint. It would assume
some sort of coupling between the first and the last vehicle. As the
following example (the circulant version of the string model from
Example 2.2) illustrates, this is not always realistic.

Example 3.11. Consider the infinite string Σ(A, B, C, 0) from
Example 2.2. Its circulant approximating system Σ(ÃN , B̃N , C̃N , 0)
has

ÃN = C̃N = IN , and

B̃N =

 1 0 0 . . . β
β 1 0 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . β 1


and corresponds to the (fictitious) finite string

żr(t) = zr(t)+ ur(t)+ βur−1(t), −N + 1 ≤ r ≤ N
ż−N(t) = z−N(t)+ u−N(t)+ βuN(t),
yr(t) = zr(t), −N ≤ r ≤ N, t ≥ 0.

Using the properties of circulant matrices (see Appendix)

B̃N B̃∗N =


1+ β2 β 0 . . . β

β 1+ β2 β . . . 0
. . . . . . . . . . . . . . .

β 0 . . . β 1+ β2


= UNdiag(µk(N))U∗N ,

where the eigenvalues of B̃N B̃∗N are µk(N) = 1 + β2 + 2β
cos 2kπ2N+1 , k = 0, . . . , 2N and the unitary matrix UN = 1

√
2N+1

[e−
2π jrs
2N+1 ]r,s=0,...,2N . Hence we can derive the explicit solution to the

corresponding circular Riccati equation Q̃N = UNdiag(
1+
√
1+µk(N)
µk(N)

)

U∗N . Then ‖Q̃N‖ = maxk=0,...,2N
1+
√
1+µk(N)
µk(N)

=
1+
√
2+β2−2β cos π

2N+1
1+β2−2β cos π

2N+1
.

Notice that ‖Q̃N‖ → ‖Q‖ as N → ∞. The closed-loop operator
is given by (ÃN)Q̃N = ÃN − B̃N B̃

∗

N Q̃N = UNDNU
∗

N , where DN =

diag(−
√
2+ β2 − 2β cos π

2N+1 ). So the eigenvalues of the closed-
loop circulant approximating system all lie in the spectrum of AQ
and the growth bounds of their semigroups converge to ω∞ =
−
√
2+ β2 − 2β as N →∞.

We now relate the solutions Q̃N of the circulant Riccati equation
(14) to the solutions to (11). Note thatwe use |·|N instead of |·|2N+1
for the weak norm defined in Appendix.

Theorem 3.12. Assume that Σ(A, B, C, 0) is stabilizable and de-
tectable and Σ(AN , BN , CN , 0) is uniformly stabilizable and de-
tectable. Then the following hold

(1) |QN − Q̃N |N → 0 and |AQN − ÃQN |N → 0 as N →∞.
(2) The closed-loop transfer functions

GclN(λ) =
[

CN
B∗NQN

]
(λIN − AQN )

−1BN
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and

Gcl(λ) =
[
C
B∗Q

]
(λI − AQ )−1B

satisfy ‖Gcl(·)−GclN(·)|N‖H∞ → 0 and ‖Gcl(·)−GclN(·)|N‖H2 → 0.
(3) limN→∞ 1

2N+1

∑2N
k=1 λk(QN)

2
=

1
2π

∫ 2π
0 Q̌ (ejθ )2 dθ.

(4) 1
2N+1

∑2N
k=1 λk(AQN + A

∗

QN
)2 → 1

2π

∫ 2π
0 (ǍQ (ejθ )+ ǍQ (ejθ )∗)2dθ

for N →∞.

Proof. (1) a. First we compare the solutions of the control Riccati
equations of two exponentially stabilizable and detectable linear
systems Σ(Ai, Bi, Ci, 0); i = 1, 2 with bounded generating
operators on the same state space. Let Qi, i = 1, 2 denote the
nonnegative solutions to the Riccati equations

A∗i Qi + QiAi − QiBiB
∗

i Qi + C
∗

i Ci = 0, i = 1, 2.

Then with1Q =: Q1 − Q2 we have

A∗Q11Q +1QAQ2 = C
∗

2 C2 − C
∗

1 C1 + (A
∗

2 − A
∗

1)Q2
+Q1(A2 − A1)+ Q1(B1B∗1 − B2B

∗

2)Q2

and so we obtain

1Q =
∫
∞

0
eA
∗
Q1
t
[C∗1 C1 − C

∗

2 C2 + (A
∗

1 − A
∗

2)Q2

+Q1(A1 − A2)+ Q1(B2B∗2 − B1B
∗

1)Q2]e
AQ2 t dt, (15)

where AQi = A− BB
∗Qi, i = 1, 2.

(1) b. Now from (P8) the Toeplitz matrix approximants and the
circulantmatrix approximants of A, B, C converge in the |·|N -norm
and so |ÃN − AN |N → 0, |B̃N − BN |N → 0 and |C̃N − CN |N → 0,
as N →∞. We show that |Q̃N − QN |N → 0 as N →∞ by taking
estimates in (15) to obtain

|QN − Q̃N |N ≤ MN(|(CN)∗CN − C̃∗N C̃N |N
+ |ÃN − AN |N(‖QN‖ + ‖Q̃N‖)
+‖Q̃N‖‖QN‖BN(BN)∗ − B̃N(B̃N)∗|N),

where MN =
(∫
∞

0 ‖e
AQN t‖2 dt

∫
∞

0 ‖e
ÃQN t‖2 dt

) 1
2
. We have used

property (P7) of the matrix norm from Appendix. But both L2-
norms are uniformly bounded inN (see (12) and Theorem3.10 part
(3)), as are ‖QN‖ and ‖Q̃N‖ (see Theorem3.3 and Theorem3.10 part
(2)). So there exists a positive constant γ such that

|QN − Q̃N |N ≤ γ (|CN − C̃N |N + |AN − ÃN |N + |BN − B̃N |N).

Hence |Q̃N − QN |N → 0 and |ÃQN − AQN |N → 0 as N →∞.

(2) To obtain the bounds on the norm of eAQN t we first recall from
the proof of part (1) that |AN − ÃN |N → 0 as N → ∞, etc. Then,
since |QN − Q̃N |N → 0 as N →∞, using the properties (P6), (P7)
from Appendix we obtain

|AQN − ÃQN |N = |AN − ÃN − BNB∗NQN + B̃N B̃
∗

N Q̃N |N → 0

as N →∞. Consider the perturbation formula

eAQN t = eÃQN t +
∫ t

0
eÃQN (t−s)[ÃQN − AQN ]e

AQN s ds. (16)

Using again (P6), (P7) together with part (3) of Theorem 3.10 and
(12) we obtain estimates for sufficiently large N

|eAQN t − eÃQN t |N ≤ |ÃQN − AQN |N

(∫ t

0
eω∞(t−s)Me−µsds

)
≤ |ÃQN − AQN |NKe

−δt ,
where K = 2M
|ω∞+µ|

and δ > min{µ,−ω∞}. Hence we have

|(λIN − AQN )
−1
− (λIN − ÃQN )

−1
|N

≤ K |ÃQN − AQN |N

∫
∞

0
e−δte−Re(λ)t dt

≤ |ÃQN − AQN |N
K

Re(λ)+ δ
→ 0 as N →∞, (17)

for Re(λ) > −δ. Then, for Re(λ) > 0,

|(λIN − AQN )
−1BN − (λIN − ÃQN )

−1B̃N |N
≤ |((λIN − AQN )

−1
− (λIN − ÃQN )

−1)BN |N
+ |(λIN − ÃQN )

−1(BN − B̃N)|N
≤ |(λIN − AQN )

−1
− (λIN − ÃQN )

−1
|N‖BN‖

+
1
|ω∞|
|BN − B̃N |N → 0 as N →∞,

where we have used part (3) of Theorem 3.10. Repeating this type
of reasoning we obtain, for Re(λ) > −δ,

|CN(λIN − AQN )
−1BN − C̃N(λIN − ÃQN )

−1B̃N |N → 0

asN →∞. Now the estimate in (17) and the subsequent estimates
are uniform in Re(λ) > 0. Hence

sup
Re(λ)≥0

|CN(λIN − AQN )
−1BN − C̃N(λIN − ÃQN )

−1B̃N |N → 0

as N →∞, and similarly for the other transfer function.
To establish the H2-norm convergence use (16) to obtain∫
∞

0
|eAQN t − eÃQN t |2N dt

≤ |AQN − ÃQN |
2
N

(∫
∞

0
‖eÃQN t‖dt

)2 ∫ ∞
0
‖eAQN t‖2dt

≤ |AQN − ÃQN |
2
N
1
ω2
∞

M
2

2µ
.

for sufficiently large N , where we have used Theorem 3.10 part (3)
and (12).
Hence ‖(·I − AQN )

−1
− (·I − ÃQN )

−1
|N‖H2 → 0 as N →∞. The

rest follows as for the H∞ result.
(3), (4) These follow from part (2) and Lemma A.3 in Appendix.
�

We remark that the convergence results for the transfer
functions are necessarily weak. A simple calculation with the
diagonal system with Ǎ = a0, B̌ = b0, Č = c0 shows that we will
never have ‖Gcl − iNGclNπ

N
‖H∞ → 0, and ‖Gcl − iNGclNπ

N
‖H2 →

0. The most one could hope for is strong convergence ‖Gclu −
iNGclNπ

Nu‖H∞ → 0, and ‖Gclu − iNGclNπ
Nu‖H2 → 0 for all u ∈

U . While the strong convergence in the ‖ · ‖H2-norm does hold
(see Theorem 3.3), the ‖ · ‖H∞-norm convergence is unclear (see
Counterexample 4.1 in Kappel and Salamon (1990)).
Theorem 3.12 gives a possible explanation for Example 2.2

where ωN > ω∞ for β > 1; the system is not uniformly
stabilizable. Similar gaps between ωN and ω∞ are found in
numerical simulations (see Example 5.1 case 4 and Example 5.2
case 4). Example 2.1 shows that uniform stabilizability and
detectability do not imply that lim supN→∞ ωN → ω∞. For a1 ≥ 0,
we have ωN = a0 < ω∞ = a0 + a1. This difference is explained
by the transient boundsM(N) that increase drastically with N (see
(8)). Similar results hold for QN , the Toeplitz approximant of Q̌ ,
which is not the same as QN .
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Corollary 3.13. Assume that Σ(A, B, C, 0) is stabilizable and de-
tectable and the Toeplitz approximating systems Σ(AN , BN , CN) are
uniformly stabilizable and detectable for sufficiently large N. Then
with AQN := AN − BNB∗NQN we have

(1) |QN − Q̃N |N → 0 and |AQN − ÃQN |N → 0 as N →∞.
(2) The closed-loop transfer functions

GclN(λ) =
[

CN
B∗NQN

]
(λIN − AQN )

−1BN and

Gcl(λ) =
[
C
B∗Q

]
(λI − AQ )−1B

satisfy ‖Gcl(·)−GclN(·)|N‖H∞ → 0 and ‖Gcl(·)−GclN(·)|N‖H2 → 0,
respectively.

(3) limN→∞ 1
2N+1

∑2N
k=1 λk(QN)

2
=

1
2π

∫ 2π
0 Q̌ (ejθ )2 dθ and

limN→∞ ‖QN‖ = ‖Q‖.
(4) limN→∞ 1

2N+1

∑2N
k=1 λk(AQN + A

∗

QN )
2
=

1
2π

∫ 2π
0 (ǍQ (ejθ ) + ǍQ

(ejθ )∗)2 dθ.

Proof. (1) This part follows from (P8) (see Appendix).
(2), (3), (4) The proofs are analogous to those for Theorem 3.12. The
extra result limN→∞ ‖QN‖ = ‖Q‖ follows from Lemma A.1, since
QN is a self-adjoint Toeplitz operator. �

4. Alternative Toeplitz approximants

Note that a different type of Riccati equation can be associated
with large-scale systems (see for example Brockett and Willems
(1974), Jovanović and Bamieh (2005) and Willems (1971))

A∗NQ N + Q NAN − Q
NBNB∗NQ N + (C

∗C)N = 0, (18)

where (C∗C)N is thematrix representation of themap T (2N+1)(C∗C)
= πNC∗C |ZN (recall that π

N
: Z = `2 → C2N+1 = ZN ). These are

easier to solve, since the term (CC∗)N is a Toeplitz matrix, whereas
C∗NCN is not necessarily Toeplitz. They have similar convergence
properties to (11).
First we show how the (C∗C)N term can be reformulated to fit

into the set-up of Theorem 3.3. Denote CN = (C∗C)
1
2
N .

Proposition 4.1. Suppose that Σ(A, B, C, 0) is exponentially stabi-
lizable and detectable and that the Toeplitz approximating systems
Σ(AN , BN , (C∗C)N , 0) are uniformly stabilizable and detectable. Let
Q ∈ L(Z) and Q N ∈ L(ZN) denote the nonnegative solutions of
their respective Riccati equations (9) and (18). Then

Qz = lim
N→∞

iNQ NπNz, ∀z ∈ Z,

and ‖Q N‖ is uniformly bounded in N. Furthermore, for sufficiently
large N, AQ := A − BB∗Q and AQN := AN − BNB∗NQ N generate
exponentially stable semigroups with

‖eAQ t‖ ≤ Me−µt , ‖eAQN t‖ ≤ Me−µt for all t ≥ 0,

and iNeAQN tz → eAQ tz,∀z ∈ Z, uniformly on compact time intervals.

Proof. First we note that the Riccati equations can be associated
with the systems Σ(A, B,

√
C∗C, 0) and Σ(AN , BN , CN , 0), since

C
∗

NCN = (C∗C)N . Next we show that these systems satisfy
the assumptions of Theorem 3.3. Σ(A, B, C∗C, 0) is exponentially
detectable if and only if Σ(A, B, C, 0) is. Hence Σ(A, B,

√
C∗C, 0)

is exponentially detectable (choose L = L(C∗C)
1
2 ). Moreover,

Σ(AN , BN , CN , 0) is uniformly stabilizable and detectable, since

Σ(AN , BN , (C∗C)N , 0) is (choose LN = LN(C∗C)
1
2
N ).
It remains to show that iNCN |ZN z →
√
C∗Cz as N → ∞.

To ease notation, denote RN := (C∗C)N ,
√
RN := iNCNπN and

R := C∗C . So the self-adjoint, nonnegative operators RN , R satisfy
RNz → Rz as N → ∞ and we need to show that

√
RNz →

√
Rz

as N → ∞. From Kato (1976, (3.45), p. 282) we have the formula
for the square root of a self-adjoint, nonnegative operator

√
Rz =

1
π

∫
∞

0
1
√
λ
(R + λI)−1Rz dλ. For a nonnegative operator P , we have

that

‖(λI + P)−1‖ ≤
1
λ
and ‖P(λI + P)−1‖ ≤ 2, (19)

for λ > 0. For every fixed z and δ > 0,∥∥∥∥ 1π
∫ δ

0

1
√
λ
(P + λI)−1Pz dλ

∥∥∥∥
≤
1
π

1
√
λ

∫ δ

0

1
√
λ
‖(I − λ(P + λI)−1)z‖ dλ

≤
1
π

∫ δ

0

1
√
λ

(
1+

λ

λ

)
‖z‖ dλ ≤

4
π
‖z‖
√
δ.

Using the above inequality one can obtain

‖

√
RNz −

√
Rz‖ ≤

8
π
‖z‖
√
δ +

1
π

∥∥∥∥∫ ∞
δ

√
λ(RN + λI)−1

× (R− RN)(R+ λI)−1zdλ
∥∥∥∥ .

Now, using (19), one can write∥∥∥(√RN −√R)z∥∥∥ ≤ 8
π
‖z‖
√
δ

+
1
π

∫
∞

δ

1
√
λ
‖(R− RN)(R+ λI)−1z‖ dλ.

Since RN converges strongly to R and using again (19), we also have
that
1
√
λ
‖(R− RN)(R+ λI)−1z‖ ≤

2‖R‖
λ3/2

and with the Lebesgue convergence lemma we have

1
π

∫
∞

δ

1
√
λ
‖(R− RN)(R+ λI)−1z‖ dλ→ 0 as N →∞.

Combining the last two results shows that
√
RNz →

√
Rz as N →

∞, as required. �

The following proposition gives conditions for the uniform
detectability.

Proposition 4.2. Under the notation of Proposition 4.1, the Toeplitz
approximating systems Σ(AN , BN , (C∗C)N , 0) are uniformly de-
tectable if minθ∈[0,2π ] |Č(ejθ )| > 0. Moreover, the stability margin
β in Definition 3.2 can be made as large as we please.

Proof. Since minθ∈[0,2π ] |Č(ejθ )| > 0, there exists a nonzero γ
such that ‖Čz‖2 ≥ γ 2‖z‖2 for z ∈ L2(∂D,C). Then we have

〈Ǎz, z〉 + 〈z, Ǎz〉 − 2α〈Čz, Čz〉

≤ 2‖Ǎ‖‖z‖2 − 2αγ 2‖z‖2 ≤ −δ2‖z‖2

for sufficiently large andpositiveα. This implies that‖e(A−αC
∗C)t
‖ ≤

e−δ
2t , where δ can bemade as large aswe please. In particular, with

zN = πNz, we obtain

〈ANzN , zN〉 + 〈zN ,ANzN〉 − 2α〈(C∗C)NzN , zN〉 ≤ −δ2‖zN‖2
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and ‖e(AN−α(C
∗C)N )t‖ ≤ e−δ

2t . So the feedback FN = −αCN gives
uniform detectability. �

With Propositions 4.1 and 4.2, and the same proof as in
Theorem 3.12 we obtain the following corollary.

Corollary 4.3. Suppose that Σ(A, B, C, 0) is exponentially stabi-
lizable and detectable and the Toeplitz approximating systems
Σ(AN , BN , (C∗C)N , 0) are uniformly stabilizable and detectable. Then
the solutions Q N and the closed-loop operator AQN = AN − BNB∗NQ N
to the Riccati equation (18) have the following properties.

(1) |Q N − Q̃N |N → 0, and |AQN − ÃQN |N → 0 as N → 0,
(2) The closed-loop transfer functions

G
cl
N(λ) =

[
CN

B∗NQ N

]
(λIN − AQN )

−1BN and

Gcl(λ) =
[
C
B∗Q

]
(λI − AQ )−1B

satisfy‖Gcl(·)−G
cl
N(·)|N‖H∞ → 0, and‖Gcl(·)−G

cl
N(·)|N‖H2 → 0,

respectively.
(3) limN→∞ 1

2N+1

∑2N
k=1 λk(Q N)

2
=

1
2π

∫ 2π
0 Q̌ (ejθ )2 dθ.

(4) limN→∞ 1
2N+1

∑2N
k=1 λk(AQN + A

∗

QN )
2
=

1
2π

∫ 2π
0 (ǍQ (ejθ ) +

ǍQ (ejθ )∗)2 dθ.

For the special case of only delays in C we obtain convergence
results which are consistent with the results in Jovanović and
Bamieh (2005).

Proposition 4.4. Consider Ǎ = a0, B̌ = b0 6= 0 and suppose that
the assumptions in Proposition 4.1 are satisfied. Then there holds

(1) limN→∞ ‖Q N‖ = ‖Q‖.
(2) The growth bounds of eAQN t converge to those of eAQ t and
‖eAQN t‖ ≤ eωN t ≤ eω∞t .

(3) If minθ∈[0,2π ] |Č(ejθ )| > 0, then Q N converges strongly to Q as
N →∞.

(4) The feedback law uN = −BN Q̃NzN stabilizes the system with
‖e(AN−BNB

∗
N Q̃N )t‖ ≤ eω∞t .

Proof. (1), (2) Similarly to the proof of Proposition 3.6 we can
factorize (C∗C)N = VNdiag(γ 2k (N))V

∗

N to obtain the unique
solution

Q N = VNdiag

Re(a0)+
√
(Re(a0))2 + |b0|2γ 2k (N)

|b0|2

 V ∗N ,
and AQN = VNdiag

(
−

√
(Re(a0))2 + b20γ

2
k (N)

)
V ∗N . So the growth

bound is

ωN = −

√
(Re(a0))2 + |b0|2 min

k=0,...,2N
{γ 2k (N)},

and ‖eAQN t‖ ≤ e−ωN t , independent of uniform detectability. From
Lemma A.1, the maximum and minimum eigenvalues of (C∗C)N
converge to those of ‖C‖2, which shows that ‖Q N‖ converges
to ‖Q‖ and the growth bound of eAQN t converges to that of the
infinite-dimensional system.

(3) If minθ∈[0,2π ] |Č(θ)| > 0, the strong convergence of Q N follows
from Proposition 4.1.

(4) Next we note that AN − BNB∗N Q̃N = ÃQN and appeal to The-
orem 3.10. Note that AN = ÃN and BN = B̃N since Ǎ and B̌ are
scalars. �
The above lemma shows that, whenever one has only delays in
C , a good strategy is to use the feedback law uN = −BN Q̃NzN , since
Q̃N is easy to calculate. We illustrate this by an example.

Example 4.5. Consider the alternative Riccati equation (18) with
AN = BN = IN and

(C∗C)N =


1+ κ2 κ 0 . . . 0
κ 1+ κ2 κ . . . 0
. . . . . . . . . . . . . . .

0 0 . . . κ 1+ κ2

 6= C∗NCN .

We write (C∗C)N = (1+ κ2)IN + κTN ,where

TN =

 0 1 0 . . . 0
1 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0


= VNdiag

(
2 cos

(k+ 1)π
2N + 2

)
V ∗N ,

where VN is a unitary matrix. Then the solution to (18) is
Q N = VNdiag(1 +

√
1+ ρk(N))V ∗N , ρk(N) = 1 + κ

2
+ 2κ cos

π
2N+2 . Hence ‖Q N‖ = maxk=0,...,2N(1 +

√
1+ ρk(N)) = 1 +√

2+ κ2 + 2κ cos π
2N+2 . The closed-loop operator is AQN = AN −

BB∗NQ N = VNdiag(−
√
1+ ρk(N))V ∗N , and its growth bound is

−

√
2+ κ2 − 2κ cos π

2N+2 .

For the corresponding infinite-dimensional problem we
have Q̌ (ejθ ) = (1 +

√
2+ κ2 + 2κ cos θ) with norm ‖Q̌‖

= 1 +
√
1+ (1+ κ)2. The closed-loop operator is ǍQ =

−
√
2+ κ2 + 2κ cos θ with ω0 = −

√
2+ κ2 − 2κ . So the eigen-

values of the closed-loop operator AQN all lie in the spectrum of
AQ and the growth bound converges to ω0 as N → ∞. Moreover,
‖Q N‖ → ‖Q̌‖ as N →∞.
It is interesting to compare the above with the circular

approximations. Following the approach in Example 3.11 we find
the solution to (14) to be Q̃N = UNdiag

(
1+
√
1+ µk(N)

)
U∗N ,

where the unitarymatrixUN is as in Example 3.11 andµk(N) = 1+
κ2+ 2κ cos 2kπ2N+1 , k = 0, . . . , 2N . Hence ‖Q̃N‖ = maxk=0,...,2N(1+√
1+ µk(N)) = 1 +

√
2+ κ2 + 2κ = ‖Q‖. The closed-loop

operator ÃQN = ÃN − B̃N B̃
∗

N Q̃N is given by

ÃQN = UNdiag
(
−

√
2+ κ2 + 2κ cos

π

2N + 1

)
U∗N

and its growth bound is−
√
2+ κ2 − 2κ cos π

2N+1 . So the eigenval-
ues of the closed-loop circulant approximating system all lie in the
spectrum of AQ and the growth bounds of their semigroups con-
verge to ω0 as N →∞.

5. Matlab simulations

Consider the following finite string of the form (1)

żr(t) = a−1zr+1(t)+ a0zr(t)+ a1zr−1(t)
+ b−1ur+1(t)+ b0ur(t)+ b1ur−1(t), −N + 1 ≤ r ≤ N,

ż−N(t) = a−1z−N+1(t)+ a0z−N(t)+ b−1u−N+1(t)+ b0u−N(t),
żN(t) = a0zN(t)+ a1zN−1(t)+ b0uN(t)+ b1uN−1(t),
yr(t) = zr(t), −N ≤ r ≤ N, t ≥ 0
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Table 1
The growth bounds ω∞ and ωN for Example 5.1 (Ǎ = Ǎ∗).

Case ω∞ ω10 ω20 ω40 ω80 ω160

1 −0.806 −0.812 −0.807 −0.806 −0.806 −0.806
2 −1.077 −1.079 −1.077 −1.077 −1.077 −1.077
3 −0.988 −0.985 −0.985 −0.985 −0.985 −0.984
4 −0.640 −0.582 −0.582 −0.582 −0.582 −0.582

Table 2
Relative error εN (%) for Example 5.1 (Ǎ = Ǎ∗).

Case ε10 ε20 ε40 ε80 ε160

1 0.71 0.19 0.05 0.01 0.0034
2 0.21 0.05 0.01 0.0039 0.0000
3 0.35 0.09 0.02 0.006 0.0017
4 −9.07 −9.07 −9.07 −9.07 −9.07

Table 3
The growth bounds ω∞ and ωN for Example 5.2 (Ǎ 6= Ǎ∗).

Case ω∞ ω10 ω20 ω40 ω80 ω160

1 −1 −1.151 −1.123 −1.114 −1.112 −1.080
2 −1.232 −1.339 −1.317 −1.310 −1.309 −1.295
3 −0.818 −1.060 −1.020 −1.009 −0.998 −0.930
4 −1.148 −0.250 −0.250 −0.250 −0.250 −0.250
5 −1 −1.072 −1.027 −1.012 −1.008 −1.007
6 −0.959 −1.038 −0.990 −0.974 −0.970 −0.969
7 −1 −1.111 −1.106 −1.104 −1.073 −1.038
8 −0.6 −0.744 −0.741 −0.717 −0.669 −0.619

which can be written as in (2) with CN = IN ,

AN =

 a0 a−1 0 . . . 0
a1 a0 a−1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . a1 a0

 ,

BN =

 b0 b−1 0 . . . 0
b1 b0 b−1 . . . 0
. . . . . . . . . . . . . . .
0 0 . . . b1 b0

 .
Gaps between ωN and ω∞ are found in Example 5.1 case 4 and
Example 5.2 case 4 (T (B̌) is not invertible). For T (B̌) invertible,
we obtained in our simulations convergence not only for Ǎ = Ǎ∗

(Example 5.1 cases 1–3) but alsowhen Ǎ 6= Ǎ∗ (Example 5.2, except
for case 4 inwhich T (B̌) is not invertible).We remark thatwhenA is
not self-adjoint the convergence rate of the growth bound is often
slow (see Example 5.2, cases 1, 3 and 8) (Tables 3 and 4).

Example 5.1. Consider Ǎ(ejθ ) = Ǎ∗(ejθ ) = a0 + 2a1 cos θ , a−1 =
a1 (see also Tables 1 and 2).

Case1. a0 = 1, a1 = a−1 = 0.3, b0 = 1, b1 = 0.1, b−1 = 0.2;
Case2. a0 = 1, a1 = a−1 = 0.3, b0 = 1;
Case3. a0 = 1, a1 = a−1 = 0.3, b0 = 1, b1 = 0.1
Case4. a0 = 1, a1 = a−1 = 0.3, b0 = 1, b1 = 1.5

Example 5.2. Ǎ 6= Ǎ∗ (see also Tables 3 and 4)

Case1. a0 = −1, a1 = 2, b0 = 1.
Case2. a0 = −1, a1 = 2, b0 = 1, b1 = 0.4.
Case3. a0 = 1, a1 = 2, b0 = 1, b1 = 0.6.
Case4. a0 = 1, a1 = 2, b0 = 1, b1 = 1.6.
Case5. a0 = 1, a1 = 2, a−1 = 1, b0 = 1.
Case6. a0 = 1, a1 = 2, a−1 = 1, b0 = 1, b1 = 0.4.
Case7. a0 = 1, a1 = 0.3, a−1 = 0.7, b0 = 1.
Case8. a0 = 1, a1 = 0.3, a−1 = 0.7, b0 = 1, b1 = 0.4.
Table 4
Relative error εN (%) for Example 5.2 (Ǎ 6= Ǎ∗).

Case ε10 ε20 ε40 ε80 ε160 ε320

1 15.13 12.34 11.48 11.25 8.05 4.60
2 8.64 6.86 6.32 6.17 5.05 2.94
3 29.50 24.77 23.35 21.95 13.64 7.40
4 −78.24 −78.24 −78.24 −78.24 −78.24 −78.24
5 7.26 2.73 1.24 0.81 0.70 0.67
6 8.23 3.24 1.63 1.18 1.06 1.04
7 11.12 10.62 10.47 7.32 3.80 1.94
8 24.04 23.50 19.63 11.52 6.36 3.17

6. Conclusions

We have compared the growth bounds and the transient
behavior of the LQR closed-loop operators of scalar finite
strings with their infinite versions. Simple examples showed that
stabilizability and detectability are not sufficient to ensure similar
stability behavior of the LQR closed-loop strings as N → ∞.
For the circulant approximating systems this does hold. Under
the stronger conditions of uniform stabilizability and detectability
of the finite strings we can show that the eigenvalues of the
closed-loop approximating systems have an average distribution
that is asymptotic to that of the infinite-dimensional system. We
also give sufficient conditions under which the growth bound
ωN of different types of long-but-finite strings (such as circular
configurations and systems for which two out of the three defining
operators are constants) converges to the growth boundω∞ of the
corresponding infinite string. However, in general is not true that
ωN converges toω∞. Similar results are obtained for an alternative
sequence of Toeplitz approximating systems. Of course it is the
MIMO case that is most interesting for applications, and this
remains a challenging open problem. However, the scalar case has
already demonstrated that LQR control of the infinite-dimensional
strings does not always serve as a useful paradigm for the long-
but-finite strings.

Appendix. Notations and background on Toeplitz and Circulant
matrices

Denote by N, Z, C and ∂D the sets of natural, integer, complex
numbers and the unit circle, respectively. Let F̌ ∈ C ⊂

L∞(∂D,C) be a continuous scalar symbol with the Fourier series
representation F̌(ejθ ) =

∑
l∈Z fle

−jlθ , θ ∈ [0, 2π ], where C :=
C(∂D,C) is the Banach algebra of all continuous functions on ∂D
with themaximumnorm (L∞,H∞, L2 andH2 are defined in Curtain
and Zwart (1995)). Now, `2(Z,C) = {x | x = (xr)r∈Z, xr ∈
C,
∑
r∈Z |xr |

2 < ∞} is isometrically isomorphic to L2(∂D;C)
(‖x‖`2(Z,C) = ‖x̌‖L2(∂D,C), x̌ = Fx) under the Fourier transform F.
FFF−1 = F̌ : L2(∂D,C)→ L2(∂D,C) is a multiplication operator
generated the Laurent operator F : l2(Z,C) → l2(Z,C), where
F is defined by the convolution ((Fx)(t))r =

∑
∈Z alxr−l(t) =∑

∈Z ar−lxl(t). Hence ‖F‖ = ‖F̌‖∞ (we refer to Curtain et al.
(2009), and the references therein, for further details).
Consider also the Toeplitz operator T (F̌) : l2(N,C)→ l2(N,C)

given by

T (F̌) =

 f0 f1 f2 f3 · · ·

f−1 f0 f1 f2 · · ·

f−2 f−1 f0 f1 · · ·

· · · · · · · · · · · · · · ·

 , (A.1)

where `2(N,C) = {x | x = (xr)r∈N, xr ∈ C,
∑
r∈N |xr |

2 <∞}. We
have ‖F‖ = ‖T (F̌)‖ = ‖F̌‖∞ and σ(F̌) = {F̌(ejθ ), 0 ≤ θ ≤ 2π},
σ(T (F̌)) = σ(F̌) ∪ {λ 6∈ σ(F̌)|wind(F̌ − λ, 0) 6= 0}, where
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wind (F̌ − λ, 0) is the winding number of F̌ − λ around the origin.
Remark that F also has amatrix representation like (A.1) infinite in
both directions.
We denote the Toeplitz approximant matrix of order n

corresponding to F by Fn

Fn =

 f0 f1 f2 · · · fn−1
f−1 f0 f1 · · · fn−2
· · · · · · · · · · · · · · ·

f−n+1 f−n+2 f−n+3 · · · f0

 . (A.2)

The spectrum of Fn can be very different from that of T (F̌), except
in the self-adjoint case.

Lemma A.1 (Gray, 1971, Corollary 4.2). Suppose that F̌ is real.
Denote by mF̌ and MF̌ the minimum and the maximum of F̌
on [0, 2π ], respectively. If the Toeplitz approximants Fn
have the eigenvalues λ(n)k , k = 1, . . . , n. Then mF̌ ≤ λ

(n)
k ≤ MF̌ ,

limn→∞maxk λ
(n)
k = MF̌ , and limn→∞mink λ

(n)
k = mF̌ .

Proof. The proof in Gray (1971, Corollary 4.2) considers extra
assumptions (summability), but this is only needed to establish
(P8) below, which holds for all continuous symbols. �

We recall some properties of Toeplitz operators from in
Böttcher and Silvermann (1999), Theorems 1.15, 2.11, 4.3, 4.13.

Lemma A.2. The singular values µ(Fn) of Fn satisfy

(1) limn→∞ µmax(Fn) = maxθ∈[0,2π ] |F̌(ejθ )|.
(2) limn→∞ µmin(Fn) = 0 if and only if T (F̌) is not invertible.
(3) T (F̌) is invertible if and only if F̌(ejθ ) 6= 0, θ ∈ [0, 2π ], and the
winding number of f around the origin is zero.

(4) If µ(F̌)∩jR = ∅, then T (F̌) is invertible and limn→∞ µmin(Fn) 6=
0.

(5) If T (F̌) is invertible, then limn→∞ µmin(Fn) = 1/‖T−1(F̌)‖.
(6) If T (F̌) is invertible, then Fn is invertible for n > n0 and
supn>n0 ‖F

−1
n ‖ <∞.

Consider also F̃n, the circulant approximant matrix of order n
corresponding to F̌ , given by

F̃n =


c(n)0 c(n)1 c(n)2 c(n)3 · · · c(n)n−1
c(n)n−1 c(n)0 c(n)1 c(n)2 · · · c(n)n−2
· · · · · · · · · · · · · · · · · ·

c(n)1 c(n)2 c(n)3 c(n)4 · · · c(n)0

 , (A.3)

where c(n)k =
1
n

∑n−1
l=0 F̌

(
ej
2π l
n

)
e
−2jπkl
n . Circulant approximant

matrices have nice properties (seeGray, 1971, Sections 3.1 and 3.2)

• (P1) ‖F̃n‖ ≤ ‖F‖.
• (P2) (F̃G)n = F̃nG̃n.

• (P3) (F̃ + G)n = F̃n + G̃n.

• (P4) The eigenvalues of F̃n are λ
(n)
k = F̌(ej

2πk
n ), k =

0, 1, . . . , n− 1.
• (P5) F̃n = Undiag(λ

(n)
k )U

∗
n , where Un is unitary and has

components Un(r, s) = 1
√
n

[
e−

2π jrs
n

]
, r, s = 0, . . . , n− 1.

In addition to the matrix spectral or induced L2-norm denoted
by ‖ · ‖, following Gray (1971), we introduce the n-norm
|M|n =
(
1
n

∑n−1
k=0

∑n−1
l=0 |mkl|

2
)1/2
=
( 1
n trace(M

∗M)
)1/2
for square

matricesM of order n. This norm has the following properties (see
Gray (1971, Lemma 2.3) and the references therein)

• (P6) 1√n‖A‖ ≤ |A|n ≤ ‖A‖.
• (P7) |AB|n ≤ |A|n‖B‖ |AB|n ≤ ‖A‖|B|n.
• (P8) |Fn − F̃n|n → 0 as n → ∞ (see Gutierrez-Gutierrez &
Crespo, 2008, Lemma 5).

Note that Gutierrez quotes (P8) for self-adjoint matrices, but he
does not use the self-adjoint property in his proof.

Lemma A.3. Let F̌ be a scalar function with real values and {An} be a
sequence of self-adjoint n× n matrices such that |An − F̃n|n → 0 as
n→∞. Then

lim
n→∞

1
n

n−1∑
k=0

λ(An)2 =
1
2π

∫ 2π

0
F̌ 2(ejθ )dθ.

Proof. Now F̃∗n F̃n is also a circulant matrix with eigenvalues
|F̌(e2jπk/n)|2 and |F̃n|2n =

1
n

∑n−1
k=0 |F̌(e

2jπk/n)|2 → 1
2π

∫ 2π
0 F̌ 2(ejθ ) dθ

as n → ∞, since F̌ is continuous and hence Riemann integrable.
Hence |An|2n →

1
2π

∫ 2π
0 F̌ 2(ejθ ) dθ , as n→∞. The claims now fol-

low from the classic asymptotic distribution theorem (Böttcher &
Silvermann, 1999). �
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