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Abstract: Let A be the generator of a strongly continuous semigroup T on the Hilbert
space X, and let C be a linear operator from D(A) to another Hilbert space Y (possibly
unbounded with respect to X, not necessarily admissible). We consider the problem of
estimating the initial state z0 ∈ D(A) (with respect to the norm of X) from the output
function y(t) = CTtz0, given for all t in a bounded interval [0, τ ]. We introduce the
concepts of estimatability and backward estimatability for (A,C) (in a more general way
than currently available in the literature), we introduce forward and backward observers,
and we provide an iterative algorithm for estimating z0 from y. This algorithm generalizes
various algorithms proposed recently for specific classes of systems and it is an attractive
alternative to methods based on inverting the Gramian. Our results lead also to a very
general formulation of Russell’s principle, i.e., estimatability and backward estimatability
imply exact observability. This general formulation of the principle does not require T to
be invertible. We illustrate our estimation algorithms on systems described by wave and
Schrödinger equations, and we provide results from numerical simulations.

Keywords: strongly continuous semigroup, estimatability, exact observability, Russell’s
principle, back and forth nudging, time reversal focusing, wave equation.

1 Introduction

In many areas of science and engineering it is important to estimate the initial (or
the final) state of a linear distributed parameter system (DPS) from its input and output
functions measured over some finite time interval. In oceanography and meteorology this
problem is called data assimilation, see for example Auroux and Blum [3, 4], Le Dimet
et al [24], Teng et al [34] or Zou et al [40]. Such a problem also arises in the context of
medical imaging by impedance-acoustic tomography; see for instance Gebauer and Scherzer
[14] and the review paper by Kuchment and Kunyansky [22]. The estimation of the initial
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state can also be regarded as the main step in solving inverse source problems, see Alvez et
al [1]. An infinite-dimensional system is called exactly observable in time τ if the problem
of estimating the initial state from data measured over a time interval of length τ is
well-posed (see Section 2 for precise definitions).

Suppose now that we have an exactly observable linear DPS. The actual formula for
expressing the initial state from the measured segment of the input and output functions
involves inverting the Gramian operator of the system (see, for instance, Tucsnak and
Weiss [35, Section 6.1]), and this may be numerically very challenging.

On the other hand, if we find a stabilizing output injection operator for the system
(its existence follows from exact observability), then we can use a numerical solver to
implement an observer for the DPS in order to estimate its current state from the measured
inputs and outputs of the system (see Section 2 for details). The estimate improves as
time goes by, more precisely, the estimation error tends to zero as time goes to infinity.
From the final state we can, in principle, recover the initial state if the dynamics are time
reversible. However, this may increase the estimation error and moreover, sometimes we
do not have a very long (in time) segment of output data to operate on.

The purpose of this paper is to describe a way in which we can estimate the initial state
of a linear DPS by operating only on a finite segment of output data. In short, the idea
is to scan the same segment of data back and forth several times, using two observers,
one working in forward time, and one in backward time. This idea has appeared in
the recent papers [3, 4] where the method has been mathematically justified for finite-
dimensional linear systems with full observation and it has been numerically investigated
for more general situations (in particular nonlinear systems). A related work is Phung
and Zhang [26] where, based on time reversal methods (see e.g. Fink et al. [13]), the
authors develop a method to identify the initial state for a Kirchhoff plate equations with
distributed observation. The algorithm in this last paper can be shown to be equivalent
to a particular case of the algorithm presented in this paper (see Remark 3.11 below). In
[3, 4] the algorithm has been called “back and forth nudging” whereas in [26] it has been
called “time reversal focusing”. An abstract formulation of a related algorithm, suitable
for skew-adjoint generators and bounded observation operators, has been given in Ito,
Ramdani and Tucsnak [17].

Linear DPS often have unbounded control and/or observation operators. This is often
the consequence of boundary control and/or boundary observation (see [35] for an elemen-
tary introduction to this topic). To make our basic ideas more easily understandable, we
give in this introductory section a short presentation of the simple particular case when
the observation operator is bounded, the output injection operators are also bounded and
the semigroup is invertible (i.e., the observed system is time reversible). However, we
emphasize that our results do not require the observation and output injection operators
to be bounded (not even admissible), and we also do not require the observed system to
be time reversible.

Let X and Y be Hilbert spaces, called the state space and output space, respectively. Let
A : D(A)→X be the generator of a strongly continuous group of operators on X. This
group describes the (time reversible) dynamics of our system. The system is described by
the equations

ż(t) = Az(t) , y(t) = Cz(t) ,
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with an initial state z(0) ∈ X, where y is the output function. We assume (in this simplified
presentation) that C ∈ L(X,Y ). The operator C is called the observation operator. We
assume that (A,C) is estimatable with bounded injection, which means that there exists
an H ∈ L(Y,X) such that A+HC generates an exponentially stable semigroup on X. In
this case, we can construct an observer for our system as follows: the state of the observer
is w and it satisfies the differential equation

ẇ(t) = (A+HC)w(t)−Hy(t) ,

with an initial state w(0) ∈ X. We refer to Curtain and Zwart [11] for a discussion of
observers in this context. If we define the estimation error by e(t) = w(t) − z(t), then it
is clear (from subtracting the two differential equations) that

ė(t) = (A+HC)e(t) ,

which shows that e→ 0 exponentially, regardless of the initial states of the system and the
observer.

Now suppose that (A,C) is backward estimatable with bounded injection, which means
there exists an Hb ∈ L(Y,X) such that −A + HbC is the generator of an exponentially
stable semigroup on X. In this case, we can construct a backward observer for our system
as follows: the state of the observer is wb and it satisfies the differential equation

ẇb(t) = (A−HbC)wb(t) +Hby(t) ,

with a final state wb(τ) ∈ X. This equation should be solved backward in time on [0, τ ],
starting from the final state wb(τ). If we define the backward estimation error by eb(t) =
wb(t)− z(t), then from subtracting the differential equations we see that

ėb(t) = (A−HbC)eb(t) ,

which shows that
eb(0) = e(−A+HbC)τeb(τ) .

We define one estimation cycle as follows: with the data y(t) given for t ∈ [0, τ ], we
choose an initial state w(0) for the observer and run it over the interval [0, τ ], obtaining
an estimate w(τ) for the unknown state z(τ). Putting wb(τ) = w(τ), we run the backward
observer to obtain an estimate wb(0) for the unknown state z(0). The estimation error at
the end of such a cycle is

eb(0) = e(−A+HbC)τe(A+HC)τe(0) .

If we run N estimation cycles (N ∈ N) then the estimation error at the end will be

e
(N)
b (0) =

[
e(−A+HbC)τe(A+HC)τ

]N
e(0)(0) .

Since the semigroups generated by A + HC and −A + HbC are exponentially stable, for
τ > 0 large enough, we have ∥∥∥e(−A+HbC)τe(A+HC)τ

∥∥∥ < 1 .

For such τ , repeating estimation cycles leads to a rapid convergence of the estimation error
to zero.
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Notice that it follows from the above argument that under the stated assumptions (all
the operators apart from A are bounded, estimatability and backward estimatability), the
original system is exactly observable. This is a dual version of Russell’s principle, which
was originally stated in Russell [29, 30] and has been used in many references, such as
Komornik [18]. A rigorous and general statement and proof of the principle can be found
in the little known conference paper Rebarber and Weiss [27]. The precise statement of
a more general version of the dual Russell’s principle (not confined to bounded operators
and not requiring that the semigroup is invertible) will be given in Proposition 3.3. An
even more general version will be given in Remark 3.5.

The paper is organized as follows: in Section 2, we recall some basic facts about admis-
sibility, observability and observers. The iterative reconstruction algorithm is described
in Section 3 in a general setting and then applied in Section 4 to a particular class of non
reversible second order systems with unbounded observation. Finally, Section 5 provides
2D numerical examples illustratating the efficiency of the proposed reconstruction method.

2 Background on admissibility, observability and observers

First we give some technical background about linear DPS. More precisely, we recall
some simple facts about admissibile observation and control operators, exact observability
and estimatability. There is a large literature on admissibility and we refer to Chapter 5
of [35] for an elementary introduction and for references and historical comments. Here
we keep the discussion to the minimum that is needed. The concept of estimatability is
one of the infinite-dimensional generalizations of the well-known concept of detectability
used in finite-dimensional control theory. It is much less well-known than admissibility,
and our basic reference for this concept is Weiss and Rebarber [38].

Let X and Y be Hilbert spaces and assume that A : D(A)→X is the generator of a
strongly continuous semigroup T on X. We define the Hilbert space X1 = D(A), with the
norm

‖z0‖1 = ‖(βI −A)z0‖ ∀ z0 ∈ D(A) ,

where β is an arbitrary fixed element of the resolvent set ρ(A). Regardless of the choice
of β, the above norm is equivalent to the graph norm.

Let C ∈ L(X1, Y ). For every τ > 0 we define the operator Ψτ : X1→L2([0, τ ];Y ) by

(Ψτz0)(t) = CTtz0 ∀ t ∈ [0, τ ] , z0 ∈ D(A) .

We call C an admissible observation operator for T if for some (hence, for every) τ > 0,
Ψτ has a continuous extension to X, i.e., Ψτ ∈ L(X,L2([0, τ ];Y )). If this is the case,
then there exists a unique continuous operator Ψ : X→L2

loc([0,∞);Y ) such that for every
τ > 0 and z0 ∈ X, Ψτz0 is the restriction of Ψz0 to the interval [0, τ ]. The Laplace
transform of y = Ψz0 is ŷ = C(sI − A)−1z0, for all z0 ∈ X and for all s ∈ C for which
Re s is larger than the growth bound of T.

With X,A as above and C ∈ L(X1, Y ), the pair (A,C) is called exactly observable in
time τ > 0 if there exists kτ > 0 such that∫ τ

0
‖CTtz0‖2 dt > k2

τ‖z0‖2 ∀ z0 ∈ D(A) .
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The pair (A,C) is called exactly observable if it is exactly observable in some time τ > 0.

Note that in the above definition we have not assumed that C is admissible. This
is different from the terminology adopted in [35], where admissibility is a part of the
definition of exact observability (in time τ).

Let X−1 be the completion of X with respect to the norm

‖z0‖−1 = ‖(βI −A)−1z0‖ ∀ z0 ∈ X ,

where β is as before. This space may be regarded as the dual of D(A∗) with graph norm,
with respect to the pivot space X. We have X1 ⊂ X ⊂ X−1, densely and with continuous
embeddings. The semigroup T can be extended to a strongly continuous semigroup acting
on X−1, whose generator is an extension of A, having the domain X. Notationally, we
shall not distinguish between T and its extension, or between A and its extension. Let U
be another Hilbert space and let B ∈ L(U,X−1). For every τ > 0 we define the operator
Φτ : L2([0, τ ];U)→X−1 by

Φτu =

∫ τ

0
Tt−σBu(σ)dσ.

We call B an admissible control operator for T if for some (hence, for every) τ > 0, the
range of Φτ is contained in X. If this is the case, then Φτ is bounded from L2([0, τ ];U)
to X. If u ∈ L2

loc([0,∞);U) then by Φτu we mean Φτ applied to the truncation of
u to [0, τ ]. If B is admissible then Φτu is a continuous X-valued function. Moreover,
for any u ∈ L2

loc([0,∞);U) and any z0 ∈ X, the function z(t) = Ttz0 + Φtu satisfies
ż(t) = Az(t) +Bu(t) in the sense that it satisfies (for all τ > 0) the integral equation

z(τ)− z(0) =

∫ τ

0
[Az(t) +Bu(t)]dt. (2.1)

In fact, the function z defined earlier is the unique solution of the above integral equation
that satisfies the initial condition z(0) = z0.

Definition 2.1. Let A be the generator of a strongly continuous semigroup T on X and
let C ∈ L(X1, Y ). The pair (A,C) is estimatable if the following conditions hold:

(1) There exists an operator AK : D(AK)→X that generates an exponentially stable
semigroup TK on X. We denote by XK

−1 the analogue of the space X−1 discussed earlier,
for the operator AK .

(2) There exists H ∈ L(Y,XK
−1) that is an admissible control operator for TK , such that

Ax = AKx−HCx ∀ x ∈ D(A) . (2.2)

Following the finite-dimensional terminology, we call H as above a stabilizing output
injection operator for (A,C).

Note that in (2.2), both AKx and HCx are in XK
−1, but their difference is in X. The

equation (2.2) can be rewritten equivalently in weak form as follows:

〈Ax, φ〉X =
〈
x, (AK)∗φ

〉
X
− 〈Cx,H∗φ〉Y

∀ x ∈ D(A), φ ∈ D
(
(AK)∗

)
. (2.3)
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Remark 2.2. In the finite-dimensional control literature as well as in the literature on
DPS with bounded control and observation operators, the property defined above is called
detectability. When dealing with unbounded operators, detectability has several (non-
equivalent) generalizations. A more restrictive one has been given in Weiss and Curtain
[37], where there are additional assumptions, for example, (A,H,C) has to be a regular
triple. This more restrictive concept is called detectability in [37]. The above definition
of estimatability is close to, but not equal to the one in [38]. Indeed, in [38] C is assumed
to be admissible for T, while here we have dropped this requirement. Even for admissible
C, the definition of estimatability in [38] looks different from the one given here, but they
are equivalent, see Propositions 3.3, 3.4 and 4.4 in [38].

Remark 2.3. It is known (see [38, Section 1]) that if C is admissible for T, then the exact
observability of the pair (A,C) implies its estimatability.

Remark 2.4. Given A and C it is usually not a simple task to find a stabilizing out-
put injection operator H for them. Some approaches involve Riccati equations (see, for
instance, Lasiecka [23]), other approaches involve Gramians (see, for example, Komornik
[19] and Urquiza [36]). These methods for determining H are computationally expen-
sive in general. If A is skew-adjoint (or close to skew-adjoint) then often we can choose
H = −C∗. Such an H is called colocated output injection, and it is dual to colocated state
feedback. Colocated state feedback has been studied a lot in the literature on distributed
parameter systems. Among the early papers we mention Slemrod [31] and Haraux [16].
For the case of skew-adjoint A and bounded C see our Proposition 3.7. Curtain and Weiss
[10] contains many further references on this topic and it gives rather general sufficient
conditions on (A,B) for −B∗ to be a stabilizing state feedback operator. Ammari and
Tucsnak [2] considered the case of second order systems without damping.

The above definition of estimatability is clearly a generalization of the one given in the
Introduction for bounded operators C and H. It may seem very abstract, but it implies
the solvability of a reasonably natural final state estimation problem:

Proposition 2.5. Assume that the pair (A,C) is estimatable and let T, AK ,TK , H be as
in Definition 2.1. Take z0 ∈ D(A), let z ∈ C([0,∞);X1) be defined by z(t) = Ttz0 and
let y ∈ C([0,∞);Y ) be defined by y = Cz. Let w0 ∈ X and let w ∈ C([0,∞);X) be the
solution of

ẇ(t) = AKw(t)−Hy(t), w(0) = w0 , (2.4)

in the sense of (2.1). Then

w(t)− z(t) = TKt (w0 − z0) ∀ t > 0. (2.5)

In particular, there exist M > 1, ω > 0 such that

‖w(t)− z(t)‖ 6 Me−ωt‖w0 − z0‖ ∀ t > 0 .

Proof. Clearly for all t > 0,

z(t)− z0 =

∫ t

0
Az(ξ)dξ , (2.6)

where z and Az are continuous X-valued functions. The fact that w ∈ C([0,∞);X)
satisfies (2.4) implies (see (2.1)) that for all t > 0,
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w(t)− w0 =

∫ t

0
AKw(ξ)dξ −

∫ t

0
Hy(ξ)dξ . (2.7)

In the above formula the two terms in the right-hand side lie in C([0,∞), XK
−1) but their

sum is in C([0,∞), X). For t > 0 we set e(t) = w(t) − z(t). We apply both equations
(2.6) and (2.7) to an arbitrary element φ ∈ D((AK)∗). Then we subtract side by side the
resulting equations and use (2.3), to obtain

e(t)− e(0) =

∫ t

0
AKe(ξ)dξ ∀ t > 0.

This implies that e(t) = TKt e(0), which is exactly (2.5). The last statement in the propo-
sition follows now from the exponential stability of TK .

The system (2.4) is called an observer for (A,C) (sometimes called a Luenberger observer
or a Kalman observer). Such observers for systems with skew-adjoint A, unbounded C
and such that (A,C∗, C) determine a regular linear system, were recently discussed in
Deguenon, Sallet and Xu [12]. Other recent papers on the use of observers for the control
of linear DPS are Krstic et al. [20] and Guo and Shao [15]. Observers for non-linear
systems are studied in Bonnabel et al. [7] (in the finite dimensional context), Smyshlyaev
and Krstic [32] and Krstic et al. [21].

Remark 2.6. Sometimes we have to estimate the initial state of a system that receives
an input signal, i.e., it is described by

ż(t) = Az(t) +Bu(t) ,
y(t) = Cz(t) +Du(t),
z(0) = z0 ∈ D(A) .

(2.8)

Here we assume that B ∈ L(U,X) and D ∈ L(U, Y ), where U is another Hilbert space,
while C ∈ L(X1, Y ), as before. It is not obvious how to make sense of these equa-
tions, because C is only defined on X1 = D(A). We assume, for the moment, that
u ∈ H1

loc((0,∞);U). Then it follows from [35, Theorem 4.1.6] that the first equation in
(2.8) has a unique classical solution z and this is a continuous X1-valued function of the
time t. Thus, the second equation in (2.8) defines a continuous Y -valued function y. We
assume that the signal u is available to the observer, defined by{

ẇ(t) = AKw(t) + (B +HD)u(t)−Hy(t),
w(0) = w0 ∈ X .

This equation has solutions that are continuous with values in X, because H is an ad-
missible control operator for TK . A short computation and proof along the same lines
as the proof of Proposition 2.5 shows that the error satisfies the same equation (2.5) as
before. This shows that the map (z0, w0, u) 7→ w(τ) (which is obtained by combining
the observer with the system) can be extended by continuity to a bounded operator from
X ×X × L2([0, τ ];U) to X (without assuming C to be admissible).

3 Iterations using forward and backward observers

In order to estimate the initial state of a system iteratively using output data from a
finite time interval, we need the notion of backward estimatability, defined below. In this
section (as in the previous one) X and Y denote Hilbert spaces.
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Definition 3.1. Let A be the generator of a strongly continuous semigroup T on X and
let C ∈ L(X1, Y ). The pair (A,C) is backward estimatable if the following conditions
hold:

(1) There exists an operator AKb : D(AKb ) → X that generates an exponentially stable
semigroup SK on X. We denote by XK

−1,b the analogue of the space X−1 discussed earlier,

for the operator AKb .

(2) There exists Hb ∈ L(Y,XK
−1,b) that is an admissible control operator for SK , such

that
−Ax = AKb x−HbCx ∀ x ∈ D(A) . (3.1)

For (A,C) and Hb as in Definition 3.1, Hb is called a stabilizing backward output injection
operator for (A,C).

Note that in the particular situation when T is invertible (i.e., it can be extended to a
group), (A,C) is backward estimatable iff (−A,C) is estimatable.

Proposition 3.2. Assume that A is the generator of a strongly continuous group T on X,
C ∈ L(X1, Y ) is an admissible observation operator for T and the pair (A,C) is exactly
observable. Then (A,C) is forward and backward estimatable.

Proof. By Remark 2.3, (A,C) is estimatable. On the other hand, since A is the generator
of a strongly continuous group T, the exact observability of (A,C) easily implies that
(−A,C) is exactly observable. Consequently, (A,C) is also backward estimatable.

Proposition 3.3. With the notation and assumptions in Proposition 2.5, suppose that
(A,C) is backward estimatable and let AKb , Hb be as in (3.1). Let τ > 0 and let wb be the
solution, in a sense similar to (2.1), of the backward problem{

ẇb(t) = −AKb wb(t) +Hby(t) for t 6 τ,
wb(τ) = w(τ) ,

(3.2)

where w is the solution of (2.4). Then

wb(0)− z0 = SKτ TKτ (w0 − z0) , (3.3)

where SK is the semigroup generated by AKb . Moreover, the pair (A,C) is exactly observ-
able in any time τ such that ‖SKτ TKτ ‖ < 1.

Proof. From the definition of z (in Proposition 2.5),

z(t)− z(τ) = −
∫ τ

t
Az(ξ)dξ ∀ t ∈ [0, τ ] . (3.4)

The fact that wb ∈ C([0,∞);X) satisfies (3.2) implies that for all t ∈ [0, τ ],

wb(t)− wb(τ) =

∫ τ

t
AKb wb(ξ)dξ −

∫ τ

t
Hby(ξ)dξ . (3.5)
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For t > 0 we set eb(t) = wb(t) − z(t). By subtracting side by side (3.4) from (3.5) and
using the weak version of (3.1) it follows that

eb(t)− eb(τ) =

∫ τ

t
AKb eb(ξ)dξ ∀ t ∈ [0, τ ],

which implies that
eb(t) = SKτ−teb(τ) ∀ t ∈ [0, τ ].

Since eb(τ) = w(τ)− z(τ) = TKτ (w0 − z0) (see (2.5)), we obtain (3.3).

Finally we show that the pair (A,C) is exactly observable in every time τ such that
‖SKτ TKτ ‖ < 1. First note that according to (3.3), if w0 = 0 then

wb(0) =
(
I − SKτ TKτ

)
z0 .

Since ‖SKτ TKτ ‖ < 1, the operator in the above bracket is invertible, so that

z0 =
(
I − SKτ TKτ

)−1
wb(0) . (3.6)

Note that from (2.4) and (3.2),
w(τ) = −

∫ τ

0
TKτ−sHy(s)ds,

wb(0) = SKτ w(τ)−
∫ τ

0
SKs Hby(s)ds.

Substituting the first formula into the second, it follows that

wb(0) = − SKτ
∫ τ

0
TKτ−sHy(s)ds−

∫ τ

0
SKs Hby(s)ds.

Since H and Hb are admissible control operators for TK and SK respectively, it follows
that there exists a constant Kτ > 0 such that

‖wb(0)‖ 6 Kτ‖y‖L2([0,τ ],Y ) .

This together with (3.6) implies the exact observability of (A,C) in time τ .

Remark 3.4. The above proposition can be seen as a generalization of the dual form of
Russell’s principle (see Russell [30], [29]) which asserts that for an operator group, forward
and backward stabilizability implies exact controllability. In [8] an abstract version was
given for systems with bounded input operators, and a more general abstract version was
given in Rebarber and Weiss [27] (see the next remark for more detailed comments on
this). All these references assume that the system is time-reversible.

Remark 3.5. Following the approach in [27], Proposition 3.3 could be generalized in
the following way: for every α ∈ R, we define α-estimatability of (A,C) to mean that
(A − αI,C) is estimatable. In this case there exists an operator AK : D(AK)→X that
generates a semigroup TK on X with growth bound ω(TK) < α, and there exists H ∈
L(Y,XK

−1) such that (2.2) holds. (The proof of this is very easy.)

Backward α-estimatability is defined similarly: (A,C) is backward α-estimatable if the
pair (A + αI,C) is backward estimatable. In this case there exists an operator AKb :
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D(AK)→X that generates a semigroup SK on X with growth bound ω(SK) < α, and
there exists Hb ∈ L(Y,XK

−1) such that (3.1) holds.

In Proposition 3.3 we could replace the estimatability requirement with α-estimatability
and the backward estimatability requirement with backward β-estimatability, as long as
α+ β 6 0 (the conclusions of the proposition remain unchanged).

The proof is a straightforward extension of the proof of Proposition 3.3. The above
claim is a generalization of the dual result of [27, Theorem 2.1] (it is more general here
because we do not require the semigroup T to be invertible, and we do not require C to
be admissible). We mention that in [27] there was a sign error in the definition of α-
optimizability, the dual concept of α-estimatability: A+ αI appeared in place of A− αI.
There was a similar sign error also in the definition of backward α-optimizability.

In the particular case of time-reversible systems, we have the following:

Proposition 3.6. Let A be the generator of a strongly continuous group T on X and let
C ∈ L(X1, Y ). Assume the following:

(a) (A,C) is estimatable.

(b) The operators Tt are uniformly bounded for t 6 0.

Then (A,C) is exactly observable.

Proof. Let TK be the exponentially stable semigroup as in Definition 2.1. We argue exactly
as in the proof of Proposition 3.3, but with Hb = 0, so that AKb = −A and SKt = T−t. We
have ‖SKτ TKτ ‖ = ‖T−τTKτ ‖ < 1 for τ > 0 large enough, so that (3.6) holds, and the proof
is finished in the same way as for Proposition 3.3.

It follows from this proposition and Proposition 3.2 that for a skew-adjoint A and an
admissible C, forward and backward estimatability are equivalent. In the particular case
of skew-adjoint generators and bounded C, we have the following:

Proposition 3.7. Assume that A is skew-adjoint on X and let T be the unitary group on
X generated by A. Let C ∈ L(X,Y ). Then the following assertions are equivalent :

(i) (A,C) is estimatable.

(ii) (A,C) is backward estimatable.

(iii) (A,C) is exactly observable.

(iv) A− C∗C generates an exponentially stable group TK .

Moreover, if (A,C) is exactly observable in time τ0, then the semigroup TK defined in
(iv) satisfies ‖TKτ ‖ < 1 for every τ > τ0.

Proof. The equivalence of (i)–(iv) is contained (in dual form) in Theorem 2.3 in Liu [25].
(The equivalence of (i), (ii) and (iii) is also an easy consequence of Propositions 3.2 and
3.6.) The last statement is Lemma 2.2 in Ito, Ramdani and Tucsnak [17].
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Remark 3.8. Proposition 3.3 implies, in particular, that there exist M > 1, ω > 0
(independent of τ) such that

‖wb(0)− z0‖ 6 Me−ωτ‖w0 − z0‖ ,

so that for large τ , wb(0) is a good approximation of the initial state z0.

The process of computing w(τ) using an observer and then computing wb(0) using
the backward observer (3.2), as described in Proposition 3.3, may be regarded as one
estimation cycle, as described (under much simpler assumptions) in Section 1. In the
sequel we discuss iterative repetitions of such estimation cycles.

We give an algorithm allowing the approximation of z0 provided that τ is such that
‖SKτ TKτ ‖ < 1. More precisely, for τ > 0 and z0 ∈ D(A), we consider the sequences (z(n))

and (z
(n)
b ) in C([0, τ ], X) defined as follows: For every n > 0, we define z(n) and z

(n)
b as

the solutions of 
ż(n)(t) = AKz(n)(t)−Hy(t) ,

z(n)(0) = z
(n−1)
b (0) for n > 1 ,

z(0)(0) = w0,

(3.7)

{
ż

(n)
b (t) = −AKb z

(n)
b (t) +Hby(t) ,

z
(n)
b (τ) = z(n)(τ) .

(3.8)

Here w0 ∈ X is an arbitrary initial guess for z0.

Proposition 3.9. With the notation and assumptions in Propositions 2.5, 3.3, and using
the above notation, for every n ∈ N we have

z
(n)
b (0)− z0 =

(
SKτ TKτ

)n+1
(w0 − z0) . (3.9)

In particular if τ is such that α =
∥∥SKτ TKτ ∥∥ < 1, then

‖z(n)
b (0)− z0‖ 6 αn+1‖w0 − z0‖ ∀ n ∈ N .

Proof. The functions z(n) and z
(n)
b satisfy the assumptions on w and wb in Proposition

3.3. It follows from (3.3) that for every integer n > 0

z
(n+1)
b (0)− z0 = SKτ TKτ (z(n)(0)− z0) ,

The above formula clearly implies (3.9). The last conclusion is then straightforward.

Remark 3.10. If w0 = 0, then the iterative algorithm for approximating z0 given in the
above proposition is equivalent to performing the inversion in (3.6) using the corresponding
Neumann series. We leave it to the reader to verify this fact.

Remark 3.11. In the colocated case A = −A∗ and H = Hb = −C∗ (discussed in Remark
2.4) the approximation algorithm in Proposition 3.9 can be reformulated in an interesting
alternative way such that the forward and backward problems (3.7) and (3.8) become
forward problems with the same generator and with zero initial data. For this, first we
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introduce the time reflection operators Rτ for every τ > 0, as follows: if u is a function
defined on the interval [0, τ ], then ( Rτu)(t) = u(τ − t). For n > 0 we define the sequences{

v(2n) = z(n+1) − z(n)
b ,

v(2n+1) = Rτ

(
z

(n+1)
b − z(n+1)

)
.

(3.10)

We clearly have
v(n)(0) = 0 ∀ n > 0 . (3.11)

Moreover, it is not difficult to check that for every n > 0 we have

z
(n)
b = z

(0)
b +

n−1∑
k=0

(
v(2k) + Rτv

(2k+1)
)
. (3.12)

In particular, by using the above relation at time t = 0 and the initial condition (3.11),
we obtain that

z0 = lim
n→∞

z
(n)
b (0) = z

(0)
b (0) +

∞∑
k=0

v(2k+1)(τ). (3.13)

From (3.7)–(3.8) it easily follows that{
v̇(2n) = AKv(2n) + 2C∗(y − Cz(n)

b ),

v̇(2n+1) = AKv(2n+1) − 2 RτC
∗(y − Cz(n+1)

b ).

The alternative algorithm consists of solving the above equations forward in time, using

the homogeneous initial conditions (3.11). As z
(n)
b can be expressed by (3.12) in terms of

v(k) for k 6 2n − 1, we can compute the sequences v(2n) and v(2n+1) recursively. We can
obtain an approximation of z0 by truncating the series in (3.13). The above alternative
algorithm has been proposed in Phung and Zhang [26] in the case of a Kirchhoff plate
equation with distributed observation, so that their C is bounded from X to Y .

4 A class of second order systems with unbounded observation

In this section we show that our main results can be applied to a class of second order
systems with unbounded observation operators studied, for example, in Weiss and Tucsnak
[39]. Most of the systems modeling the linear vibrations of elastic systems can be written
in the form described below. Note that the class of systems discussed in this section are
not time reversible, in general (see Subsection 5.2).

First we introduce some notation. Let H be a Hilbert space, and let A0 : D(A0) → H
be a strictly positive operator. We introduce the scale of Hilbert spaces Hα, α ∈ R, as
follows: for every α > 0, Hα = D(Aα0 ), with the norm ‖ϕ‖α = ‖Aα0ϕ‖H . The space H−α
is defined by duality with respect to the pivot space H as follows: H−α = H ′α for α > 0.
Equivalently, H−α is the completion of H with respect to the norm ‖ϕ‖−α =

∥∥A−α0 ϕ
∥∥
H

.
The operator A0 can be extended (or restricted) to each Hα, such that it becomes a
bounded operator

A0 : Hα→Hα−1 ∀ α ∈ R . (4.1)

Let C0 ∈ L(H 1
2
, Y ), where Y is another Hilbert space. We identify Y with its dual, so

that Y = Y ′. We denote B0 = C∗0 , so that B0 ∈ L(Y,H− 1
2
).
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Consider the system described by

d2

dt2
q(t) +A0q(t) + γB0

d

dt
C0q(t) = 0 , (4.2)

y(t) =
d

dt
C0q(t) , (4.3)

where γ > 0 is a constant and t ∈ [0,∞) is the time. The equation (4.2) is understood as
an equation in H− 1

2
(i.e., all the terms are in H− 1

2
). Here, q stands for the displacement

field and the term γB0
d

dt
C0q(t), informally written as γB0C0q̇(t), represents a viscous

damping. The state z(t) of this system and its state space X are defined by

z(t) =

[
q(t)
q̇(t)

]
, X = H 1

2
×H .

It is easy to verify that the equations (4.2), (4.3) are equivalent to the following system of
first order equations: {

ż(t) = A(γ)z(t) ,
y(t) = Cz(t) ,

(4.4)

where

A(γ) =

[
0 I
−A0 −γB0C0

]
, (4.5)

D(A(γ)) =

{[
ϕ
ψ

]
∈ H 1

2
×H 1

2

∣∣∣∣ A0ϕ+ γB0C0ψ ∈ H
}
, (4.6)

C : D(A(γ))→ Y , C = [0 C0 ] . (4.7)

It is well known that A(0) generates a unitary group in X (see, for instance, [35, Proposi-
tion 3.8.7]). For every γ > 0 the operator A(γ) generates a semigroup of contractions (see,
for instance, [39, Proposition 5.1]). It is not difficult to check that the adjoint of A(γ) is
given by

D(A(γ)∗) =

{[ ϕ
ψ

]
∈ H 1

2
×H 1

2

∣∣∣∣A0ϕ− γB0C0ψ ∈ H
}

(4.8)

A(γ)∗ =

[
0 −I
A0 −γB0C0

]
. (4.9)

The result below shows that the results in Section 2 can be applied to the system (4.4).

Proposition 4.1. With the above notation, assume that A(1) is the generator of an
exponentially stable semigroup TK on X. Then for every γ > 0, the pair (A(γ), C) is
estimatable and backward estimatable. The corresponding output injection operators are

H =

[
0

(γ − 1)B0

]
, Hb =

[
0

−(γ + 1)B0

]
. (4.10)

Proof. Let X−1,1 be the dual of D (A(1)∗) with respect to the pivot space X. In this proof,
inner products in H or in Y will not have subscripts, the others will. In order to show
that (A(γ), C) is estimatable, we prove below that the relation

A(1)z = A(γ)z +HCz ∀ z ∈ D(A(γ))
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holds in X−1,1. Let z =
[ ϕ
ψ

]
∈ D(A(γ)) and φ =

[
ξ
η

]
∈ D ((A(1))∗). Using (4.5), (4.6),

(4.8) and (4.9) we get

〈z, (A(1))∗φ〉X − 〈Cz,H
∗φ〉 = 〈A

1
2
0 ϕ,A

1
2
0 η〉

+ 〈ψ,A0ξ −B0C0η〉 − (γ − 1)〈C0ψ,C0η〉

= − 〈A0ϕ, η〉H− 1
2
,H 1

2

+ 〈A
1
2
0 ψ,A

1
2
0 ξ〉

− 〈C0ψ,C0η〉 − (γ − 1)〈C0ψ,C0η〉

= 〈A
1
2
0 ψ,A

1
2
0 ξ〉 − 〈A0ϕ, η〉H− 1

2
,H 1

2

− γ〈B0C0ψ, η〉H− 1
2
,H 1

2

.

Since z ∈ D(A(γ)), it follows that

〈z, (A(1))∗φ〉X − 〈Cz,H
∗φ〉 = 〈A

1
2
0 ψ,A

1
2
0 ξ〉

− 〈A0ϕ+ γB0C0ψ, η〉 = 〈A(γ)z, φ〉X .

According to Definition 2.1, the above formula implies that the pair (A(γ), C) is estimat-
able with the output injection operator H given by (4.10).

Let Xd
−1,1 be the dual of D(A(1)) with respect to the pivot space X. In order to show

that (A(γ), C) is backward estimatable we prove below that the relation

A(1)∗z = −A(γ)z +HbCz ∀ z ∈ D(A(γ)),

holds in Xd
−1,1. Let z =

[ ϕ
ψ

]
∈ D(A(γ)) and φ =

[
ξ
η

]
∈ D(A(1)). Using (4.5), (4.6), (4.8)

and (4.9), we get

〈z,A(1)φ〉X − 〈Cz,H
∗
b φ〉 = 〈A

1
2
0 ϕ,A

1
2
0 η〉

− 〈ψ,A0ξ +B0C0η〉+ (γ + 1)〈C0ψ,C0η〉

= 〈A0ϕ, η〉H− 1
2
,H 1

2

− 〈A
1
2
0 ψ,A

1
2
0 ξ〉

− 〈C0ψ,C0η〉+ (γ + 1)〈C0ψ,C0η〉

= 〈A
1
2
0 (−ψ), A

1
2
0 ξ〉+ 〈A0ϕ, η〉H− 1

2
,H 1

2

+ γ〈B0C0ψ, η〉H− 1
2
,H 1

2

.

Since z ∈ D(A(γ)), it follows that

〈z, (A(1))∗φ〉X − 〈Cz,H
∗
b φ〉 = 〈A

1
2
0 (−ψ), A

1
2
0 ξ〉

+ 〈A0ϕ+ γB0C0ψ, η〉 = − 〈A(γ)z, φ〉X .

According to Definition 2.1, the above formula implies that the pair (−A(γ), C) is esti-
matable, with the output injection operator Hb given by (4.10).

By combining the last result and Proposition 3.9 we obtain an algorithm to estimate
the initial state of the system (4.2)–(4.3). More precisely, for every n > 0 we define the
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sequences (q(n)) and (q
(n)
b ) by
q̈(n)(t) +A0q

(n)(t) +B0C0q̇
(n)(t) = (1− γ)B0y,

q(n)(0) = q
(n−1)
b (0) for n > 1, q

(0)
b (0) = w0,

q̇(n)(0) = q̇
(n−1)
b (0) for n > 1, q̇

(0)
b (0) = w1,

(4.11)


q̈

(n)
b (t) +A0q

(n)
b (t)−B0C0q̇

(n)
b (t) = − (1 + γ)B0y,

q
(n)
b (τ) = q(n)(τ),

q̇
(n)
b (τ) = q̇(n)(τ).

(4.12)

Here w0 ∈ H 1
2

and w1 ∈ H are arbitrary initial guesses for q0 and q1.

Recall from Proposition 4.1 that TK denotes the semigroup generated by A(1). From
Proposition 3.9 we obtain the following:

Corollary 4.2. Assume that TK is exponentially stable and let τ > 0 be such that ‖TKτ ‖ <
1. Denote α = ‖TKτ ‖4. Then for all n ∈ N,∥∥∥q(n)

b (0)− q(0)
∥∥∥2

1
2

+
∥∥∥q̇(n)
b (0)− q̇(0)

∥∥∥2

H

6 αn+1
(
‖w0 − q(0)‖21

2
+ ‖w1 − q̇(0)‖2H

)
.

The second example in Section 5 shows that the above abstract setting can be applied
to a system described by the wave equation in a domain Ω ⊂ Rn with velocity observation
on a part of the boundary.

5 Examples and numerical results

In this section we apply our algorithm to reconstruct the initial state for the Schrödinger
equation and the wave equation in the unit square Ω ⊂ R2. In the first case, the observation
is distributed on a subset of Ω, whereas in the second case the observation is localized on
two adjacent sides of Ω.

All the computations were performed on a Power Mac G4 2.8GHz with 8 Go DDR
SDRM and the algorithms were developed under Matlab.

5.1 The Schrödinger equation

In this subsection we consider the problem of estimating the initial state of a system
described by the Schrödinger equation with observation on a part of the domain.

Let Ω denote a rectangular domain in Rd, d > 1. We consider the following initial and
boundary value problem:

ż + i∆z = 0, x ∈ Ω, t ∈ [0,+∞),
z = 0, x ∈ ∂Ω, t ∈ [0,+∞),

z(x, 0) = z0(x), x ∈ Ω.
(5.1)
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Given a nonempty open subset O ⊂ Ω, we consider the output

y = z|O. (5.2)

Equations (5.1)–(5.2) can be written in the standard form

ż = Az, y = Cz ,

if we introduce the following spaces and operators:

• the state space is X = L2(Ω),

• A : D(A) = H2(Ω) ∩H1
0(Ω)→X is the skew-adjoint operator defined by

Aϕ = − i∆ϕ ∀ ϕ ∈ D(A). (5.3)

• the output space is Y = L2(O),

• the observation operator C ∈ L(X,Y ) is defined by

Cϕ = ϕ|O ∀ ϕ ∈ X . (5.4)

According to Komornik [18] the pair (A,C) is exactly observable in any time τ > 0.
According to Proposition 3.7 (A,C) is estimatable and backward estimatable. Clearly the
same statements hold also for (−A,C). Moreover, the semigroups TK and SK generated
by A−C∗C and −A−C∗C, respectively, satisfy ‖TKτ ‖ < 1 and ‖SKτ ‖ < 1 for every τ > 0.

According to Proposition 3.9 the initial state of the system (5.1) can be approximated
using the output data (5.2) by the recursive algorithm

ż(n)(t) = (−i∆− χO)z(n)(t) + y(t) ,

z(n)(0) = z
(n−1)
b (0) for n > 1 ,

z(0)(0) = w0,

(5.5)

{
ż

(n)
b (t) = (−i∆ + χO)z

(n)
b (t)− y(t) ,

z
(n)
b (τ) = z(n)(τ) .

(5.6)

In the above equations we have suppressed the dependence on the position x. χO is the
characteristic function of O and y is extended by zero outside O. As usual, w0 ∈ X is an
arbitrary initial guess for z0.

In order to show the efficiency of our iterative algorithm, we consider the particular case
where Ω is the unit square in R2, O = (1/3, 2/3) × (1/3, 2/3), τ = 0.2 (note that τ can
be chosen very small, as (A,C) is exactly observable in arbitrarily small time) and the
initial data to be recovered is z0(x1, x2) = 4x(1−x1) sin(5πx2)+i sin(3πx1) sin(2πx2). We
use a Crank-Nicolson scheme in time combined to a finite difference space discretization
to simulate the forward and backward systems (5.5) and (5.6). The initial guess w0 is
taken to be zero, the time step is ∆t = τ/300 and the number of space discretization
points is Nx1 = Nx2 = 150 in each direction. Figure 1 shows the evolution of the relative
error (in %) as a function of the number of iterations for a noisy observation with a noise
level of 10% (we used a noise obtained by adding random numbers uniformly distributed
in [−‖y‖L∞/10, ‖y‖L∞/10] to all entries of y(t)). After 10 iterations, the relative error
decreases from 19.7% to 0.5%. The error can be further reduced either by reducing the
mesh sizes or by using high-order solvers. Each forward or backward iteration of the
algorithm required approximately 20 seconds.
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Figure 1: Relative error (in %) as a function of the number of iterations.

5.2 The wave equation

In this subsection we consider the problem of estimating the initial state of a system
described by the wave equation with velocity observation on a part of the boundary.

Let Ω ⊂ Rd be a bounded domain with boundary Γ and let Γ0 and Γ1 be subsets of Γ.
Assume that one of the two following assumptions holds:

• (H1): Γ is of class C∞, Γ0 and Γ1 are relatively open (and also relatively closed)
and nonempty subsets of Γ such that Γ0 ∩ Γ1 = ∅ and Γ0 ∪ Γ1 = Γ. Moreover, Γ1

satisfies the geometric optics condition of Bardos, Lebeau and Rauch [6].

• (H2): Ω = [0, 1]2, Γ0 = ({1} × [0, 1]) ∪ ([0, 1]× {1}) and Γ1 = Γ \ Γ0.

We denote by x the space variable (x ∈ Ω). Consider the system

q̈(x, t) = ∆q(x, t) in Ω× [0,∞),
q(x, t) = 0 on Γ0 × [0,∞),
∂q
∂ν (x, t) + γq̇(x, t) = 0 on Γ1 × [0,∞),
q(x, 0) = q0(x) in Ω,
q̇(x, 0) = q1(x) in Ω,
y(x, t) = q̇(x, t) on Γ1 × [0,∞),

(5.7)

where γ > 0 is constant, ν is the unit outward normal to ∂Ω, y is the output function and
the functions q0 and q1 are the initial state of the system. Note that the above system
is not necessarily time-reversible. The easiest counterexample can be found by taking Ω
one-dimensional and γ = 1 (see, for instance, the last paragraph in [39]). Let us also note
that the observation operator corresponding to (5.7) is not admissible (see, for instance,
[5, p. 220] and [33]).

As shown, for instance, in [39], the above system can be written in the form (4.2), (4.3)
with the following choice of spaces and operators:

H = L2(Ω), Y = L2(Γ1),

17



H1 =

{
f ∈ H1

Γ0
(Ω)

∣∣∣∣∆f ∈ L2(Ω),
∂f

∂ν
|Γ1 = 0

}
A0ϕ = −∆ϕ ∀ ϕ ∈ D(A0) = H1

where H1
Γ0

(Ω) =
{
f ∈ H1(Ω)

∣∣ f|Γ0
= 0

}
.

It is well-known that A0 is self-adjoint, positive and boundedly invertible, see, for in-
stance, Rodriguez–Bernal and Zuazua [28]. Moreover, H 1

2
= H1

Γ0
(Ω).

The operator C0 ∈ L(H 1
2
, Y ) is defined by

C0f = f|Γ1
∀ f ∈ H 1

2
.

In order to determine B0 = C∗0 we consider the operator N ∈ L(Y,H 1
2
), called the

Neumann map, with the following property: Nv = g if and only if g ∈ H1
Γ0

(Ω), ∆g = 0

and
∂g

∂ν
= v on Γ1. As shown in [39, Section 7], we have B0 ∈ L(U,H− 1

2
) and

B0 = C∗0 = A0N . (5.8)

In order to determine the initial state (q0, q1) of (5.7) from the boundary observations

y, we consider the sequences (q(n))n∈N and (q
(n)
b )n∈N defined by

q̈(n)(x, t) = ∆q(n)(x, t) in Ω× [0,∞),

q(n)(x, t) = 0 on Γ0 × [0,∞),
∂q(n)

∂ν (x, t) + q̇(n)(x, t) = (1− γ)y(x, t) on Γ1 × [0,∞),

q(n)(x, 0) = q
(n−1)
b (x, 0) for n > 1 in Ω,

q̇(n)(x, 0) = q̇
(n−1)
b (x, 0) for n > 1 in Ω,

q(0)(x, 0) = w0(x) in Ω,

q̇(0)(x, 0) = w1(x) in Ω,

(5.9)



q̈
(n)
b (x, t) = ∆q

(n)
b (x, t) in Ω× [0,∞),

q
(n)
b (x, t) = 0 on Γ0 × [0,∞),
∂q

(n)
b
∂ν (x, t)− q̇(n)

b (x, t) = − (1 + γ)y(x, t) on Γ1 × [0,∞),

q
(n)
b (x, τ) = q(n)(x, τ) in Ω,

q̇
(n)
b (x, τ) = q̇(n)(x, τ) in Ω .

(5.10)

As usual, w0 ∈ H 1
2

and w1 ∈ H are arbitrary initial guesses for q0 and q1.

These equations are obtained by specializing to the above choice of A0 and C0 the
iterative scheme from (4.11) and (4.12). From Corollary 4.2 we obtain:

Corollary 5.1. If q0 ∈ H1, q1 ∈ H 1
2

and one of the assumptions (H1) or (H2) holds,

then for τ sufficiently large, there exists α ∈ (0, 1) such that, for all n ∈ N,∥∥∥∇q(n)
b (·, 0)−∇q0

∥∥∥2

L2(Ω)
+
∥∥∥q̇(n)
b (·, 0)− q1

∥∥∥2

L2(Ω)

6 αn+1
(
‖∇w0 −∇q0‖2L2(Ω) + ‖w1 − q1‖2L2(Ω)

)
.
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Proof. If (H1) holds, the geometric optics condition insures the exponential stability of
(5.7) with γ = 1, see [6]. If (H2) holds, the exponential stability of (5.7) with γ = 1
follows from Cornilleau et al. [9, Remark 2].

Concerning the minimal time required in the above corollary, we conjecture that it is
given by the maximal time needed by a ray of geometric optics before intersecting Γ1. In
particular, if (H2) holds, this time should be 2

√
2. Nevertheless, there exist many initial

states which can be recovered from data from a shorter observation time.

Figure 2: Relative error (in %) on (q0, q1) for the norm in X = H 1
2
×H as a function of

the number of iterations.

As a numerical illustration of our iterative algorithm, we consider problem (5.7) on the
unit square Ω = [0, 1]2 and with γ = 1 (non reversible problem). The initial data to be
recovered are given by the “bubble” function q0(x) = q1(x) = x(1 − x)y(1 − y) and the
time of observation is τ = 2

√
2 which is the exact observability time of the problem. To

solve numerically (5.9) and (5.10), we use an explicit centered scheme in time combined
to P1−finite elements for the space discretization on a structured mesh. The initial guess
(w0, w1) in (5.9) is chosen to be zero (and thus the initial relative error is 100%) and
we used a noisy observation (random noise with level 10% obtained by adding random
numbers uniformly distributed in [−‖y‖L∞/10, ‖y‖L∞/10] to all entries of y(t)). We used
35 points of space discretization in each direction and the time step ∆t = 3e − 5. Each
forward or backward iteration of the algorithm requires approximatively 30 seconds.

Figure 2 shows the decay of the relative error in the energy norm (i.e. for the norm in
X = H 1

2
×H): after 15 iterations, this error is about 0.4%.

Figure 3 shows the relative errors between the exact and estimated initial data, sepa-
rately for q0 and q1. After 15 iterations, the relative error obtained is about 0.27% for the
approximation of q0 and about 1.2% for q1. As we used a low order solver, a large number
of iterations is needed to obtain an accurate approximation of the initial time derivative
q1, while the second iteration provides a very precise approximation of q0. Theses results
can be improved by using high order schemes.
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Figure 3: Top: The norm in H 1
2

of the relative error in q0 (in %) versus the number of

iterations. Bottom: The norm in H of the relative error on q1 (in %) versus the number
of iterations.
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