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Abstract

This paper presents a state estimation approach for an uncertain linear equation with a non-invertible operator in Hilbert space.
The approach addresses linear equations with uncertain deterministic input and noise in the measurements, which belong to
a given convex closed bounded set. A new notion of a minimax observable subspace is introduced. By means of the presented
approach, new equations describing the dynamics of a minimax recursive estimator for discrete-time non-causal differential-
algebraic equations (DAEs) are presented. For the case of regular DAEs it is proved that the estimator’s equation coincides
with the equation describing the seminal Kalman filter. The properties of the estimator are illustrated by a numerical example.
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1 Introduction

The importance of models described by DAEs (or de-
scriptor systems) in economics, demography, mechanics
and engineering is well known [13]. Here, motivated
by further applications to linear DAEs, we present
a state estimation approach for linear deterministic
models described by an abstract linear equation in a
Hilbert space. Our approach is based on ideas under-
lying H2/H∞ filtering [4,3] and set-membership state
estimation [7,14,16,12,15].
H2-estimators like Kalman or Wiener filters [4,1] give
estimations of the system state with minimum error
variance. The H2-estimation problem for linear time-
variant DAEs was studied in [17] without restricting the
DAE’s matrices. The resulting algorithm requires the
calculation of the so-called “3-block matrix pseudoin-
verse”. In [10] the authors introduced explicit formulas
for the 3-block matrix pseudoinverse and derived a
recurrence filter, assuming a special structure for the
DAE’s matrices. A brief overview of steady-state H2-
estimators is presented in [8].
H∞ estimators minimize a norm of the operator map-
ping unknown disturbances with finite energy to filtered
errors [3]. We stress that the H∞ estimator coincides

? This paper was presented at IFAC Workshop CAO09, Jy-
vaskyla, Finland, May 6-9, 2009. Corresponding author S.
Zhuk. Tel. +38050-52-59138. Fax +38044-57-56684.
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with a certain Krein space H2 filter [19]. The H∞ fil-
tering technique was applied to linear time-invariant
DAEs with regular matrix pencils in [22].
A basic notion in the theory of set-membership state
estimation is that of an a posteriori set or informational
set. This notion has roots in control theory [4]. By def-
inition, it is the set of all possible state vectors ϕ, that
are consistent with a measured output y, provided that
an uncertain input f and measurement error η belong
to some bounded set G . We will be interested in the case
when the state ϕ ∈ H obeys an abstract linear equation
Lϕ = f , provided y = Hϕ + η, (f, η) ∈ G , where G is
a bounded closed convex subset of an abstract Hilbert
space. The problem is to find an estimation ϕ̂ of ϕ with
minimal worst-case error. This problem was previously
considered in [16,14]. Due to [16] a vector ϕ̂ is called
a linear minimax a-posteriori estimation (or a central
algorithm due to [14]) iff ∀` ∈ H

〈`, ϕ̂〉 = (sup
G (y)

〈`, ϕ〉+ inf
G (y)
〈`, ϕ〉)/2, (1)

provided that an a posteriori set G (y) := {ϕ : (Lϕ, y −
Hϕ) ∈ G } is a bounded convex subset of the Hilbert
space H. Note that if there exists ϕ0 so that Lϕ0 = 0,
Hϕ0 = 0, then supG (y)〈`, ϕ〉 = +∞ for some `. Thus, the
above approach does not work if L is non-injective. In
this paper we generalize the approach of [14,16] to linear
equations with non-injective L. Futher generalization is
presented in [25].
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The main contribution of this paper is a new notion of
a minimax observable subspace L for the pair (L,H)
(Definition 1). It is useful when one needs to evaluate
a priori how far the estimation ϕ̂ is from a “real” state
ϕ in the worst case, provided ϕ̂ is constructed from the
measurements y. Due to Proposition 1, the worst-case
estimation error is finite iff L = H; otherwise ϕ̂ may be
too far from a “real” state ϕ for some directions ` ∈ H,
even for bounded f and η. In fact, given y, we can pro-
vide an estimation with finite worst-case error for the
projection of ϕ onto L only. Thus L is an analog of the
observable subspace [4, p.240] for the pair (L,H) in the
context of set-membership state estimation.
The introduced notion allows the generalization of ideas
from [14,16,21] to non-injective linear mappings, in par-
ticular for the case Lϕ(t) = ((Fϕ)t − C(t)ϕ(t), Fϕ(t0))
with F ∈ Rm×n which arise in the state estimation for
linear continuous non-causal 1 DAEs [24]. As a conse-
quence, one can apply the minimax framework, orig-
inally developed [7,5] for DAEs (F = E in the linear
case) with bounded uncertainties, to DAEs [25] with
unbounded inputs (see example in Section 3).
In order to stress connections with H∞ approach, we
note that the minimax framework [7,5] incorporates the
set-membership state estimation and H∞ filtering for
ODEs by application of dynamic programming [2] to the
informational state X(τ): for linear ODE the worst-case
estimation is set to be the Tchebysheff center of X(τ).
Although we derive the estimation from the minimiza-
tion of the worst-case error, as it is stated in Definition
1, our approach (for the ellipsoidal bounding set G and
causal 2 DAEs) results in the same estimation and error
as in [7]. Thus, the `-minimax estimation gives a proper
generalization of the recurrence algorithm from [7] to
the case when X(τ) may be unbounded.
We illustrate the benefits of the new notion by intro-
ducing a minimax recursive estimator for discrete-time
non-causal DAEs: it works for non-causal DAEs un-
like [10,8,22,23] and for the regular case it coincides
with one proposed in [10] (Corollary 1). In addition, the
minimax observability subspace allows one to identify
the observable (in the minimax sense) part of the state
with respect to given measurements. Computing the
index of non-causality, one can a priori check how good
connections between observations and state are: models
with zero index are fully observable while models with
non-zero index have an unobservable part in the state.
This paper is organized as follows. In Section 2 we give
definitions (Definition 1) of the minimax estimation, er-
ror and observable subspace for abstract linear equations
and we construct the estimation for a convex bounded
G , in particular for an ellipsoidal G (Proposition 1).
In Section 3 we introduce the minimax observable sub-

1 DAE is said to be non-causal if the corresponding initial-
value problem has more than one solution.
2 Note that the dynamic programming was previously ap-
plied to causal DAEs in [6] in order to construct a regulator
in LQ-control problems with DAE constraints.

space and index of non-causality for DAEs in discrete
time (Definition 2) and we derive the minimax estimator
(Theorem 1). Also we discuss connections to H2/H∞
framework (Corollary 1) and present an example.
Notation. Linear mappings: 〈·, ·〉 denotes the inner
product; L (H1,H2) denotes the space of all bounded
linear mappings from H1 to H2, L (H) := L (H,H);
1H is the identity mapping in H; D(L), R(L), N(L)
denote, respectively, the domain, range, and null-space
of a linear mapping L : D(L) 7→ R(L); L∗ : H → H
is the adjoint of L; F ′ denotes the transpose of F ; F+

is the pseudoinverse of F ; E is the identity matrix;
diag(A1 . . . An) denotes a diagonal matrix with Ai,
i = 1, n on its diagonal; {xs}n1 := (x1, . . . , xn) is an
element of H1 × · · · × Hn, 0mn ∈ Rm×n denotes the
m× n-zero matrix.
Functionals: I1(x) := 〈Q1Lx,Lx〉 + 〈Q2Hx,Hx〉,
I(x) := 〈Q1Lx,Lx〉 + 〈Q2(y −Hx), y −Hx〉 with pos-
itive definite self-adjoint Q1 ∈ L (F) and Q2 ∈ L (Y);
c(G, x) := sup{〈x, y〉, y ∈ G} is a support function of G;
γ± := 1

2 (c(G (y), `)± c(G (y),−`)); ‖x‖2S = 〈Sx, x〉.
Sets: G β(0) := {x : I1(x) ≤ β}, G (0) := {x : I1(x) ≤ 1};
domf := {x : f(x) < ∞} is an effective domain of f ;
Argminxf := {x : f(x) = minx f} is the set of global
minima of f ; G is the closure of a set G.

2 Linear minimax estimation problem in a
Hilbert space

Let vector y be observed in the form of

y = Hϕ+ η (2)

where ϕ obeys the equation

Lϕ = f (3)

We assume that L : D(L) 7→ F is a closed linear op-

erator [4, p.63], D(L) ⊂ H is a linear set, D(L) = H,
H ∈ L (H,Y). Also we assume that (f, η) is an unknown
element of a convex bounded closed set G ⊂ F × Y,
H,F ,Y are Hilbert spaces.

Definition 1 Let L := {` ∈ H : ρ̂(`) <∞} with

ρ̂(`) := inf
ϕ∈G (y)

ρ(`, ϕ), ρ(`, ϕ) := sup
ψ∈G (y)

|〈`, ϕ− ψ〉|

The set L is called a minimax observable subspace for
the pair (L,H). A vector ϕ̂ ∈ G (y) is called a minimax a
posteriori estimation in the direction 3 ` (`-estimation)
if ρ(`, ϕ̂) = ρ̂(`). The number ρ̂(`) is called a minimax a
posteriori error in the direction ` (`-error).

3 The subspace l := {α` : α ∈ R}, assigned with ` ∈ H,
defines some direction in H. To estimate ϕ in the direction
` means to estimate the projection 〈`, ϕ〉` of ϕ onto l.
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Our aim here is, given y, to construct the `-estimation
ϕ̂ of the state ϕ, `-error ρ̂(`) and minimax observable
subspace L, provided ` ∈ L. Note that ρ̂(`) = +∞ if
` 6∈ L so that any ψ ∈ H is a `-estimation by Definition 1.

Proposition 1 Let G be a convex closed bounded subset
of F ×Y. Then ` ∈ L iff `,−` ∈ dom c(G (y), ·). If ` ∈ L
then the `-estimation ϕ̂ along with `-error ρ̂(`) obey

〈`, ϕ̂〉 = γ−, ρ̂(`) = γ+ (4)

Define T : D(T )→ H by the rule T (z, u) := L∗z +H∗u
with D(T ) := D(L∗)× Y and let

G = {(f, η) : 〈Q1f, f〉+ 〈Q2η, η〉 ≤ 1}

If R(T ) = R(T ) then x̂ ∈ Argminx I is the `-estimation,
L = dom c(G (0), ·) = R(T ) and

ρ̂(`) = (1− I(x̂))
1
2 c(G (0), `). (5)

The worst-case estimation error for any direction is

sup
x∈G (y)

‖x̂− x‖ = inf
ϕ∈G (y)

sup
x∈G (y)

‖ϕ− x‖ =

(1− I(x̂))
1
2 sup
‖`‖=1

c(G (0), `) = sup
‖`‖=1

ρ̂(`) < +∞
(6)

If L = H then (6) is finite.

PROOF. Let `(G (y)) = {〈`, ψ〉, ψ ∈ G (y)}. Since G (y)
is convex (due to convexity of D(L) and G ) and x 7→
〈`, x〉 is continuous, it follows that `(G (y)) is connected.
Noting that infG (y)〈`, ψ〉 = −c(G (y),−`), we see

`(G (y)) = [−c(G (y),−`), c(G (y), `)] ⊂ R1

Thus ρ(`, ϕ) = +∞ if `,−` 6∈ dom c(G (y), ·). Otherwise

`(G (y)) is bounded, implying ` ∈ L. Hence, ` ∈ L iff
`,−` ∈ dom c(G (y), ·).
Let ` ∈ L, ϕ ∈ G (y). Since `(G (y)) is connected, there
exists ϕ∗ ∈ G (y) so that 〈`, ϕ∗〉 = γ− is the central point

of `(G (y)). The worst-case distance ρ(`, ϕ) is equal to
the sum of the distance |〈`, ϕ− ϕ∗〉| between 〈`, ϕ〉 and
the central point γ− and the distance γ+ between one of

the boundary points of `(G (y)) and γ−. Therefore, γ−
has the minimal worst-case distance γ+. Hence, ϕ∗ = ϕ̂
due to Definition 1, which implies (4).
We proceed with the ellipsoidal G . Let Q1 = 1F , Q2 =
1Y for a simplicity. Due to [11, Sec 5.§3] R(T ) = R(T )

implies R(T ∗) = R(T ∗). Thus [4, p.14,Cor.1.4.3], there
exists x̂ ∈ D(L) so that T ∗x̂ is the projection of (0, y)

onto R(T ∗) = {(Lx,Hx), x ∈ D(L)}, implying x̂ ∈
ArgminxI, and

〈y −Hx̂,Hx〉 = 〈Lx̂, Lx〉,∀x ∈ D(L)

Noting this, one easily derives 4 I(x̂−x) = I1(x) + I(x̂)
for all x ∈ D(L). Having it in mind and noting that
G (y) = {ϕ : I(ϕ) 6 1} and x̂ ∈ G (y), one derives

x̂+ G β(0) = G (y) (7)

where β := 1− I(x̂). (7) implies [18, p.113]

c(G (y), `) = 〈`, x̂〉+ c(G β(0), `),∀` ∈ H (8)

The definition of γ−, (8) and c(G β(0), `) = c(G β(0),−`)
imply γ− = 〈`, x̂〉. Due to (4), x̂ is the `-estimation.

Let us prove (5). If x ∈ G β(0) then I1(β−
1
2x) ≤ 1. Thus

β−
1
2 G β(0) ⊂ G (0) implying G β(0) ⊂ β

1
2 G (0). If x ∈

G (0) then I1(β
1
2x) = βI1(x) ≤ β ⇒ β

1
2 G (0) ⊂ G β(0).

Therefore

G β(0) = β
1
2 G (0)⇒ c(G β(0), `) = β

1
2 c(G (0), `) (9)

Now (4) and (8) imply (5). Hence, L = dom c(G (0), ·)
due to Definition 1.
Let us prove R(T ) = L. If ` ∈ R(T ) then ` = L∗z+H∗u
for some z ∈ D(L∗), u ∈ Y and we get ∀ϕ ∈ G (0) by
Cauchy inequality [4, p.4]

〈`, ϕ〉 = 〈z, Lϕ〉+ 〈u,Hϕ〉 ≤ ‖z‖2 + ‖u‖2 < +∞

so that R(T ) ⊂ dom c(G (0), ·) = L. If ` /∈ R(T ) then

〈`, x〉 > 0 for some x ∈ N(T ∗) as H = R(T ) ⊕ N(T ∗).
Noting that G (0) = {x : ‖T ∗x‖2 ≤ 1} we derive
c(G (0), `) ≥ sup{〈`, x〉 : T ∗x = 0} = +∞. Hence,
L ⊂ R(T ).
Let us prove (6). Set α̂ := infϕ∈G (y) supx∈G (y) ‖ϕ − x‖.
Using Definition 1, one derives 5

α̂ = inf
ϕ∈G (y)

sup
x∈G (y)

sup
‖`‖=1

|〈`, ϕ− x〉| ≥

sup
‖`‖=1

inf
ϕ∈G (y)

sup
x∈G (y)

|〈`, ϕ− x〉| = sup
‖`‖=1

ρ̂(`) =

sup
‖`‖=1

sup
x∈G (y)

|〈`, x̂− x〉| = sup
x∈G (y)

‖x̂− x‖ ≥ α̂

Now assume L = H. Since dom c(G (0), ·) = L, it follows
c(G (0), ·) is finite inH and therefore [9, §2.3] continuous.
As a consequence, (6) is finite.

4 I(x̂− x) = I1(x) + I(x̂)− 2〈Lx̂, Lx〉+ 2〈y −Hx̂,Hx〉
5 Note [4, p.42] that ‖ϕ‖ = sup‖`‖=1〈`, ϕ〉 and [4, p.55]

infx supy F (x, y) ≥ supy infx F (x, y) for convex-concave F .
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3 `-estimation for non-causal DAEs

Consider the model

Fk+1xk+1 − Ckxk = fk+1, F0x0 = f0, (10)

yk = Hkxk + gk, k = 0, 1, . . . (11)

where Fk, Ck ∈ Rm×n, Hk ∈ Rp×n, xk ∈ Rn is a state,
fk ∈ Rm is an input and yk, gk ∈ Rp represent an output
and the output’s noise respectively. In what follows we
assume that an initial state x0 belongs to the affine set
{x : F0x = f0}. We define ξτ = ({fs}τ0 , {gs}τ0) and
assume

ξτ ∈ G = {ξτ :

τ∑
0

〈Sifi, fi〉+ 〈Rigi, gi〉 6 1} (12)

where Sk ∈ Rm×m and Rk ∈ Rp×p are positive definite
self-adjoint matrices.
Suppose we observe y∗1 , . . . , y

∗
τ , provided that y∗k is de-

rived from (11) with gk = g∗k and xk = x∗k, which
obeys (10) with fk = f∗k , and ({f∗s }τ0 , {g∗s}τ0) ∈ G . De-
note by X(τ) the set of all possible states xτ of (10) con-
sistent with measurements y∗1 , . . . , y

∗
τ and uncertainty

description (12).

Definition 2 We say that xτ is a `-estimation of the
state x∗τ in the direction ` ∈ Rn iff

sup
x∈X(τ)

|〈`, x− xτ 〉| = ρ̂(`, τ) := inf
z∈X(τ)

sup
x∈X(τ)

|〈`, x− z〉|

ρ̂(`, τ) is said to be an `-error. A minimax observable
subspace at the instant τ for the model (10)-(11) is defined
by L(τ) = {` : ρ̂(`, τ) <∞}. Iτ := n−dimL(τ) is called
an index of non-causality of the model (10)-(11).

Theorem 1 Define β̂τ := 1−ατ + 〈Pτ x̂τ , x̂τ 〉 and x̂τ =
P+
τ rτ with r0 = H ′0R0y0, α0 = 〈R0y0, y0〉,

Pk = H ′kRkHk + F ′k[Sk−1 − Sk−1Ck−1B+
k−1C

′
k−1Sk−1]Fk,

P0 = F ′0S0F0 +H ′0R0H0, Bk = Pk + C ′kSkCk,

αk = αk−1 + 〈Rkyk, yk〉 − 〈B+
k−1rk−1, rk−1〉,

rk = F ′kSk−1Ck−1B
+
k−1rk−1 +H ′kRkyk,

Then x̂τ is the `-estimation of x∗τ , L(τ) = {` : P+
τ Pτ ` =

`}, ρ̂(`, τ) = β̂
1
2
τ 〈P+

τ `, `〉
1
2 and 6

X(τ) = x̂τ + β̂
1
2
τ X̃(τ), X̃(τ) := {x : 〈Pτx, x〉 ≤ 1} (13)

6 Note that τ 7→ X(τ) represents the a posteriori set-valued
observer [20]

PROOF. In order to apply Proposition 1, we rewrite (10)-
(11) in the operator form: set H = (Rn)τ+1, Y =
(Rp)τ+1, F = (Rm)τ+1 and ϕ∗ = {x∗s}τ0 , y∗ = {y∗s}τ0 ,
f∗ = {f∗s }τ0 , η∗ = {g∗s}τ0 ,

L =

( F0 0mn 0mn ... 0mn 0mn
−C0 F1 0mn ... 0mn 0mn
... ... ... ... ... ...
0mn 0mn 0mn ... −Cτ−1 Fτ

)
, H =

(
H0 ... 0pn
... ... ...
0pn ... Hτ

)
Define Pτ =

(
0nn, ..., 0nn,E

)
and rewrite (12) with

Q1 = diag (S0, . . . , Sτ ), Q2 = diag (R0, . . . , Rτ ) as

ξτ = (f, η) ∈ G = {(f, η) : 〈Q1f, f〉+ 〈Q2η, η〉 ≤ 1}.

It is clear that y∗, H, η∗, L, f∗, ϕ∗, defined as above,
satisfy (2)-(3) and (f∗, η∗) ∈ G . Let G (y∗) denote the a
posteriori set generated by y∗. Then X(τ) = Pτ (G (y∗))
by definition. Thus

ρ̂(`, τ) = inf
ϕ∈G (y∗)

sup
ψ∈G (y∗)

|〈`,Pτ (ϕ− ψ)| = ρ̂(l) (14)

with l = P ′τ `. Hence, xτ = Pτ ϕ̂, where ϕ̂ is the
l-minimax estimation of the state ϕ∗ of (3) in the
sense of Definition 1. Proposition 1 implies ϕ̂ = x̂
and ρ̂(l) = β

1
2 c(G (0), l). Let us prove (13). (7) and

(9) imply Pτ (G (y∗)) = Pτ x̂ + β
1
2Pτ (G (0)). Therefore,

X(τ) = Pτ x̂+β
1
2Pτ (G (0)). Now, let us prove x̂τ = Pτ x̂

by the direct calculation. Define

Vτ (x0, . . . , xτ ) := Φ(x0) +

τ−1∑
s=0

Φs(xs, xs+1)

with Φk(x, p) := ‖Fk+1x − Ckp‖2Sk+1
+ ‖yk+1 −

Hk+1x‖2Rk+1
, Φ(x) := ‖F0x‖2S0

+ ‖y0 −H0x‖2R0
, and

Bτ (p) := min
x0...xτ−1

Vτ (x0 . . . xτ−1, p),B0(p) := Φ(p)

Lemma 1. Let p ∈ Rn. There exists (x̃1 . . . x̃τ−1) ∈
(Rn)τ−1 so that Vτ (x̃1 . . . x̃τ−1, p) = Bτ (p) and

Bk(p) = 〈Pkp, p〉 − 2〈rk, p〉+ αk, Pk ≥ 0 (15)

Lemma 1 implies Bτ is a quadratic and non-negative
function. Therefore ArgminBτ = {x : Pτx = rτ} 6= ∅.
This and I(ϕ) = Vτ (x0, . . . , xτ ) imply

Bτ (x̂τ ) = minBτ = minVτ = min I

Defining x̂ := (x̃1 . . . x̃τ−1, x̂τ ) with x̃k taken as in
Lemma 1 for p = x̂τ , we obtain I(x̂) = min I and
x̂τ = Pτ x̂. Therefore, x̂τ is a `-estimation.

We note min I = Bτ (x̂τ ) = 1 − β̂τ . Thus β = β̂τ by
definition.
Let us prove Pτ (G (0)) = X̃(τ). Since G (0) does not
depend on y∗ and G (0) = G (y∗) provided y∗ = 0,
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we can calculate Pτ (G (0)) assuming y∗ = 0. In this
case I = I1 = Vτ , x̂τ = 0 and Bτ (x) = 〈Pτx, x〉
so that x ∈ X̃(τ) ⇔ Bτ (x) ≤ 1. If x ∈ Pτ (G (0))
then, by definition, there exist x1 . . . xτ−1 so that
Vτ (x1 . . . xτ−1, x) ≤ 1, implying Bτ (x) ≤ 1. Now, let
Bτ (x) ≤ 1. Then Vτ (x̃1 . . . x̃τ−1, x) = Bτ (x) due to
Lemma 1 and thus x ∈ Pτ (G (0)) by definition.

Formulae (5), (14) and Pτ (G (0)) = X̃(τ) imply

ρ̂(`, τ) = β̂
1
2
τ c(X̃(τ), `) = β̂

1
2
τ 〈P+

τ `, `〉
1
2 for ` ∈ L(τ) and

L(τ) = dom c(X̃(τ), ·) = {` : P+
τ Pτ ` = `}. Details of

calculation of c(X̃(τ), ·) are given in [18, p.108]. This
completes the proof.

Proof of Lemma 1. We shall apply the dynamic pro-
gramming [2]. Since Vτ is additive, it follows that

Bτ (p) = min
xτ−1

{Φτ−1(xτ−1, p) + Bτ−1(xτ−1)} (16)

Vτ is convex and non-negative by definition. Thus Bτ
is non-negative and convex for any τ ∈ N. Convexity is
implied by the definition of Bτ as for any convex func-
tion (x, y) 7→ f(x, y) the function y 7→ minx f(x, y) is
convex [18, p.38].

Let us prove (15) by induction. (15) holds for B0 and P0.
We shall derive (15) for Bk+1, Pk+1, assuming it holds
for Bk, Pk. Define

Ξk(x, p) := Φk(x, p) + 〈Pkx, x〉 − 2〈rk, x〉+ αk (17)

Then Bk+1(p) = minxk Ξk(xk, p) due to (16). Com-
bining Pk ≥ 0 with definition of Φk, we derive 7

x 7→ Ξk(x, p) is a convex quadratic function for any p.
This and Ξk(xk, p) ≥ Bk+1(p) ≥ 0 imply [18, p.268]
Argminx Ξk(x, p) 6= ∅. On the other hand [18, T.27.4]
x ∈ Argminx Ξk(x, p) iff ∇xΞk(x, p) = 0. Finally, we
obtain Argminx Ξk(x, p) 6= ∅ and

Argminx Ξk(x, p) = {x : Bkx = C ′kSkFk+1p+rk} (18)

If we set qk = B+
k (C ′kSkFk+1p + rk) then qk ∈

Argminx Ξk(x, p) due to [1]. Now, it is sufficient to
calculate Ξk(qk, p) in order to see that (15) holds for
Bk+1 and Pk+1. Assertion Pk+1 ≥ 0 holds since Bk+1

is convex. To conclude the proof, let us define x̃τ = p
and x̃k ∈ Argminx Ξk(x, x̃k+1), k = 1, τ − 1. Then
Vτ (x̃1 . . . x̃τ−1, p) = Bτ (p) due to (16)-(18).

3.1. Example. Consider a system pk+1 = Akpk +

vk, p0 = v and assume yk = H̃kpk+gk provided pk ∈ Rn
and (v, g0, . . . , gτ ) belong to some ellipsoid. Now, given
y∗1 , . . . , y

∗
τ , one needs to build the worst-case estima-

tion of p∗τ . We cannot apply directly standard minimax

7 x 7→ 〈Ax, x〉 − 2〈x, q〉 + c is convex iff A is a symmetric
non-negative matrix.

framework [16,7,5] in this case as we do not have any
information about the bounding set for (v0, . . . , vτ ).
Instead, we apply the approach 8 , proposed above. De-
fine Fk := (E, 0), Ck := (Ak, E), Hk := (H̃k, 0) and
x∗k := (p∗k, v

∗
k). Then x∗k verifies (10)-(11) with f0 = v,

fk = 0 and gk = g∗k, k = 1, τ . Therefore, the original
problem may be reformulated as: given y∗1 , . . . , y

∗
τ , one

needs to build the l = (`, 0)-minimax estimation of x∗τ .
Of course, the estimation of xτ in the direction l = (0, `)
has an infinite minimax error for any `. But this is nat-
ural as 〈l, xτ 〉 = 〈vτ , `〉 and (v1, . . . , vτ ) is unknown.
In what follows we present a numerical example.

Let pk ∈ R2, H̃k = ( 1 0 ), Ak =
( 1

10 − 1
5

7
25 −

1
10

)
and

vk = (−k sin(k)
10 , k sin(k)

10 ). We have generated p∗k with

v = ( 1
10 ,

1
10 ) and y∗k with gk = 2 sin(k)

k+1 , Rk = k
k+1 ,

Sk = diag(1, 1), k = 0, 50. The results are displayed on
Fig. 1.
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Fig. 1. The dashed line corresponds to the real values of
〈`, p∗k〉 with ` = (0, 1), k = 1, 40; the solid line corresponds
to the `-estimation 〈`, x̂k〉; the bold dashed lines represent

dynamics of the boundary points of the segment `(X̃(τ)).
Note that the trajectory of the estimation is centered with
respect to “the bounds” – bold dashed lines.

3.2. Minimax estimator and H2/H∞ filters. In [5]
a connection between set-membership state estimation
and H∞ approach is described for linear causal DAEs.
The authors note that the notion of informational state
(X(τ) in our notation) is shown to be intrinsic for both
approaches: mathematical relations between informa-
tional states of H∞ and set-membership state estima-
tion are described in [5, Lemma 6.2.]. Comparisons of
set-membership estimators with H2/H∞ filters for lin-
ear DAEs are presented in [19], provided Fk ≡ E. Let
us consider connections to H2-filters in details. In [10]
the authors derive the Kalman’s recursion to DAE from
a deterministic least square fitting problem. Assuming
rank

[
Fk
Hk

]
≡ n, they prove that the optimal estimation

8 Since rank
[ Fk
Hk

]
< 2n, it follows that results of [10] are

not applicable.
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x̂i|k can be found from

x̂k|k = Pk|kF
′
kAk−1Ck−1x̂k−1|k−1 + Pk|kH

′
kRkyk,

x̂0|0 = P0|0H
′
0R0y0, A

−1
k = S−1k + CkPk|kC

′
k

P−1k|k = F ′kAk−1Fk +H ′kRkHk, P
−1
0|0 = F ′0SF0 +H ′0R0H0

Corollary 1 Let r0 = H ′0R0y0. If rank
[
Fk
Hk

]
≡ n then

Ik = 0 and P+
k rk = x̂k|k.

PROOF. Let us set Rk = E,S = E,Sk = E for sim-
plicity. The proof is by induction on k. For k = 0, P0|0 =

P−10 . The induction hypothesis isPk−1|k−1 = P−1k−1. Sup-

pose A ∈ Rm×n, B ∈ Rn×n, B = B′ > 0; then

A(A′A+B−1)−1 = (E +ABA′)−1AB (19)

Using (19) we get ABA′ = [E + ABA′]A[A′A +
B−1]−1A′. Combining this with the induction assump-
tion we get E + Ck−1Pk−1|k−1C

′
k−1 = E + [E +

Ck−1Pk−1|k−1C
′
k−1]Ck−1[Pk−1 + C ′k−1Ck−1]−1C ′k−1.

By simple calculation it follows from the previous
equality that E − Ck−1(Pk−1 + C ′k−1Ck−1)−1C ′k−1 =

(E + Ck−1Pk−1|k−1C
′
k−1)−1 Using this and definitions

of Pk, Pk|k, we get P−1k = Pk|k.

P−10 r0 = x̂0|0 due to corollary assumption. Sup-

pose that P−1k−1rk−1 = x̂k−1|k−1. The induction hy-

pothesis, equality P−1k = Pk|k and (19) imply (E +

Ck−1Pk−1|k−1C
′
k−1)−1Ck−1x̂k−1|k−1 = Ck−1(C ′k−1Ck−1+

Pk−1)−1k−1rk−1. Combining this with definitions of x̂k|k,

rk we obtain x̂k|k = P−1k rk. This concludes the proof.

4 Conclusion

We describe a set-membership state estimation ap-
proach for a linear operator equation with uncertain
disturbance restricted to belong to a convex bounded
closed subset of abstract Hilbert space. It is based on
the notion of an a posteriori set [16] G (y), informa-
tional set [5] and the notion of the minimax observable
subspace for the pair (L,H). The latter is new for the
set-membership state estimation framework. It leads
to nontrivial new results in set-membership state es-
timation for linear non-causal DAEs: we present new
equations describing the dynamics of the minimax re-
cursive estimator for discrete-time non-causal DAEs.
We prove that these equations are consistent with the
main results already established for regular DAEs. We
illustrate benefits of considering non-causality in the
state equation, applying our approach to a linear filtra-
tion problem with unbounded noise.
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[13] F. Lewis. A survey of linear singular systems. Circuits
Systems Signal Process, 5(1), 1986.

[14] M. Milanese and R. Tempo. Optimal algorithms theory
for robust estimation and prediction. IEEE Trans. Autom.
Contr., 30(8):730–738, Aug 1985.

[15] M. Milanese and A. Vicino. Optimal estimation theory
for dynamic systems with set membership uncertainty: An
overview. Automatica, 27:997–1009, 1991.

[16] A. Nakonechny. Minimax estimation of functionals defined
on solution sets of operator equations. Arch.Math. 1, Scripta
Fac. Sci. Nat. Ujer Brunensis, 14:55–60, 1978.

[17] R. Nikoukhah, S.L. Campbell, and F. Delebecque. Kalman
filtering for general discrete-time linear systems. IEEE
Transactions on Automatic Control, 44:1829–1839, 1999.

[18] R. Rockafellar. Convex analysis. Princeton, 1970.

[19] A. Sayed. A framework for state-space estimation with
uncertain models. IEEE Trans. Autom. Contr., 46:998–1013,
2001.

[20] J.S. Shamma and Tu Kuang-Yang. Set-valued observers and
optimal disturbance rejection. IEEE Trans. Autom. Contr.,
44(2):253–264, Feb 1999.

[21] R. Tempo. Robust estimation and filtering in the presence of
bounded noise. IEEE Trans. Autom. Contr., 33(9):864–867,
1988.

6



[22] S. Xu and J. Lam. Reduced-order H∞ filtering for singular
systems. System & Control Letters, 56(1):48–57, 2007.

[23] H. Zhang, L. Xie, and Y. Soh. Risk-sensitive filtering,
prediction and smoothing for discrete-time singular systems.
Automatica, 39:57–66, 2003.

[24] S. Zhuk. Closedness and normal solvability of an operator
generated by a degenerate linear differential equation with
variable coefficients. Nonlin. Oscillations, 10:1–18, 2007.

[25] S. Zhuk. State estimation for a dynamical system described
by a linear equation with unknown parameters. Ukr. Math.
J., 61(2):178–194, 2009.

7


	1 Introduction
	2 Linear minimax estimation problem in a Hilbert space
	3  -estimation for non-causal DAEs 
	4 Conclusion
	Acknowledgements
	References

