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Abstract

In this paper, the robust H∞ finite-horizon filtering problem is investigated for discrete time-varying stochastic systems with
polytopic uncertainties, randomly occurred nonlinearities as well as quantization effects. The randomly occurred nonlinearity,
which describes the phenomena of a nonlinear disturbance appearing in a random way, is modeled by a Bernoulli distributed
white sequence with a known conditional probability. A new robust H∞ filtering technique is developed for the addressed
Itô-type discrete time-varying stochastic systems. Such a technique relies on the forward solution to a set of recursive linear
matrix inequalities and is therefore suitable for on-line computation. It is worth mentioning that, in the filtering process,
the information of both the current measurement and the previous state estimate is employed to estimate the current state.
Finally, a simulation example is exploited to show the effectiveness of the method proposed in this paper.

Key words: Stochastic systems; discrete time-varying systems; H∞ filtering; recursive linear matrix inequalities; randomly
occurred nonlinearities; quantization effects.

1 Introduction

Filtering or state estimation problem has long been one
of the fundamental problems in control and signal pro-
cessing areas that has attracted constant research atten-
tion. In the past decade, a number of linear/nonlinear
filtering techniques have been developed with respect to
various filtering performance criteria, such as the H∞

specification, the minimum variance requirement and
the so-called admissible variance constraint. For exam-
ple, the extended Kalman filters have been designed
in [14] for nonlinear deterministic systems and in [13]
for nonlinear stochastic systems. The robust filtering
problems have been extensively studied in [9, 22, 29, 31]
for systems with norm-bounded uncertainties and in
[10,15–17] for uncertain systems with integral quadratic
constraint. The filters with error variance constraints
have been exploited in [22, 29, 31] for systems which are
subject to the noises with known statistics. Recently, the
H∞ filtering problems have received particular research
interests by means of the linear matrix inequality (LMI)
approach, see e.g. [5,8,19,23,24,26,27]. It is worth point-
ing out that, in most literature mentioned above, the
infinite-horizon filtering problem has been considered for
time-invariant systems.
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With respect to the time-varying systems, the finite-
horizon filtering problems have been paid much research
attention due primarily to their application insight.
Among others, the recursive Riccati difference equation
approach has been widely employed to design the H∞

filters. For example, the bounded real lemma (BRL)
was derived in [28] based on the Riccati difference equa-
tion, which is suitable for offline computation since the
boundary condition are given for the end of the known
interval. In [12], by employing the method of Hilbert
adjoins, another version of BRL was obtained, based
on which the Riccati difference equation can be solved
forward in time, and a reduced order H∞ filter was
designed for the linear discrete-time system. In [9], a
robust H∞ filter with error variance constraints was
designed for discrete time-varying uncertain system by
forwardly solving a recursive Riccati difference equa-
tion. For the Itô-type stochastic systems, the H2/H∞

control problem was studied in [32] for discrete time-
varying stochastic systems, where a BRL was obtained
in terms of a constrained backward difference equation
in the stochastic framework. It is worth mentioning
that, in [7, 18], a differential/difference linear matrix
inequality (DLMI) approach was proposed to obtain
a BRL that allows for time-varying matrices in the
state-space description and can therefore be applied to
various problems involving time-varying systems.

With the rapid development of network technologies,
more and more control systems are executed over com-
munication networks, which have many advantages such
as low cost, reduced weight and power requirements,
simple installation and maintenance, and high reliabil-
ity. However, since the network cable is of limited capac-
ity, many challenging issues inevitably emerge, for exam-
ple, the transmission delay [1, 2, 6, 11, 20, 31], data miss-
ing (packet dropouts) [20,22,24,25,30], signal quantiza-
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tion [5, 21], scheduling confusion, etc. Nevertheless, one
interesting problem that has been largely overlooked is
the so-called randomly occurred nonlinearities (RONs).
As is well known, a wide class of practical systems are
influenced by additive nonlinear disturbances that are
caused by environmental circumstances. Such nonlin-
ear disturbances themselves may be subject to random
abrupt changes, for example, random failures and re-
pairs of the components, changes in the interconnections
of subsystems, sudden environment changes, modifica-
tion of the operating point of a linearized model of a
nonlinear systems, etc. In other words, the nonlinear dis-
turbances may occur in a probabilistic way and are ran-
domly changeable in terms of their types and/or inten-
sity. Unfortunately, to the best of the authors’ knowl-
edge, the finite-horizon H∞ filtering problem for dis-
crete time-varying Itô-type stochastic systems with RONs
has not been fully investigated, not to mention the case
where the systems also involve polytopic uncertainties
and quantization effects. It is, therefore, the propose of
this paper to shorten such a gap by solving a set of recur-
sive linear matrix inequalities motivated by the DLMI
approach developed in [7, 18].

This paper is concerned with the robust H∞ filtering
problem for discrete time-varying stochastic systems
with polytopic uncertainties, RONs and quantization
effects. In order to take into account the phenomena
of nonlinear disturbances appearing in a random way,
we make the first attempt to introduce RONs that are
modeled by a Bernoulli distributed white sequence with
a known conditional probability. Sufficient conditions
are derived for the estimation error of the system under
consideration to satisfy theH∞ performance constraint.
A robust H∞ filter is then designed by solving a set of
recursive LMIs. The proposed robust H∞ filtering tech-
nique is a recursive algorithm that is suitable for on-line
computation by employing more information at and be-
fore current time to estimate the current state. Finally,
a numerical simulation example is used to demonstrate
the effectiveness of the filtering technology presented in
this paper.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. Rn denotes the n dimen-
sional Euclidean space. ‖A‖ refers to the norm of a ma-

trix A defined by ‖A‖ =
√
trace(ATA). The notation

X ≥ Y (respectively, X > Y ), where X and Y are real
symmetric matrices, means that X−Y is positive semi-
definite (respectively, positive definite). MT represents
the transpose of the matrix M . I denotes the identity
matrix of compatible dimension. diag{· · · } stands for a
block-diagonal matrix. Moreover, we may fix a proba-
bility space (Ω,F ,Prob), where Prob, the probability
measure, has total mass 1. E{x} stands for the expecta-
tion of the random variable x with respect to the given
probability measure Prob. The set of all nonnegative in-
tegers is denoted by I

+ and the set of all nonnegative
real numbers is represented by R

+. The asterisk ∗ in a
matrix is used to denote term that is induced by sym-
metry. Matrices, if they are not explicitly specified, are
assumed to have compatible dimensions.

2 Problem formulation and preliminaries

Consider the following class of nonlinear discrete time-
varying polytopic uncertain stochastic systems defined
on k ∈ [0, N ]:





x(k + 1) =A(ξ)(k)x(k) +A
(ξ)
1 (k)x(k)w(k)

+B(ξ)(k)v(k) + r(k)f(k, x(k))

x(0) =x0

y(k) =C(ξ)(k)x(k) +D(ξ)(k)v(k)

z(k) =M(k)x(k)

(1)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

r is the
measured output vector, z(k) ∈ R

m is the state combi-
nation to be estimated, and w(k) is a one-dimensional,
zero-mean Gaussian white noise sequence on a prob-
ability space (Ω,F ,Prob) with Ew2(k) = 1. Let

(
Ω,

F , {Fk}k∈[0,N ], Prob
)
be a filtered probability space

where {Fk}k∈[0,N ] is the family of sub-σ-algebras
of F generated by {w(k)}k∈[0,N ]. In fact, each Fk

is assumed to be the minimal σ-algebras generated
by {w(i)}0≤i≤k−1 while F0 is assumed to be some
given sub σ-algebras of F , independent of Fk for all
0 ≤ k ≤ N [3], and the initial value x0 is assumed
to belong to F0. For the exogenous disturbance input
v(k) ∈ R

q, v = {v(k)}k∈[0,N ] ∈ l2([0, N ],Rq) where
l2([0, N ],Rq) is the space of nonanticipatory square-
summable stochastic process v = {v(k)}k∈[0,N ] with
respect to {Fk}k∈[0,N ] with the norm

‖v‖2[0,N ] = E

{
N∑

k=0

‖v(k)‖2

}
=

N∑

k=0

E
{
‖v(k)‖2

}
.

The nonlinear functions f : [0, N ] × R
n → R

n satisfies
the following condition:

‖f(k, x(k))‖2 ≤ α(k)‖G(k)x(k)‖2 (2)

for all k ∈ [0, N ], where α(k) > 0 is a known positive
scalar and G(k) is a known constant matrix.

The random variable r(k) ∈ R, which accounts for the
phenomena of RONs, takes values of 1 and 0 with

Prob{r(k) = 1} = δ

Prob{r(k) = 0} = 1− δ
(3)

where δ ∈ [0, 1] is a known constant. Throughout this
paper, r(k) is assumed to be independent of Fk for all
0 ≤ k ≤ N .

For all the system matrices in (1), they have appropriate
dimensions, whereM(k) is a known time-varyingmatrix,

while A(ξ)(k), A
(ξ)
1 (k), B(ξ)(k), C(ξ)(k) and D(ξ)(k) are

unknown time-varying matrices which contain polytopic
uncertainties as follows:

Ξ(ξ) :=
(
A(ξ)(k), A

(ξ)
1 (k), B(ξ)(k), C(ξ)(k), D(ξ)(k)

)

∈R
(4)
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where R is a convex polyhedral set described by v ver-
tices

R :=
{
Ξ(ξ)|Ξ(ξ) =

v∑

i=1

ξiΞ
(i),

v∑

i=1

ξi = 1,

ξi ≥ 0, i = 1, 2, · · · , v
} (5)

and Ξ(i) := (A(i)(k), A
(i)
1 (k), B(i)(k), C(i)(k), D(i)(k))

are known matrices for all i = 1, 2, · · · , v.

In this paper, the quantization effects are also taken into
account. The quantizer q(·) is defined as

ỹ(k) = q(y(k)) =
[
q1(y1(k)) q2(y2(k)) · · · qr(yr(k))

]T

where ỹ(k) ∈ R
r is the signal after quantization then

transmitted into the filter. Here, the quantizer q(·) is
assumed to be of the logarithmic type. Specifically, for
each qj(·) (1 ≤ j ≤ r), the set of quantization levels is
described by

Uj =
{
±u

(j)
i , u

(j)
i = ρiju

(j)
0 , i = 0, ± 1, ± 2, · · ·

}
∪ {0},

0 ≤ ρj ≤ 1, u
(j)
0 > 0.

Each of the quantization level corresponds to a segment
such that the quantizer maps the whole segment to this
quantization level. The logarithmic quantizer qj(·) is de-
fined as

qj(yj(k)) =





u
(j)
i , 1

1+κj
u
(j)
i ≤ yj(k) ≤

1
1−κj

u
(j)
i

0, yj(k) = 0

−qj(−yj(k)), yj(k) ≤ 0

with κj = (1 − ρj)/(1 + ρj). It follows from [4] that
qj(yj(k)) = (1+∆j(k))yj(k) such that |∆j(k)| ≤ κj . De-
noting ∆(k) = diag{∆1(k), · · · ,∆r(k)}, the measure-
ments after quantization can be expressed as

ỹ(k) = (I +∆(k))y(k). (6)

Therefore, the quantizing effects have been transformed
into sector bound uncertainties. In fact, defining Λ =
diag{κ1, · · · , κr} and F (k) = ∆(k)Λ−1, we can obtain
an unknown real-valued time-varying matrix F (k) sat-
isfying F (k)FT (k) = FT (k)F (k) ≤ I.

Remark 1 From (1), it can be seen that the nonlinear-
ity f(k, x(k)) enters the system in a probabilistic way de-
scribed by the random variable r(k), which is the RON as
mentioned in the introduction. The phenomena of RONs
are ubiquitous in networked systems but have been largely
overlooked in the area. The polytopic uncertainties and
quantization effects, on the other hand, are two other
typically sources that may deteriorate the performance
of the networked systems. Therefore, it makes practical
sense to consider the polytopic uncertainties, quantiza-
tion effects as well as RONs within a unified framework.

We adopt the following time-varying filter for system (1)

{
x̂(k + 1) = Ff (k)x̂(k) +Gf (k)ỹ(k)

ẑ(k) = M(k)x̂(k), x̂(0) = 0
(7)

where x̂(k) ∈ R
n is the state estimate, ẑ(k) ∈ R

m is the
estimated output, and Ff (k), Gf (k) (0 ≤ k ≤ N) are
filter parameters to be determined.

Letting estimation error be e(k) = x(k)− x̂(k), then er-
ror dynamics can be obtained from (1) and (7) as follows:





e(k + 1) =f (ξ)
e (k, e(k), x̂(k)) + S(ξ)

e (k)v(k)

+ g(ξ)e (k, e(k), x̂(k))w(k)

+ (r(k) − δ)f(k, e(k) + x̂(k))

z̃(k) =z(k)− ẑ(k) = M(k)e(k)

(8)

where

f (ξ)
e (k, e(k), x̂(k)) = δf(k, e(k) + x̂(k))

+(A(ξ)(k)−Gf (k)(I +∆(k))C(ξ)(k))e(k)

+(A(ξ)(k)− Ff (k)−Gf (k)(I +∆(k))C(ξ)(k))x̂(k)

g(ξ)e (k, e(k), x̂(k)) = A
(ξ)
1 (k)e(k) +A

(ξ)
1 (k)x̂(k)

S(ξ)
e (k) = B(ξ)(k)−Gf (k)(I +∆(k))D(ξ)(k).

Remark 2 In the model (1), two kinds of widely studied
disturbance inputs are considered, one is the exogenous
(additive and deterministic) input v(k) and the other is
the state-dependent (multiplicative and stochastic) input
w(k). In the case that the disturbance coming with the
nonlinearities is neither additive nor multiplicative, the
filtering problem becomes more complicated, which gives
an interesting topic for our future research.

Our aim in this paper is to design a filter (7) for the sys-
tem (1) such that estimation error output z̃(k) satisfies
the H∞ performance constraint, namely:

‖z̃‖2[0,N ] ≤ γ2
{
‖v‖2[0,N ] + E{eT (0)Se(0)}

}
(9)

for the given disturbance attenuation level γ > 0 and
the positive definite matrix S = ST > 0. Setting η(k) =
[eT (k) 1]T , we subsequently obtain an augmented sys-
tem as follows:





η(k + 1) =A(ξ)
e (k)η(k) + δF(k, η(k))

+ B(ξ)
e (k)v(k) +A

(ξ)
1 (k)η(k)w(k)

+ (r(k) − δ)F(k, η(k))

z̃(k) =M(k)η(k)

(10)

where
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A(ξ)
e (k) =

[
A(ξ)(k)−Gf (k)(I +∆(k))C(ξ)(k)

0
(
A(ξ)(k)− Ff (k)−Gf (k)(I +∆(k))C(ξ)(k)

)
x̂(k)

1

]

= A(ξ)(k) + S(k)F (k)T
(ξ)
1 (k),

B(ξ)
e (k) =

[
B(ξ)(k)−Gf (k)(I +∆(k))D(ξ)(k)

0

]

= B(ξ)(k) + S(k)F (k)T
(ξ)
2 (k),

A
(ξ)
1 (k) =

[
A

(ξ)
1 (k) A

(ξ)
1 (k)x̂(k)

0 0

]
,M(k) =

[
M(k) 0

]
,

F(k, η(k)) =

[
f(k, e(k) + x̂(k))

0

]
,S(k) =

[
Gf (k)

0

]
,

A(ξ)(k) =

[
A(ξ)(k)−Gf (k)C

(ξ)(k)

0
(
A(ξ)(k)− Ff (k)−Gf (k)C

(ξ)(k)
)
x̂(k)

1

]
,

B(ξ)(k) =

[
B(ξ)(k)−Gf (k)D

(ξ)(k)

0

]
,

T
(ξ)
1 (k) =

[
−ΛC(ξ)(k) −ΛC(ξ)(k)x̂(k)

]
,

T
(ξ)
2 (k) = −ΛD(ξ)(k). (11)

From assumption (2), the nonlinear function F(k, η(k))
satisfies

FT (k, η(k))F(k,η(k))

≤ α(k)ηT (k)GT (k)G(k)η(k)
(12)

where G(k) =
[
G(k) G(k)x̂(k)

]
. To this end, the filter-

ing problem for (1) is now converted into the one of de-
signing a filter (7) such that the augmented system (10)
satisfies the H∞ performance constraint (9).

3 Performance analysis of H∞ filter

In this section, we will give a BRL for the augmented
system (10) to satisfy the H∞ performance constraint
(9) for all nonlinearities F(k, η(k)) subject to (12).

To derive the BRL for the augmented system (10), we
introduce the following lemma.

Lemma 1 For a given scalar γ > 0, the augmented sys-
tem (10) has the l2-gain not greater than γ, i.e., the fol-
lowing H∞ criterion is satisfied

‖z̃‖2[j,k−1] ≤ E{Vj(η(j))} + γ2‖v‖2[j,k−1] (13)

for all 0 ≤ j ≤ k and for all v ∈ R
q, if and only if

there exist a family of positive real-valued functions Vk :
R

n+1 × I
+ → R

+ (Vk(0) = 0 for all k ∈ I
+) satisfying

the following Hamilton-Jacobi inequality

Vk(η) ≥ sup
v∈Rq

{
‖z̃(k)‖2 − γ2‖v‖2

+ E(ω(k),r(k)){Vk+1[H
(ξ)(k, η, v, r(k), ω(k))]}

} (14)

for all η ∈ R
n+1, where H(ξ)(k, η, v, r(k), ω(k)) =

A
(ξ)
e (k)η(k) + δF(k, η(k)) +B

(ξ)
e (k)v(k) +A

(ξ)
1 (k)η(k)w(k)

+ (r(k) − δ)F(k, η(k)) and Ey{·} is defined similarly to
the one in [3].

Proof: The proof follows directly from that of Theorem
2 in [3] and is therefore omitted.

Remark 3 Lemma 1 is a BRL for general stochastic sys-
tems with a random variable r(k). Similar results have
been derived by Berman and Shaked in [3] for the stochas-
tic system without involving the random variable r(k).

The following lemma will be used in deriving our main
results.

Lemma 2 Let W0(x), W1(x), · · · , Wl(x) be quadratic
functions of x ∈ R

n, i.e.

Wi(x) = xTQix, i = 0, 1, · · · , l, (15)

with QT
i = Qi. If there exist ρ1, ρ2, · · · , ρl ≥ 0 such that

Q0 −

l∑

i=1

ρiQi ≥ 0, (16)

then the following is true

W1(x) ≥ 0, · · · ,Wl(x) ≥ 0 =⇒ W0(x) ≥ 0. (17)

In the following theorem, a sufficient condition is given
to guarantee that the augmented system (10) satisfies
the H∞ performance constraint (9) for all nonlinearities
F(k, η(k)) subject to (12).

Theorem 1 Given the disturbance attenuation level γ >
0, the initial positive definite matrix S = ST > 0 and the
filter parameters {Ff (k)}0≤k≤N , {Gf (k)}0≤k≤N . If there
exist a family of positive scalars {ρ(k)}0≤k≤N and a fam-
ily of positive definite matrices {P (k)}0≤k≤N+1 satisfy-
ing the initial condition ηT (0)P (0)η(0) ≤ γ2eT (0)Se(0)
and the following time-varying LMIs:



Υ
(ξ)
11 (k) 0 A

(ξ)T
e (k)P (k + 1) 0

∗ Υ22(k) δP (k + 1) 0

∗ ∗ −P (k + 1) P (k + 1)B
(ξ)
e (k)

∗ ∗ ∗ −γ2I




≤ 0 (18)

for all 0 ≤ k ≤ N , where

Υ
(ξ)
11 (k) =A

(ξ)T
1 (k)P (k + 1)A

(ξ)
1 (k) +MT (k)M(k)

−P (k) + ρ(k)α(k)GT (k)G(k)

Υ22(k) = δ(1− δ)P (k + 1)− ρ(k)I
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then the augmented system (10) satisfies the H∞ per-
formance constraint (9) for all nonlinearities F(k, η(k))
subject to (12).

Proof: Let Vk(η) = ηTP (k)η, where {P (k)}0≤k≤N+1 are
the solutions to the time-varying LMIs (18). It can be
calculated that

sup
v∈Rq

{
‖z̃(k)‖2 − γ2‖v‖2

+E(ω(k),r(k)){Vk+1[H
(ξ)(k, η, v, r(k), ω(k))]}

}

= sup
v∈Rq

{
− vT

(
γ2I − B(ξ)T

e (k)P (k + 1)B(ξ)
e (k)

)
v

+2
(
A(ξ)

e (k)η + δF(k, η)
)T

P (k + 1)B(ξ)
e (k)v

+
(
A(ξ)

e (k)η + δF(k, η)
)T

P (k + 1)
(
A(ξ)

e (k)η + δF(k, η)
)

+ηTA
(ξ)T
1 (k)P (k + 1)A

(ξ)
1 (k)η + ηTMT (k)M(k)η

+δ(1− δ)FT (k, η)P (k + 1)F(k, η)

}
. (19)

By applying completing squares method, it can be ob-
tained that

sup
v∈Rq

{
‖z̃(k)‖2 − γ2‖v‖2

+E(ω(k),r(k)){Vk+1[H
(ξ)(k, η, v, r(k), ω(k))]}

}

=
(
A(ξ)

e (k)η + δF(k, η)
)T

P (k + 1)B(ξ)
e (k)

×
(
γ2I − B(ξ)T

e (k)P (k + 1)B(ξ)
e (k)

)−1
B(ξ)T
e (k)

×P (k + 1)
(
A(ξ)

e (k)η + δF(k, η)
)
+
(
A(ξ)

e (k)η

+δF(k, η)
)T

P (k + 1)
(
A(ξ)

e (k)η + δF(k, η)
)

+ηTA
(ξ)T
1 (k)P (k + 1)A

(ξ)
1 (k)η + ηTMT (k)M(k)η

+δ(1− δ)FT (k, η)P (k + 1)F(k, η) (20)

when maximizing v(k) =
(
γ2I − B

(ξ)T
e (k)P (k +

1)B
(ξ)
e (k)

)−1
B
(ξ)T
e (k)P (k + 1)

(
A

(ξ)
e (k)η + δF(k, η)

)
.

Hence, one can have

sup
v∈Rq

{
‖z̃(k)‖2 − γ2‖v‖2

+E(ω(k),r(k)){Vk+1[H
(ξ)(k, η, v, r(k), ω(k))]}

}
− Vk(η)

=
[
ηT FT (k, η)

]{[
A

(ξ)T
e (k)

δI

]
Ω1

[
A

(ξ)
e (k) δI

]
+Ω2

}

×

[
η

F(k, η)

]
(21)

where

Ω1 = P (k + 1)B(ξ)
e (k)

(
γ2I − B(ξ)T

e (k)P (k + 1)B(ξ)
e (k)

)−1

×B(ξ)T
e (k)P (k + 1) + P (k + 1) (22)

Ω2 =

[
A

(ξ)T
1 (k)P (k + 1)A

(ξ)
1 (k) +MT (k)M(k)− P (k)

0

0

δ(1− δ)P (k + 1)

]
. (23)

It remains to show (14) holds in virtue of Lemma 2. For
this purpose, we rewrite (12) as

[
ηT FT (k, η)

] [−α(k)GT (k)G(k) 0

0 I

] [
η

F(k, η)

]

≤ 0. (24)

From Lemma 2, it is easy to know that (24) implies

[
ηT FT (k, η)

]{[
A

(ξ)T
e (k)

δI

]
Ω1

[
A

(ξ)
e (k) δI

]

+Ω2

}[
η

F(k, η)

]
≤ 0 (25)

if the following inequality
[
A

(ξ)T
e (k)

δI

]
Ω1

[
A

(ξ)
e (k) δI

]
+Ω2

+

[
ρ(k)α(k)GT (k)G(k) 0

0 −ρ(k)I

]
≤ 0 (26)

holds for one positive scalar ρ(k). It follows from (18)
and Schur complement that (26) is true. Then, taking
j = 0 and k = N + 1, we obtain directly from Lemma 1
that

‖z̃‖2[0,N ] ≤ E{V0(η(0))} + γ2‖v‖2[0,N ], (27)

from which the H∞ performance constraint (9)
can be guaranteed by noting the initial condition
ηT (0)P (0)η(0) ≤ γ2eT (0)Se(0), and therefore the proof
of this theorem is complete.

4 Design of robust H∞ filters

In this section, the robust H∞ filter is designed for the
nonlinear discrete time-varying stochastic systems sub-
ject to RONs as well as the quantization effects in terms
of time-varying LMIs.

Lemma 3 Let Ψ1, Ψ2 and F be real matrices of ap-
propriate dimensions with F satisfy FTF ≤ I. Then,
for any scalar ε > 0, we have Ψ1FΨ2 + (Ψ1FΨ2)

T ≤
ε−1Ψ1Ψ

T
1 + εΨT

2 Ψ2.

The following theorem provides a recursive LMI ap-
proach to the addressed design problem of robustH∞ fil-
ter for the discrete time-varying stochastic system with
the stochastic nonlinearities as well as quantization ef-
fects.
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Theorem 2 Let the disturbance attenuation level
γ > 0, initial positive definite matrix S = ST > 0
and the quantizer q(·) be given. The robust H∞ fil-
ter (7) can be designed for the stochastic nonlinear
system (1) if there exist a family of positive defi-
nite matrices {P1(k)}0≤k≤N+1, two families of ma-
trices {X(k)}0≤k≤N , {Y (k)}0≤k≤N and three fami-
lies of positive scalars {ε(k)}0≤k≤N , {ρ(k)}0≤k≤N ,
{P2(k)}0≤k≤N+1 satisfying the initial condition

eT (0)P1(0)e(0) + P2(0) ≤ γ2eT (0)Se(0) (28)

and the recursive LMIs



Γ
(i)
11 (k) 0 Γ

(i)
13 (k) Γ

(i)
14 (k)

∗ Γ22(k) δP (k + 1) 0

∗ ∗ −P (k + 1) Γ
(i)
34 (k)

∗ ∗ ∗ Γ
(i)
44 (k)



≤ 0 (29)

i = 1, 2, · · · , v, for all 0 ≤ k ≤ N , where

Γ11(k) =

[
Σ

(i)
1 (k) Σ

(i)
2 (k)

Σ
(i)T
2 (k) Σ

(i)
3 (k)

]
,Γ22(k) = diag{Σ4(k),Σ5(k)},

Γ13(k) =

[
Σ

(i)
6 (k) 0

Σ
(i)
7 (k) P2(k + 1)

]
,Γ34(k) =

[
Σ

(i)
8 (k) 0 Y (k)

0 0 0

]
,

Γ14(k) =

[
ε(k)C(i)T (k)Λ2D(i)(k)

ε(k)x̂T (k)C(i)T (k)Λ2D(i)(k)

A
(i)T
1 (k)P1(k + 1) 0

x̂T (k)A
(i)T
1 (k)P1(k + 1) 0

]

Γ44(k) = diag{Σ
(i)
9 (k),−P1(k + 1),−ε(k)I},

P (k + 1) = diag{P1(k + 1), P2(k + 1)}

with

Σ
(i)
1 (k) =MT (k)M(k) + ε(k)C(i)T (k)Λ2C(i)(k)

+ρ(k)α(k)GT (k)G(k)− P1(k)

Σ
(i)
2 (k) = ρ(k)α(k)GT (k)G(k)x̂(k)

+ε(k)C(i)T (k)Λ2C(i)(k)x̂(k)

Σ
(i)
3 (k) = ρ(k)α(k)x̂T (k)GT (k)G(k)x̂(k)− P2(k)

+ε(k)x̂T (k)C(i)T (k)Λ2C(i)(k)x̂(k)

Σ4(k) = δ(1 − δ)P1(k + 1)− ρ(k)I

Σ5(k) = δ(1 − δ)P2(k + 1)− ρ(k)I

Σ
(i)
6 (k) =A(i)T (k)P1(k + 1)− C(i)T (k)Y T (k)

Σ
(i)
7 (k) = x̂T (k)A(i)T (k)P1(k + 1)− x̂T (k)XT (k)

−x̂T (k)C(i)T (k)Y T (k)

Σ
(i)
8 (k) = P1(k + 1)B(i)(k)− Y (k)D(i)(k)

Σ
(i)
9 (k) =−γ2I + ε(k)D(i)T (k)Λ2D(i)(k)

and A(i)(k), A
(i)
1 (k), B(i)(k), C(i)(k), D(i)(k) are the

matrices at the ith vertex of the polytope. Furthermore,

if (28) and (29) are true, the desired filter is given by (7)
with the following parameters

Ff (k) = P−1
1 (k + 1)X(k) (30)

Gf (k) = P−1
1 (k + 1)Y (k) (31)

for all 0 ≤ k ≤ N .

Proof: Let us show that the recursive LMIs (29) with
the initial condition (28) are sufficient conditions for the
augmented system (10) to achieve the H∞ performance
constraint (9). Using the Schur complement, it can be
easily shown that (18) is equivalent to




Υ̂11(k) 0 A
(ξ)T
e (k)P (k + 1)

∗ Υ22(k) δP (k + 1)

∗ ∗ −P (k + 1)

∗ ∗ ∗

∗ ∗ ∗

0 A
(ξ)T
1 (k)P (k + 1)

0 0

P (k + 1)B
(ξ)
e (k) 0

−γ2I 0

∗ −P (k + 1)



≤ 0 (32)

where

Υ̂11(k) =−P (k) +MT (k)M(k)

+ρ(k)α(k)GT (k)G(k). (33)

Noting that A
(ξ)
e (k) and B

(ξ)
e (k) contain the uncertainty

F (k) from (11), we rewrite (32) as

Π(ξ)(k) + U(k)F (k)V(ξ)(k)

+V(ξ)T (k)F (k)UT (k) ≤ 0 (34)

where

Π(ξ)(k) =




Υ̂11(k) 0 A(ξ)T (k)P (k + 1)

∗ Υ22(k) δP (k + 1)

∗ ∗ −P (k + 1)

∗ ∗ ∗

∗ ∗ ∗

0 A
(ξ)T
1 (k)P (k + 1)

0 0

P (k + 1)B(ξ)(k) 0

−γ2I 0

∗ −P (k + 1)



, (35)

U(k) =
[
0 0 ST (k)P (k + 1) 0 0

]T
, (36)

V(ξ)(k) =
[
T

(ξ)
1 (k) 0 0 T

(ξ)
2 (k) 0

]
. (37)
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By applying Lemma 3 together with Schur complement
to (34), we know that (34) is true if the following in-
equality



Π(ξ)(k) U(k) ε(k)V(ξ)T (k)

∗ −ε(k)I 0

∗ ∗ −ε(k)I


 ≤ 0 (38)

holds for one positive scalar parameter ε(k). Since the

set of system matrices Ξ(ξ) = (A(ξ)(k), A
(ξ)
1 (k), B(ξ)(k),

C(ξ)(k), D(ξ)(k)) belongs to the convex polyhedral set
R, there always exist scalars ξi ≥ 0 (i = 1, 2, · · · , v)
such that Ξ(ξ) =

∑v

i=1 ξiΞ
i,

∑v

i=1 ξi = 1, where

Ξ(i) = (A(i)(k), A
(i)
1 (k), B(i)(k), C(i)(k), D(i)(k))

(i = 1, 2, · · · , v) are v vertexes of the polytope. Hence,
by considering (11) together with (35)-(37), one can
easily see that (38) holds if and only if



Π(i)(k) U(k) ε(k)V(i)T (k)

∗ −ε(k)I 0

∗ ∗ −ε(k)I


 ≤ 0 (39)

for all i = 1, 2, · · · , v. Subsequently, we choose P (k) =
diag{P1(k), P2(k)} in order to derive the expression of
the filter parameters from (11). By noting the relation
(30)-(31), it follows that (39) is guaranteed by (29) after
using Schur complement and some straightforward al-
gebraic manipulations. In addition, it can be easily seen
that the initial condition ηT (0)P (0)η(0)≤ γ2eT (0)Se(0)
is implied by (28). Therefore, this theorem follows by
Theorem 1.

Remark 4 Different from the LMI criteria for time-
invariant system, the set of recursive LMIs (RLMIs) pro-
vided in Theorem 2 are time-varying and non-strict that
can be solved via Semi-Definite Programming (SDP),
which depend on not only the variable matrices at the cur-
rent time P1(k) and P2(k) but also the variable matrices
at the next time P1(k + 1) and P2(k + 1). This makes it
possible for us to find a recursive approach to deriving all
P (k) from time k = 0 to k = N +1, and sequentially ob-
tain all desired time-varying filter gains. The RLMIs in
Theorem 2 are similar to the DLMIs proposed in [7,18].
Nevertheless, the RLMIs involve available state estimate
and therefore may give rise to less conservative results as
more information about the system state is utilized.

Remark 5 Recently, the filtering problem in the finite-
horizon case has attracted recurring interests due pri-
marily to increasing application of time-vary systems and
real-time computation. For example, a forward recursive
Riccati difference equation has been derived in [9] for lin-
ear systems. However, it is not easy to develop such fil-
tering algorithms for systems with RONs based on the
Riccati difference equation. Fortunately, it can be seen
from Theorem 2 that a new H∞ filtering technique is ex-
ploited in terms of a set of RLMIs, whose advantage lies
mainly in the fact that it is applicable in on-line real-time
filtering process for systems involving some nonlineari-
ties such as RONs.

Based on the condition of Theorem 2, the recursive LMIs
algorithm for the design of robust H∞ filters can be
concluded as follows.

The recursive LMI algorithm is given as follows:

Step 1. Give the H∞ performance index γ, the positive
definite matrix S, the initial condition x(0) and its es-
timate x̂(0), select initial positive definite matrix P1(0)
and positive scalar P2(0) which satisfy the initial condi-
tion (28), and set k = 0;

Step 2. Obtain the positive matrix P1(k + 1), positive
scalar P2(k+1), and matricesX(k) and Y (k) by solving
the LMIs (29) with known parameters P1(k), P2(k) and
x̂(k);

Step 3. Derive the filter parameter matrices Ff (k) and
Gf (k) by solving (30) and (31), get x̂(k + 1) according
to (7), and set k = k + 1;

Step 4. If k < N , then go to Step 2., else go to Step 5.;

Step 5. Stop.

Remark 6 From the given algorithm, one can see that
the state estimate at the time k, i.e., x̂(k), is employed
to derive the filter parameter matrices Ff (k) and Gf (k),
which means that more current information is used to
estimate the state at time k + 1. It should be pointed out
that, in most existing results, only the measured output at
the time k is employed to estimate the state at time k+1.
In this sense, the algorithm can potentially improve the
accuracies of the state estimation.

5 An illustrative example

In this section, a numerical example is presented to
demonstrate the effectiveness of the method proposed
in this paper.

Consider the following class of nonlinear discrete time-
varying polytopic uncertain stochastic system





x(k + 1) =

[
0 −0.095 + ξ

0.09 0.08 sin(6k)

]
x(k) +

[
1

0.2

]
v(k)

+

[
0 0.01

−0.01 0.01 sin(6k)

]
x(k)w(k)

+ r(k)f(k, x(k))

y(k) =
[
0.01 sin(6k) 0.05

]
x(k) + v(k)

z(k) =
[
0.01 0.01

]
x(k)

(40)

with the initial value x(0) =
[
0.4 0

]T
. We choose the

nonlinear function f(k, x(k)) as

f(k, x(k)) =
[
0.02x1(k)
x2

2
(k)+1

0.015x2(k) sin(x1(k))
]T

.
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It can be easily verified that the constraint (2) is met
with α(k) = 1 and G(k) = diag{0.02, 0.02}. The uncer-
tain parameter ξ is unknown but assumed to belong to
the known range [−0.005, 0.005].

In this example, the parameters of the logarithmic
quantizer q(·) are taken as u0 = 3 and ρ = 0.6.
The exogenous disturbance input is selected as
v(k) = exp(−k/35)× n(k) where n(k) is uniformly dis-
tributed over [−0.05, 0.05]. The probability is assumed
to be δ = 0.9.

Setting γ = 0.3162 and letting S = diag{73, 1}, we can
find the initial positive definite matrix P1(0) = I and
positive scalar P2(0) = 1 to satisfy the initial condition
(28). According to the given recursive LMI algorithm,
the time-varying LMIs in Theorem 2 can be solved re-
cursively by Matlab (with the YALMIP 3.0). Table 1
lists the variable matrices P1(k), P2(k) and the desired
parameters of filter Ff (k), Gf (k) from the time k = 0
to k = 4.

In the simulation, the uncertain parameter in the system
(40) is taken as ξ = 0. Simulation results are presented
in Figs. 1-5. Fig. 1 plots the measurement without and
with quantization, and the latter is actually employed
by the robust H∞ filter. Fig. 2 shows the output z(k)
and its estimate ẑ(k). The estimation error z̃(k) is de-
scribed in the Fig.3. The actual state response x1(k) and
its estimate x̂1(k) are depicted in Fig.4, and the actual
state response x2(k) and its estimate x̂2(k) are plotted in
Fig. 5. The simulation has confirmed that the designed
filter performs very well.

6 Conclusions

In this paper, we have studied the robust H∞ filter-
ing problem for discrete time-varying stochastic systems
with polytopic uncertainties, RONs and quantization ef-
fects. The RONs have been modeled by a Bernoulli dis-
tributed white sequence with a known conditional prob-
ability. Sufficient conditions have been derived for the
estimation error of the system under consideration to
satisfy the H∞ performance constraint. A robust H∞

filter has then been designed by solving a set of recur-
sive LMIs. The proposed robust H∞ filtering technique
is a recursive algorithm that is suitable for on-line com-
putation by employing more information at and before
current time to estimate the current state. A numerical
simulation example has been used to demonstrate the
effectiveness of the filtering technology presented in this
paper.
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Fig. 1. Measurement without (dashed) and with quantization
(solid)
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Fig. 2. Output z (dashed) and its estimate ẑ (solid)
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Fig. 3. Estimation error z̃
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Fig. 4. State x1 (dashed) and its estimate x̂1 (solid)
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Fig. 5. State x2 (dashed) and its estimate x̂2 (solid)
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Table 1
Recursive process

k 0 1 2 3 4 · · ·

P1(k)

[

1 0

0 1

] [

0.3450 −0.0284

−0.0284 0.4821

] [

0.2064 −0.0153

−0.0153 0.2790

] [

0.1492 −0.0111

−0.0111 0.2000

] [

0.3334 −0.0679

−0.0679 0.6008

]

· · ·

P2(k) 1 0.2834 0.1162 0.0705 0.0437 · · ·

Ff (k)

[

0 0

0 0

] [

−0.0180 −0.0301

0.0988 −0.0712

] [

−0.0140 −0.0035

0.0780 0.0409

] [

−0.0007 0.0043

0.0888 −0.0155

] [

−0.0018 −0.1086

0.0744 −0.0240

]

· · ·

Gf (k)

[

0.8130

0.1627

] [

0.7219

0.1443

] [

0.7003

0.1394

] [

0.9707

0.1936

] [

0.9744

0.1945

]

· · ·
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