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Abstract

We consider a Voronoi-like partition problem in the plane for a given finite set of generators. Each element in this partition
is uniquely associated with a particular generator in the following sense: An agent that resides within a set of the partition
at a given time will arrive at the generator associated with this set faster than any other agent that resides anywhere outside
this set at the same instant of time. The agent’s motion is affected by the presence of a temporally-varying drift, which is
induced by local winds/currents. As a result, the minimum-time to a destination is not equivalent to the minimum-distance
traveled. This simple fact has important ramifications over the partitioning problem. It is shown that this problem can be
interpreted as a Dynamic Voronoi Diagram problem, where the generators are not fixed, but rather they are moving targets
to be reached in minimum time. The problem is solved by first reducing it to a standard Voronoi Diagram by means of a
time-varying coordinate transformation. We then extend the approach to solve the dual problem where the generators are
the initial locations of a given set of agents distributed over the plane, such that each element in the partition consists of the
terminal positions that can be reached by the corresponding agent faster than any other agent.

Key words: Autonomous agents, Voronoi Diagram, Zermelo-Voronoi Diagram, Dual Zermelo-Voronoi Diagram,
computational methods, dynamic partition problems.

1 Introduction

The concept of the “Dirichlet-Voronoi Diagram,” first
introduced by Dirichlet in 1850 [12], and subsequently
generalized by Voronoi in 1908 [24], has found a large
spectrum of applications in different fields, including
computer graphics, computer vision, computational
geometry, robotics and, more recently, autonomous
agents and mobile sensor networks [5,14,6,17,16,10,9].
Dirichlet-Voronoi Diagrams, known also as “Voronoi
Diagrams/Tessellations” or “Thiessen Polygons,” 1 de-
scribe a special partition of a topological space, which
is equipped with a generalized distance function, where
each element in the partition, known as the Dirichlet
domain, is associated uniquely with an element from a
given point-set, known as the set of Voronoi generators,
based on the proximity relations between each point

⋆ The material in this paper was partially presented at the
2010 American Control Conference, held at Baltimore, Mary-
land, USA, on June 30-July 2, 2010. Corresponding author
P. Tsiotras. Tel. +(404) 894-9526. Fax (404) 894-2760.

Email addresses: ebakolas@gatech.edu (Efstathios
Bakolas), tsiotras@gatech.edu (Panagiotis Tsiotras).
1 Henceforth, we shall use the term “Voronoi Diagrams”
which is the most commonly used terminology.

in the Dirichlet domain and its corresponding Voronoi
generator. We shall refer to the partition problem of a
subspace of the n-dimensional Euclidean space (with re-
spect to the Euclidean distance) as the standard Voronoi
Diagram problem, and as the generalized Voronoi Di-
agram problem otherwise. A detailed treatment of the
Voronoi Diagram problem for a plethora of “distance”
functions and topologies can be found in [6,20,2] and
the references therein.

In many applications of autonomous agents, ranging
from surveillance, optimal pursuit of multiple targets,
environmental monitoring and vehicle routing problems,
to mention a few, significant insight can be gleaned from
data structures associated with Voronoi-like partitions.
A typical application could be the following: given a
number of landing sites, divide the area into distinct
non-overlapping cells (one for each landing site) such
that the corresponding site in the cell is the closest one
(in terms of time) to land for any airplane/UAV flying
over this cell in the presence of winds. A similar appli-
cation that fits into the same framework is the task of
subdividing the plane into “guard/safety zones,” such
that a guard/rescue vehicle residing within each partic-
ular zone can reach all points in its assigned zone faster
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than any other guard/rescuer outside its zone. The com-
mon, underlying theme in these problems is the fact
that they can be formulated as generalized minimum-
distance problems where the relevant metric is the min-
imum intercept (or arrival) time.

The construction of generalized Voronoi diagrams with
time as the distance metric (and several applications, es-
pecially those involving autonomous agent routing prob-
lems, such as those mentioned before, fall into this cate-
gory) is, in general, a difficult task for two reasons. First,
the distance metric is not symmetric and/or it may not
be expressible in closed form. Second, such problems fall
under the general case of partition problems for which
the agents’ dynamics must be taken into account 2 . The
topology of the agent’s configuration space may be non-
Euclidean, for example, it may be a manifold embedded
in a Euclidean space. In other words, these problems
may not be reducible to generalized Voronoi Diagram
problems, for which efficient construction schemes exist
in the literature.

In this work we deal with the construction of Voronoi-
like partitions that cannot be put under the umbrella
of the available classes of generalized Voronoi Diagrams.
In particular, we deal with Voronoi-like partitions in the
plane for a given (finite) set of generators, such that
each element in this partition is uniquely associated with
a particular generator in the following sense: An agent
that resides in a particular set of the partition at a given
instant of time can arrive at the generator associated
with this set faster than any other agent that may be
located anywhere outside this set at the same instant of
time. It is assumed that the agent’s motion is affected by
the presence of temporally-varying drift. Since the gen-
eralized distance of this Voronoi-like partition problem
is the minimum time-to-go of the Zermelo’s navigation
problem [25], we shall henceforth refer to this partition
of the configuration space as the Zermelo-Voronoi Dia-
gram (ZVD).

The Zermelo-Voronoi Diagram problem therefore deals
with a special partition of the Euclidean plane with re-
spect to a generalized distance function, which is the
minimum time of the Zermelo’s navigation problem [25].
The characterization of this Voronoi-like partition will
allow us to address questions dealing with the proxim-
ity relations between an agent (UAV/AUV) that travels
in the presence of winds/currents and the set of Voronoi
generators. For example the question of determining the
generator from a given set which is the “closest,” in terms
of arrival time, to the agent at a particular instant of
time, reduces to the problem of determining the set of
the Zermelo-Voronoi partition that the agent resides in
at the given instant of time (the latter question is known

2 A typical example is Voronoi-like partitions for a Dubins
vehicle. See [21] for an initial treatment of this problem.

in the computational geometry parlance as the point lo-
cation problem).

The main inspiration of our work is [23] where the ZVD
problem has been treated for the case of constant drift.
As shown in [23], the generalized Voronoi Diagram prob-
lem can be associated with a standard Voronoi Diagram
by means of a coordinate transformation when the for-
ward speed of the agent is greater than the magnitude
of the drift. The approach presented in [23] is, however,
of limited scope since it is based on constructive, geo-
metric arguments that apply only to the constant drift
case. In this work, we introduce a methodology that gen-
eralizes the results of [23] under a framework that may
prove powerful for dealing with similar partition prob-
lems in the future. In particular, by adopting the in-
terpretation of Zermelo’s problem as a moving target
problem [15], the ZVD problem is reduced to a standard
Dynamic Voronoi Diagram problem, namely, a standard
Voronoi Diagram where the Voronoi generators are not
necessarily fixed, but rather they are moving targets
[11,1,20]. This Dynamic Voronoi Diagram problem is
dealt with by associating it with a standard Voronoi Di-
agram by means of a time-varying transformation in the
case of a time-varying drift. Furthermore, we introduce
the Dual Zermelo-Voronoi Diagram (DZVD) problem,
which leads to a partition problem similar to the ZVD
problem, with the difference that the generalized dis-
tance of the DZVD problem is the minimum time of the
Zermelo navigation problem from a Voronoi generator
to a point in the plane. Since the minimum time of the
Zermelo navigation problem is not a symmetric function
with respect to the initial and final configurations, the
ZVD and the DZVD are not, in general, identical.

The case of non-stationary spatially-varying drift is
more complex, and a (semi-)analytic treatment of that
problem seems doubtful. To the authors’ knowledge,
the only available result in the literature that deals
with spatially-varying (albeit stationary) drift are given
in [18,19], where a purely computational/numerical
solutions of the problem is presented. A more recent
treatment of this problem is given in [3].

The rest of the paper is organized as follows. In Section 2
we formulate the Zermelo-Voronoi Diagram problem. In
Section 3 the connection between the ZVD and the stan-
dardDynamic VoronoiDiagram is demonstrated. In Sec-
tions 4 and 5 we present a scheme for the characterization
of the ZVD and the DZVD based on a homeomorphism,
which is applied to the standard Voronoi Diagram of the
same set of Voronoi generators. Section 6 provides simu-
lation results and, finally, Section 7 concludes the paper
with a summary of remarks.
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2 Problem Formulation

We will be dealing with the movement of autonomous
mobile vehicles (agents) in the plane. It is assumed that
the agent’s motion is described by the following equation

ẋ = u+ w(t), (1)

where x
△
= (x, y)T ∈ R

2 is the position vector of the

agent, u ∈ R
2 is the control input and w

△
= (µ, ν)T ∈ R

2

is the drift, which is assumed to vary uniformly with
time 3 . Note that w is to be interpreted as a time-
varying velocity field induced by the winds/currents,
which is assumed to be known a priori. In addition,
it is assumed that |w(t)| < 1 for all t ≥ 0, which
implies, in turn, that the system (1) is completely
controllable (see for example [7, p. 242]). Further-
more, the set of admissible control inputs is given by

U
△
=

{

u ∈ U[0,T ] : u(t) ∈ U, for all t ∈ [0, T ], T > 0
}

,
where U[0,T ] is the set of all measurable functions on

[0, T ], and U = {(u1, u2) ∈ R
2 : u2

1 + u2
2 ≤ 1} (closed

unit ball) is the corresponding input value set. The
Zermelo’s navigation problem (ZNP) can then be for-
mulated as follows.

Problem 1 (ZNP) Given the system described by
equation (1), determine the control input u∗ ∈ U such
that

i) The control u∗ minimizes the cost functional J(u)
△
=

Tf , where Tf is the free final time.
ii) The trajectory x∗ : [0, Tf ] 7→ R

2 generated by the
control u∗ satisfies the boundary conditions

x∗(0) = x0, x∗(Tf) = xf . (2)

The following proposition follows by virtue of Filippov’s
theorem on the existence of solutions for minimum-time
problems [8, p. 311-317] and the complete controllability
of the system (1) when |w(t)| < 1 for all t ≥ 0 (see for
example [7, p. 242]).

Proposition 2 Let x0 and xf be two points in R
2. If

|w(t)| < 1 for all t ≥ 0, then the system described by
equation (1) admits a minimum-time path from x0 to xf .

For more details the reader can refer to [8, p. 311-317].

It can be shown [7, p. 370-373] that the solution of
Problem 1 when w = w(t) is the control u∗(θ∗) =
(cos θ∗, sin θ∗), where θ∗ is a constant angle. It is worth

3 In the original formulation of the Zermelo’s navigation
problem, the drift is assumed to be both spatially and
temporally-varying. In this paper, we deal with the case of
a temporally-varying drift only.

noting that in the special case w ≡ 0, equation (1) be-
comes ẋ = u, and subsequently the Zermelo’s navigation
problem is reduced to the shortest path problem in the
plane.

Next, we formulate the Zermelo-Voronoi Diagram prob-
lem (ZVDP).

Problem 3 (ZVDP) Given the system described
by equation (1), a collection of goal destinations

P
△
= {pi ∈ R

2 : i ∈ I}, where I is a finite index set, and
a transition cost

c(x0, pi)
△
= Tf(x0, pi), (3)

determine a partition V = {Vi : i ∈ I} of R2 such that

i) R
2 =

⋃

i∈I Vi.

ii) Vi = Vi, for each i ∈ I.
iii) for each x ∈ int(Vi), c(x, pi) < c(x, pj) for j 6= i.

Henceforth, we shall refer to P , Vi, and V as the set of
Voronoi generators or sites, the Dirichlet domain, and
the Zermelo-Voronoi Diagram of R2, respectively. In ad-
dition, two Dirichlet domains Vi and Vj are character-
ized as neighboring if they have a non-empty and non-
trivial (i.e., single point) intersection.

Note that for the case w ≡ 0 Problem 3 reduces to the
standard Voronoi Diagram problem. Next, we show that
it is possible to associate the ZVDP with a standard Dy-
namic Voronoi Diagram, that is, a partitioning problem
in the plane with respect to the Euclidean distance in
the case of moving Voronoi generators, by means of a
time-varying transformation.

Remark 1 In the problem formulation of the ZNP it
is assumed that the drift w(t) in equation (1), which
is induced by the winds/currents, is known in advance
over a sufficiently long (but finite) time horizon. This is
possible if adequate weather forecast data over the area
of interest are available. This is true, for example, in
marine applications where the sea/river current (tides,
etc) may be known beforehand.

3 The Zermelo-VoronoiDiagram Interpreted as
a Dynamic Voronoi Diagram

The minimum time of the ZNP does not provide, in gen-
eral, a generalized distance function that would allow
one to reduce the ZVDP to a generalized Voronoi Dia-
gram, for the construction of which efficient numerical
techniques are available [6,20]. Therefore, one needs to
adopt an alternative approach. Our strategy will be to
associate Problem 3 with a standard Voronoi Diagram,
which can be interpreted, in turn, as the solution of Prob-
lem 3 when w ≡ 0.
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First, we observe that Problem 1 can be formulated al-
ternatively as a moving target problem as follows.

Problem 4 (ZNMTP) Given the system described by
the equation

Ẋ
△
= ẋ− w(t) = u(t), X(0) = x0 (4)

determine the control input u∗ ∈ U such that

i) The control u∗ minimizes the cost functional J(u)
△
=

Tf , where Tf is the free final time.
ii) The trajectory X∗ : [0, Tf ] 7→ R

2 generated by the
control u∗ satisfies the boundary conditions

X∗(0) = x0, X∗(Tf) = xf −

∫ Tf

0

w(τ) dτ. (5)

It is clear that Problems 1 and 4 are equivalent, in the
sense that a solution of Problem 1 is also a solution of
Problem 4, and vice versa. Furthermore, an optimal tra-
jectory X∗ of Problem 4 is related to an optimal tra-
jectory x∗ of Problem 1 by means of the time-varying
transformation

X∗(t) = x∗(t)−

∫ t

0

w(τ)dτ. (6)

The ZNMTP can be interpreted, in turn, as an optimal
pursuit problem as follows: Given a pursuer and a mov-
ing target obeying the following kinematic equations

ẋP = Ẋ = u, xP(0) = X0 = x0, (7)

ẋT = −w(t), xT (0) = xf , (8)

where xP = X, and xT are the coordinates of the pursuer
and the moving target, respectively, find the optimal
pursuit control law u such that the pursuer intercepts
the moving target in minimum time Tf , that is,

xP(Tf) = X(Tf) = xT (Tf) = xf −

∫ Tf

0

w(τ)dτ. (9)

We have previously shown that the optimal control of
Problem 1 is given by u∗ = (cos θ∗, sin θ∗) (x coordi-
nates), where θ∗ is a constant. Furthermore, equation
(4) implies that the same control u∗ is also the optimal
control for the moving target Problem 3 (X coordinates).
Figure 1 illustrates the optimal control strategy for the
ZNMTP based on its interpretation as an optimal pur-
suit problem, where the pursuer and the moving target
are denoted by a black and a green dot, respectively.
Note that because the angle θ∗ is necessarily constant,
the pursuer is constrained to travel along a ray emanat-
ing from x0 with constant unit speed (constant bearing

angle pursuit strategy), whereas the target moves along
the time-parameterized curve xT : [0,∞) 7→ R

2, where

xT (t) = xf −
∫ t

0 w(τ) dτ . From Proposition 2 it follows
that there exists a time T > 0 such that xP(T ) = X(T ) =
xT (T ). The optimal value of θ∗ corresponds to the least
T , denoted as Tf , such that xP (Tf) = X(Tf) = xT (Tf). It
is easy to show that the minimum time Tf is the least
positive root of the following integral-algebraic equation

T = |xf − x0 −

∫ T

0

w(τ) dτ |, (10)

whereas θ∗ is given by

θ∗ = Arg

(

xf − x0 −

∫ Tf

0

w(τ) dτ

)

. (11)

It is worth mentioning here that the minimum time Tf is
a directionally weighted (anisotropic) “distance” func-
tion, that is, the time to go from x0 to xf , and vice versa,
not only depends on the Euclidean distance between
these two points, but also on the direction of motion from
x0 and xf . Therefore Tf is not a “true” distance function
in the strict mathematical sense (the time to go from x0
to xf is, in general, different than the time to go from x0
to xf and therefore the symmetry axiom is not satisfied).

xP(0) = x0
xT (0) = xf

xP (t1)

xT (t2)

xT (t1)

xP (t2)

xP (Tf) = xT (Tf)

θ1
θ2θ∗

Fig. 1. Time-optimal control strategy for the ZNMTP in-
terpreted as an optimal pursuit problem.

The idea of reducing the ZNP to amoving target problem
in the Euclidean plane with no winds (ZNMTP), can also
be applied to the ZVDP. In particular, the ZVDP can
be formulated as a Dynamic Voronoi Diagram Problem
(DVDP).

Problem 5 (DVDP) Given the system described by

equation (4), a collection of moving targets P d △
= {Pi :

Pi(t) = pi −
∫ t

0 w(τ) dτ, i ∈ I}, where I and pi as in
Problem 3, and a transition cost

cd(X0,Pi)
△
= |X0 − Pi(Tf(X0, pi))|, (12)
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determine a partition V d = {V d
i : i ∈ I} of R2 such that

i) R
2 =

⋃

i∈I V d
i .

ii) V d
i = V d

i , for each i ∈ I.
iii) For each X ∈ int(V d

i ), it follows that cd(X,Pi) <
cd(x,Pj) for j 6= i.

Note that in the formulation of the DVDP the gener-
alized distance function does not depend explicitly on
time. The generalized distance function is the Euclidean
distance between the initial configuration of the agent
and the location of the moving target Pi at a specific
instant of time, namely, Tf(x0, pi), that is, at the time
when the pursuer, whose kinematics are described by
equation (9), intercepts the moving target Pi (minimum
intercept time). Figure 2 illustrates the interpretation
of the ZVDP as a Dynamic Voronoi Diagram Problem.
In particular, the target set, which is at time t = 0 the
set of Voronoi generators P = {pi, i ∈ I} of the ZVDP,
moves uniformly with time along the integral curves of
the velocity field −w.

As it has been shown previously, the system (4) emanat-
ing from X(0) = X0 reaches a point Xf in minimum time
Tf = |X0 − Xf |. Thus, by reversing time in (6), the sys-
tem (1) starting from point x′0 at t = 0 reaches the point
xf = Xf in minimum time Tf = |X0 − Xf |, provided that

x′0 = X0 −

∫ d(X0,Xf)

0

w(τ) dτ, (13)

where d(X0,Xf)
△
= |X0 − Xf |.

For each p, equation (13) induces a state transformation
fp : R

2 7→ R
2 where

fp(X)
△
= X−

∫ d(X,p)

0

w(τ) dτ. (14)

The following proposition will prove useful for the fol-
lowing discussion.

Proposition 6 Let p ∈ R
2 be given. The state trans-

formation in (14) defines a bijective mapping with non-
singular Jacobian for all X ∈ R

2, provided that |w(t)| < 1
for all t ≥ 0.

PROOF. First it is shown that fp is an injective map-
ping. Let X1 and X2 be such that fp(X1) = fp(X2), equiv-
alently,

X2 − X1 =

∫ d(X1,p)

d(X2,p)

w(τ) dτ. (15)

Thus,

|X2 − X1| ≤

∫ d(X1,p)

d(X2,p)

|w(τ)| dτ. (16)

Since |w(t)| < 1 for all t ≥ 0, it follows that

|X2 − X1| ≤ |d(X1, p)− d(X2, p)| ≤ |X2 − X1|, (17)

and thus X2 = X1. Furthermore, the Jacobian of fp at X
is equal to

Dfp(X) = I2 − w(d(X, p))(X − p)T/d(X, p). (18)

It can be shown easily that the nonzero eigenvalue of the
rank one matrix w(d(X, p))(X − p)T/d(X, p) is given by

λ2(X) = wT(d(X, p))(X − p)/d(X, p) ≤ |w(d(X, p))| < 1.
(19)

Thus 0 /∈ spec(Dfp(X)) and the JacobianDfp(X) is non-
singular for all X ∈ R

2. Finally, because the Jacobian of
F is nonsingular everywhere, it follows in light of the sur-
jective mapping theorem [4, p. 378] that F is surjective.

The following two propositions follow readily from the
previous discussion.

Proposition 7 The coordinates of every element of the
set P are invariant under the state transformation (14),
that is, fp(p) = p for all p ∈ P .

Proposition 8 Let p ∈ R
2 be given. Then c(x, p) =

|X− p| provided that x = fp(X).

In the next section, the interpretation of the ZNP as an
optimal pursuit problem will allow us to associate the
ZVD with the standard Voronoi diagram of the same
set of generators by means of a homeomorphism which
derives, in turn, from the state transformation (13).

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 2. The Zermelo-Voronoi Diagram can be interpreted as
a Dynamic Voronoi Diagram.
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Remark 2 Notice that although in this interpretation
of the ZNP as a pursuer/moving target problem both the
targets and (virtual) pursuers are moving, the Zermelo-
Voronoi partition V is independent of their motion af-
ter time t = 0. This is because it is assumed that each
agent/pursuer follows the optimal min-time intercept
strategy to each target. The final partition therefore al-
ready encodes the effect of the future motion of each
agent and there is no need to re-compute the standard
Voronoi partitions as the targets move along the integral
curves of the (negative) velocity field.

4 Construction of the Zermelo-Voronoi Dia-
gram

In this section, the steps required for the construction
of the ZVD are demonstrated. In particular, it is shown
that the state transformation (14) reduces the ZVD to
a standard Voronoi Diagram for the case of two Voronoi
generators. Subsequently, the previous result are gener-
alized to the case of arbitrary finite sets of Voronoi gen-
erators.

Let us first consider two distinct points, p1 and p2, in
the Euclidean plane. The bisector of p1 and p2 is the
straight line χ(p1, p2) defined by

χ(p1, p2)
△
=
{

X ∈ R
2 : |X− p1| = |X− p2|

}

=
{

X ∈ R
2 : (p2 − p1)

TX = (|p2|
2 − |p1|

2)/2
}

.

Correspondingly, the bisector of p1 and p2 with respect
to the cost (3) is the curve γ(p1, p2) defined by

γ(p1, p2)
△
= {x ∈ R

2 : c(x, p1) = c(x, p2)}. (20)

The bisector χ(p1, p2) divides R
2 into two closed half-

planes, namely H1(p1, p2) = {X ∈ R
2 : |X − p1| ≤ |X −

p2|} and H2(p1, p2) = {X ∈ R
2 : |X− p1| ≥ |X− p2|}.

The following proposition will allow us to associate the
sets of points that are closer, in terms of the cost (3), to
p1 and p2 with the half planesH1(p1, p2) andH2(p1, p2),
respectively, by means of a homeomorphism.

Proposition 9 Given p1, p2 ∈ R
2, and a time-varying

drift w, with |w(t)| < 1 for all t ≥ 0, and let the function
F : R2 7→ R

2 be defined by

F (X)
△
=

{

fp1(X), X ∈ H1(p1, p2),

fp2(X), X ∈ H2(p1, p2).
(21)

Then the following statements are true.

i) The map F is continuous for all X ∈ R
2 and con-

tinuously differentiable for all X 6∈ χ(p1, p2).

ii) The sets F (H1(p1, p2)) and F (H2(p1, p2)) are con-
nected.

iii) The sets F (H1(p1, p2)) and F (H2(p1, p2)) are
closed, and ∂F (H1(p1, p2)) = ∂F (H2(p1, p2)) =
F (χ(p1, p2)).

iv) int(F (H1(p1, p2))) ∩ int(F (H2(p1, p2))) = ∅ and
F (H1(p1, p2)) ∩ F (H2(p1, p2)) = F (χ(p1, p2)).

v) The map F is a homeomorphism.
vi) p1 ∈ int(F (H1(p1, p2))) and p2 ∈ int(F (H2(p1, p2))).
vii) For all x ∈ int(F (H1(p1, p2))), c(x, p1) < c(x, p2).

Similarly, for all x ∈ int(F (H2(p1, p2))), c(x, p2) <
c(x, p1).

viii) The bisector of p1 and p2 with respect to the cost c
satisfies

γ(p1, p2) = {x ∈ R
2 : x = F (X), X ∈ χ(p1, p2)}.

PROOF.

i) First, we show that F is well defined for X ∈
H1(p1, p2) ∩ H2(p1, p2) = χ(p1, p2). In particular,
for X ∈ χ(p1, p2), we have that d(X, p1) = d(X, p2),
which implies that fp1(X) = fp2(X). The continuity
of F follows readily. Furthermore, the Jacobian of
F is well defined and invertible (see Proposition 6)
for all X ∈ R

2\χ(p1, p2), and it is given by (18) for
X in H1(p1, p2) and H2(p1, p2), respectively.

ii) It follows immediately from the continuity of F .
iii) First, notice that the restriction of F onH1(p1, p2),

is fp1 which is an injective, continuously dif-
ferentiable map with non-singular Jacobian
(Proposition 6). It follows that fp1 is a diffeo-
morphism from H1(p1, p2) to F (H1(p1, p2)) =
fp1(H1(p1, p2)) and therefore F (H1(p1, p2)) is
closed since H1(p1, p2)) is closed. Furthermore,
∂F (H1(p1, p2)) = F (∂H1(p1, p2)) = F (χ(p1, p2)).
The proof for F (H2(p1, p2)) is similar.

iv) Assume, on the contrary, that there exists
y ∈ int(F (H1(p1, p2))) ∩ int(F (H2(p1, p2))). It
follows from iii) that there are points X1 ∈
int(H1(p1, p2)) and X2 ∈ int(H2(p1, p2)) with
F (X1) = F (X2) = y. Thus c(F (X1), p1) =
c(F (X2), p1) and c(F (X1), p2) = c(F (X2), p2),
which imply, using Proposition 8, that |X1 − p1| =
|X2 − p1| = δ1 and |X1 − p2| = |X2 − p2| = δ2
respectively, for some positive constants δ1 and
δ2. Thus X1 and X2 lie necessarily at the inter-
section of two circles centered at pi with radii δi,
i ∈ {1, 2}, respectively. This intersection is non-
empty if one of the following conditions hold true:
a) δ1 < δ2 with |p1 − p2| ≤ δ1 + δ2, which implies
that both X1 and X2 are in H1(p1, p2), b) δ1 > δ2
with |p1 − p2| ≤ δ1 + δ2, which implies that both
X1 and X2 are in H2(p1, p2) and finally, c) δ1 = δ2
with |p1 − p2| ≤ δ1 + δ2, which implies that both
X1 and X2 are in χ(p1, p2). All previous cases con-
tradict the assumption that X1 ∈ int(H1(p1, p2))
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and X2 ∈ int(H2(p1, p2)). The second part of the
statement follows readily.

v) First, we show that F is injective. First, notice
that, by definition, F is injective on H1(p1, p2)
and H2(p1, p2). Let now X1 ∈ int(H1(p1, p2))
and X2 ∈ int(H2(p1, p2)) and assume, on the
contrary, that F (X1) = F (X2). But F (X1) ∈
F (int(H1(p1, p2))) ⊆ int(F (H1(p1, p2))) since
the restriction of F on H1(p1, p2) is an open
map. Similarly, F (X2) ∈ F (int(H2(p1, p2))) ⊆
int(F (H2(p1, p2))). Hence F (X1) = F (X2) implies
that int(F (H1(p1, p2))) ∩ int(F (H2(p1, p2))) 6= ∅,
which contradicts iv). Since F is injective it follows
readily that its inverse F−1 exists and it is defined
by

F−1(x)
△
=

{

f−1
p1

(x), x ∈ F (H1(p1, p2)),

f−1
p2

(x), x ∈ F (H2(p1, p2)),

with f−1
p1

and f−1
p2

continuous on H1(p1, p2) and

H2(p1, p2), respectively. Next we show that F−1

is a continuous function for all x ∈ R
2. It suf-

fices to show that F−1 is well defined for x ∈
F (H1(p1, p2)) ∩ F (H2(p1, p2)) = F (χ(p1, p2)). To
this end, notice that the statement x ∈ F (χ(p1, p2))
implies that there exists X ∈ χ(p1, p2) such that
x = F (X). But X ∈ χ(p1, p2) implies that |X−p1| =
|X − p2| and hence x = fp1(X) = fp2(X). It follows
that f−1

p1
(x) = f−1

p2
(x) for all x ∈ F (χ(p1, p2)).

vi) Since p1 ∈ int(H1(p1, p2)) [p2 ∈ int(H2(p1, p2))]
and the restriction of F on int(H1(p1, p2))
[int(H2(p1, p2))] yields an open map, it fol-
lows that p1 = F (p1) ∈ F (int(H1(p1, p2))) ⊂
int(F (H1(p1, p2))) [p2 ∈ int(F (H2(p1, p2))].

vii) Let us assume, on the contrary, that there exists
x ∈ int(F (H1(p1, p2))) such that c(x, p1) ≥ c(x, p2).
Let X ∈ H1(p1, p2) such x = F (X). Note that iii)
implies that X ∈ int(H1(p1, p2)). It follows from
Proposition 8 that |X−p1| ≥ |X−p2|, contradicting
the fact that X ∈ int(H1(p1, p2)).

viii) The proof follows from iii), vii) and Proposition 8.

Figure 3 illustrates how the half-planes H1(p1, p2) and
H2(p1, p2) and the bisector curve χ(p1, p2) (Fig. 3(a))
are transformed under the mapping F (Fig. 3(b)). Note
that every point in χ(p1, p2) is equidistant, with respect
to the Euclidean distance, to p1 and p2, and the same
is true for the curve γ(p1, p2), which is the image of
χ(p1, p2) under F , with respect, however, to the general-
ized distance function (3). Furthermore, if A ∈ χ(p1, p2)

with |p1 −
−→
OA| = |p2 −

−→
OA| = δ, then it also holds that

Tf(C, p1) = Tf(C, p2) = δ, where the point C lies on the

curve γ(p1, p2) and satisfies
−→
OC = F (

−→
OA).

Proposition 9 deals with the construction of the ZVD in
the special case P = {p1, p2}. In particular, it implies

O

A

p2

x

y

H1(p1, p2)

H2(p1, p2) p1

χ(p1, p2)

(a) The bisector χ and the two half planes
H1(p1, p2) and H2(p1, p2).

O

C

x

y

F (H1(p1, p2))

F (H2(p1, p2))p2

p1

γ(p1, p2)

(b) The images of χ, H1(p1, p2) and
H2(p1, p2) under the mapping F .

Fig. 3. The image of the bisector χ(p1, p2) under the mapping
F , denoted as γ(p1, p2), is the bisector of p1 and p2 with
respect to the generalized distance function of Problem 2.

that V = {V1,V2}, where V1 = F (H1(p1, p2)) and
V2 = F (H2(p1, p2)). Furthermore, the standardVoronoi
Diagram of P = {p1, p2} is given by V = {V1, V2}, where
V1 = H1(p1, p2) and V2 = H2(p1, p2). Therefore, V =
{F (V1), F (V2)}. We are now ready to state the main
theorem of this paper.

Theorem 10 Let V
△
= {Vi, i ∈ I} be the standard

Voronoi partition for the set of Voronoi generators

P
△
= {pi, i ∈ I}. Assume that |w(t)| < 1, for all t ≥ 0

and let the function F : R2 7→ R
2 be defined by

F (X) = fpi(X), X ∈ Vi, i ∈ I, (22)

where

fpi(X) = X−

∫ d(X,pi)

0

w(τ) dτ, i ∈ I. (23)
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The solution of the ZVDP is the partition defined by the
image of V under the mapping F , that is,

V
△
= {Vi : i ∈ I} = F (V )

△
= {fpi(Vi) : i ∈ I}, (24)

or equivalently, Vi = fpi(Vi) for all i ∈ I.

PROOF. The Dirichlet domain Vi of the standard
Voronoi partition V is determined by [14]

Vi =
⋂

j 6=i

Hi(pi, pj). (25)

Thus
F (Vi) = F (

⋂

j 6=i

Hi(pi, pj)), (26)

which implies, by virtue of F being injective (Proposi-
tion 9(v)), that F (Vi) =

⋂

j 6=i F (Hi(pi, pj)). The proof
can be carried out similarly to Proposition 9 using in-
duction.

Corollary 11 Let V
△
= {F (Vi) : i ∈ I} be the Voronoi

partition for the set of Voronoi generators P
△
= {pi, i ∈

I} of Problem 3. Then

i) The sets F (Vi) are closed and connected.
ii) pi ∈ int(F (Vi)).
iii) if pi ∈ ∂co(P ), where co(P ) denotes the convex hull

of the set P , then F (Vi) is an unbounded set, and it
is a compact set otherwise.

PROOF. The proofs of (i) and (ii) follow similarly as
the proofs of (i), (ii) and (vi) of Proposition 9. To prove
(iii), first note that a Dirichlet domain Vi of the standard
Voronoi Diagram of P is an unbounded set if and only
if pi ∈ ∂co(P ) [14] and it is a compact set otherwise.
Thus, by virtue of (v) of Proposition 9 the Dirichlet
domain F (Vi) = Vi that corresponds to pi ∈ ∂co(P )
is an unbounded set. Finally, if pi /∈ ∂co(P ) then the
Dirichlet domain Vi and its image under the continuous
mapping F are both compact sets.

5 The Dual Zermelo-Voronoi Diagram

So far, we have presented a methodology for construct-
ing the generalized Voronoi Diagram with respect to the
minimum time from a point in plane to the set of gen-
erators (obtained from the solution of Zermelo’s naviga-
tion problem). In many autonomous agent applications,
however, it may be more appropriate to consider the
Voronoi generators to be the agents’ locations at a par-
ticular instant of time rather than being the goal des-
tinations. For instance, consider the following scenario:

Given a group of agents/guards distributed over a cer-
tain area, divide this area into guard/patrol zones (one
for each agent) such that each point in a zone can be
reached/intercepted by the corresponding agent faster
than any other agent. Such a decomposition essentially
provides a “first response” partition of the area for which
the agents are responsible.

In this context, given the positions of a finite set of agents
at time t = 0, we want to characterize for every i ∈ I,
where I denotes the index set of the set of agents, the
collections of all positions, denoted as Ṽi, that can be
reached by the agent i faster than any other agent j,
with j 6= i. We call the problem of characterizing the

partition Ṽ
△
= {Ṽi : i ∈ I} the Dual Zermelo-Voronoi

Diagram Problem (DZVDP).

Note that, as already mentioned, the minimum time of
the ZNP is, in general, non-symmetric, that is, the min-
imum time to drive the system (1) from a point A to B,
and vice versa, are not necessarily equal. Therefore the
solutions of the DZVDP and the ZVDP are not expected
to be the same, in general.

The DZVDP can be formulated similarly to the ZVDP.
In particular, the distance function for the DZVDP is
defined by

c̃(pi, xf)
△
= Tf(pi, xf), (27)

that is, the minimum time for the Zermelo navigation
problem from a Voronoi generator pi to the agent’s ter-
minal configuration xf . The generalized distance func-
tion for the DZVDP can be reduced to the distance func-
tion for the ZVDP by reversing the order of the func-
tion arguments. The construction of the DZVDP is thus
similar to the solution of the ZVDP.

Corollary 12 Let V
△
= {Vi : i ∈ I} be the standard

Voronoi partition for the set of Voronoi generators P
△
=

{pi : i ∈ I}. Assume that |w(t)| < 1 for all t ≥ 0 and

let the function F̃ : R2 7→ R
2 be defined by

F̃ (X)
△
= f̃pi(X), X ∈ Vi, i ∈ I, (28)

where

f̃pi(X)
△
= X+

∫ d(X,pi)

0

w(τ) dτ, i ∈ I. (29)

Then the solution of the DZVDP is the partition be de-
fined by the image of the set V under the mapping F̃ , that
is,

Ṽ
△
= {Ṽi : i ∈ I} = F̃ (V ) = {f̃pi(Vi) : i ∈ I}, (30)

or equivalently, Ṽi
△
= f̃pi(Vi), for all i ∈ I.

8



Note that the transformation (29) of the DZVDP differs
from the transformation (23) of the ZVDP by a sign
change.

6 Simulation Results

In this section numerical simulations to demonstrate the
previous developments are provided. Let us consider the
wind velocity field defined by

w(t) =

{

w̄ + ρt, 0 ≤ t ≤ t̄,

w̄ + ρt̄, t > t̄,
(31)

where w̄ = (µ, ν)T ∈ R
2 with |w̄| < 1, ρ ∈ R

2 constants,
and t̄ < (1− |w̄|)/|ρ|.

We first construct the Zermelo-VoronoiDiagramby grid-
ding the entire space and propagating the isocost fronts
of the respective min-time problems emanating from
each generator and we compare the results with the pro-
posed approach of this paper in terms of computational
efficiency. In particular, given a set of Voronoi genera-

tors P
△
= {pi : i ∈ I}, the minimum cost-to-go from x

to some pi ∈ P is defined as the function

Kpi(x)
△
= c(x, pi). (32)

Note that for the particular wind field in (31), it follows
readily that c(x, pi) is the smallest positive root of either
the polynomial equation

|ρ|2

4
T 4
f + w̄TρT 3

f + (|w̄|2 − 1− (pi − x)Tρ)T 2
f

− 2(pi − x)Tw̄Tf + |pi − x|2 = 0, (33)

if Tf < t̄, or the quadratic equation

(|w̄ + ρt̄| − 1)T 2
f − (2(pi − x) + t̄2ρ)T(w̄ + ρt̄)Tf

+ |pi − x|2 + t̄2(pi − x)Tρ+ t̄2|ρ|2/4 = 0, (34)

if Tf ≥ t̄. Furthermore, the minimum cost-to-go to the
set P is defined as the function

KP (x) = min
pi∈P

c(x, pi). (35)

Each Dirichlet domain of the ZVD can be determined by
projecting the intersection of the surfaces KP and Kpi

onto R
2. Figure 4 illustrates a fine approximation of the

ZVD, which is constructed by the previous exhaustive
numerical method for w̄ = (−0.3, 0.2), ρ = (0.05,−0.1),
and a set of eleven Voronoi generators.

An alternative approach, instead of solving directly the
polynomial equations in (33)-(34) for each node of a
fine grid that discretizes the space, is to expand the

iso-cost fronts of each Kp by means of a fast march-
ing algorithm. The fast marching implementation will
give an approximation of the ZVD with time complex-
ity O(NM2 logM), where N is the number of elements
of P , and M2 is the number of nodes of a grid that
discretizes R2 [22,18]. Note that the boundaries of each
Dirichlet domain of the ZVD are not line segments, in
general, and thus for their specification a fine grid is re-
quired, that is, the size of the grid should be at least
O(Nη), where η > 2.

Next, the approach introduced in this paper is applied.
In particular, the standard Voronoi Diagram of the set
P is first constructed, and subsequently, the Zermelo-
Voronoi Diagram is obtained with the application of
Theorem 1. Note that the construction of the standard
Voronoi Diagram requires O(N logN) time, where N
is the number of elements of P , by using, for example,
Fortune’s algorithm [13]. The mapping of the standard
Voronoi Diagram, which consists of O(N) edges, to the
ZVD requires O(N) time, giving a total time complex-
ity for the construction of the ZVD which is of order
O(N logN). Note, additionally, that the approach of this
paper is completely grid-free, and it does not also require
the solution of a PDE by contrast to the fast marching
approach. These remarks elucidate the significance of
the results presented in Section 4 from a computational
perspective. Figure 5 illustrates the ZVD obtained after
the application of the state-transformation to the stan-
dard Voronoi Diagram.

Figure 6 illustrates the ZVD and the DZVD par-
titions for the wind velocity fields w1(t) = (0.5 +
0.1 sin(t/π),−0.35 − 0.1 cos(t/π)) (Fig. 6(a)) and
w2(t) = (0.15, 0.65 − 0.2 exp(−t/π)) (Fig. 6(b)). It is
interesting to note that, as the drift becomes stronger,
the Voronoi generators move closer to the boundaries
of their corresponding Dirichlet domains, following a
pattern that is more complex than the one observed in
[23]. This is due to the temporal variation of the drift.
In all cases, however, the generators remain interior to
their corresponding domains, in light of Proposition 9
(vi), provided that |w(t)| < 1 for all t ≥ 0.

7 Conclusion

In this work we have addressed the problem of char-
acterizing the Zermelo-Voronoi Diagram, which is a
Voronoi-like partition for a given set of generators and
a generalized distance function. In particular, the “dis-
tance” function is the minimum time required for an
agent to reach the set of generators in the presence of
time-varying drift. It is demonstrated that the Zermelo-
Voronoi Diagram problem is essentially a dynamic
partition problem, where the Voronoi generators are
moving targets that travel along the integral curves of a
velocity field, which is the opposite of the one induced
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Fig. 4. The ZVD and the minimum cost-to-go interpretation.
Computation using exhaustive numerical calculations of the
min-time wavefronts.
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Fig. 5. The ZVD (black) and its corresponding standard
Voronoi Diagram (blue). Computation using the computa-
tional scheme proposed in this paper.

by the time-varying drift. Subsequently, the Zermelo-
Voronoi Diagram is associated with a standard Voronoi
Diagram by means of a homeomorphism. By switch-
ing the roles of moving agent/target site we are led
to the construction of the Dual Zermelo-Voronoi Dia-
gram, which encodes all points in the plane that can be
reached/intercepted by an agent initially located at the
corresponding generator of a given Zermelo-Voronoi cell
faster than any other agent outside this cell. Applica-
tions of the theory range from optimal routing and tar-
get allocation for small UAVs, distributed surveillance
and minimum-time intercept of multiple targets over a
given area, and minimum-time landing site selection for
a group of airplanes, among others.

Acknowledgement: This work has been supported in
part by NASA (award no. NNX08AB94A). The first
author also acknowledges support from the A. Onassis
Public Benefit Foundation. The authors would also like

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
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Fig. 6. The Zermelo-Voronoi Diagram for two different time–
varying wind velocity fields.
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