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Abstract

In this paper we present analysis of a discrete-time, decentralized, stochastic coordination algorithm for a group of mobile nodes,
called an autonomous swarm, on a finite spatial lattice. All nodes take their moves by sampling in parallel their locally perceived Gibbs
distributions corresponding to a pairwise, nearest-neighbor potential. The algorithm has no explicit requirements on the connectedness of
the underlying information graph, which varies with the swarm configuration. It is established that, with an appropriate annealing schedule,
the algorithm results in swarm configurations converging to the (global) minimizers of a modified potential energy function. The extent of
discrepancy between the modified and original potential energy functions is determined by the maximum node travel between time steps,
and when such distance is small, the ultimate swarm configurations are close to the global minimizers of the original potential energy.
Simulation results are further presented to illustrate the capability of the sampling algorithm in approximate global optimization for swarms.
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1 Introduction

Rapid technological advances have made it possible to build
and deploy a large number of mobile robots or unmanned
vehicles at an affordable cost. Networks of such autonomous
vehicles, called autonomous swarms in this paper, can have a
multitude of applications, ranging from surveillance and re-
connaissance, to search and rescue, to weather forecast, and
to oceanography. In recent years significant advances have
been made in collaborative control of autonomous swarms,
where tools in optimization, controls, dynamical systems,
and algebraic graph theory are applied to formally analyze
or synthesize interaction rules for mobile nodes. Various
problems have been studied, including, e.g., flocking [1, 2],
rendezvous or aggregation [3, 4], consensus [5–7], forma-
tion control [8–10], and deployment [11, 12]. Many of the
studies have considered the requirement of distributed, local

� This paper was not presented at any IFAC meeting. The work
of X. Tan was supported in part by NSF (IIS 0916720).
Corresponding author X. Tan. Tel. 1-517-432-5671. Fax 1-517-
353-1980.

Email addresses: xbtan@msu.edu (Xiaobo Tan),
Wei.Xi@wdc.com (Wei Xi), baras@isr.umd.edu (John
S. Baras).

interactions among nodes, which is dictated by the other-
wise prohibitive cost for centralized coordination of large-
scale networks, and by the need to ensure robustness against
single-node failures.

It is notable that a number of convergence results in multi-
agent control accommodate time-varying information-
sharing topology, which is an important concern in practice.
This has been achieved by adopting and developing dif-
ferent tools, including theory of stochastic matrices [1, 6],
common Lyapunov functions for switched systems [5], set-
valued Lyapunov theory [7], generalized Lyapunov analysis
for nonsmooth and set-valued dynamics [4, 11], and pas-
sivity theory [13]. Despite the progress made, most results
provide only convergence to local minima of potential or
objective functions [2, 11, 14, 15], and global objectives
are achievable only if initial configurations are sufficiently
close to the desired ones.

In an attempt to overcome the aforementioned problem of
nodes being trapped at local minima of potential/objective
functions, Baras and Tan [16] explored by simulation a
stochastic, decentralized approach to coordination of mul-
tiple mobile nodes. The approach exploits the concept of
Markov Random Fields (MRFs) to capture the local inter-
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actions among mobile nodes. MRFs can be thought of as a
generalization of Markov chains with the temporal index re-
placed by a spatial index [17]. An MRF is thus a collection
of random variables, each located at a spatial site, where
the conditional probability of any random variable given the
values of all the other random variables is equal to its con-
ditional probability given only the values of its neighbors.
Clearly, a neighborhood system needs to be specified in
defining an MRF. Another related notion is Gibbs Random
Fields (GRFs). A GRF is a collection of random variables
at sites where their joint probability for each configuration x
is proportional to e−H(x)/T , where T represents the temper-
ature in the context of statistical physics and H is the Gibbs
potential energy as a function of the configuration x. Such
a probability measure is called a Gibbs distribution. It turns
out that an MRF is equivalent to a GRF [17], and hence one
can capture the local interactions among neighbors, as typi-
cal of an MRF, through an appropriate definition of the po-
tential for a GRF. Gibbs sampling is a Markov Chain Monte
Carlo (MCMC) method, where, by sampling the local char-
acteristics of the Gibbs distribution, one produces a Markov
chain on the configuration space of the random field. Start-
ing from any initial distribution, the Gibbs sampling-induced
Markov chain converges to the Gibbs distribution. Further-
more, performing Gibbs sampling while reducing T with
a proper cooling schedule can result in configurations with
globally minimal energy. The latter was applied with great
success in image processing and computer vision [18–20],
and it largely motivated the work in [16].

The work of Baras and Tan [16] extends the concept of MRFs
to the context of autonomous swarms. A group of mobile
nodes is assumed to move in discrete time on a finite spa-
tial lattice, where each node is considered as a (mobile) site
of the random field. A nearest-neighbor potential energy, as
a function of the swarm configuration, is defined to encode
desired configurations as its minimizers, and consists of the
sum of terms involving only each node and its proximity-
based neighbors. At each time instant, each node decides its
next move by sampling a locally perceived conditional Gibbs
distribution given the current locations of its neighbors. With
Gibbs sampling under a suitable cooling schedule, simula-
tion results have indicated that the approach is promising in
achieving global objectives (without being trapped at local
minima) through purely local interactions [16]. However,
no analytical results were presented to explain why the ap-
proach worked in [16]. A primary difficulty in the analysis
is that the neighborhood system, or the information graph,
varies with the swarm configuration. This is fundamentally
different from classical MRFs [17,20], where the neighbor-
hood systems are assumed to be fixed. Another difficulty is
due to the parallel sampling in the autonomous swarm set-
ting, where all nodes update their locations at the same time.
Even for classical MRFs, convergence results are typically
available for the case of sequential sampling (one site up-
dating at a time) only.

In prior work of the authors [10], analytical results were ob-
tained for sequential Gibbs sampling of autonomous swarms

with an additional assumption that global communication is
available for forwarding relevant information to newly se-
lected node at each time step. Sequential sampling, how-
ever, has two limitations in practice: 1) it takes too long to
complete one round of updating for large networks, and 2)
it requires explicit indexing of nodes, which is often impos-
sible due to dynamic addition/removel of nodes. The global
communication requirement, despite the limited amount of
information transmitted, defeats the goal of full decentral-
ization.

The contribution of the current paper is the rigorous anal-
ysis of the parallel Gibbs sampling-based swarm coordina-
tion algorithm, for the special but important case of pair-
wise potentials. A pairwise potential energy function con-
sists of contributions from singletons or pairs of nodes, and
is widely adopted in the literature of multi-agent control. It
is established that, under a constant temperature, the parallel
sampling algorithm results in a unique stationary distribution
for the swarm configuration. Furthermore, if the temperature
follows an appropriate annealing schedule, the configuration
converges to the (global) minimizers of a modified potential
energy, where the extent of discrepancy between the mod-
ified and original potential energy functions is determined
by the maximum node travel distance per time step. In par-
ticular, when the maximum travel range per update is suf-
ficiently small, or equivalently, when the information about
neighbors’ locations is updated frequently enough, the ul-
timate swarm configuration is close to the global minimiz-
ers of the original potential energy function. We also note
that the algorithm and the proof do not require explicitly the
connectedness of the information graph.

Simulation results on examples of rendezvous and line for-
mation are further presented to support the analysis, where
the Gibbs sampling algorithm is compared to a deterministic
gradient descent-type algorithm. With the gradient descent-
type algorithm, the swarm configuration is often stuck at
local minima of the potential energy function, while in con-
trast, the Gibbs sampling algorithm always results in con-
figurations close to the desired ones.

The remainder of the paper is organized as follows. In Sec-
tion 2, the background on MRFs is briefly reviewed and the
application of MRFs to modeling of autonomous swarms
is described. Analysis of the parallel sampling algorithm is
carried out in Section 3. Simulation results are presented in
Section 4. Finally, Section 5 provides concluding remarks.

2 MRFs and Application to Swarming Control

2.1 Review of Classical MRFs and Gibbs Sampling

2.1.1 MRFs

Intuitively, a random field can be thought of as a (spatial)
field of randomvariables. Let denote the set of spatial sites,
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with a cardinality of N. Without loss of generality, we will
denote each site with its index s, with s = 1,2, · · · ,N. Con-
sequently, we have  = {1,2, · · · ,N}. At each site s, there
is an associated random variable Xs, which takes value in a
set s. s is called the phase space for site s. The collection
of the random variables, X = {Xs}N

s=1 = {Xs}s∈ , is called
a random field. A realization x = {xs}s∈ of X is called a
configuration or a state of the field. The configuration space

of the random field is defined as  �
= {(x1,x2, · · · ,xN) : xs ∈

s,s ∈ }.

A neighborhood system on  is defined to be a family 
of sets,  = {s}s∈ . Here s ⊂  is the set of neighbors
for site s. The neighborhood system satisfies the following
conditions: for s,r ∈  , 1) s /∈ s, and 2) r ∈ s ⇔ s ∈ r.
The neighborhood system induces an undirected graph with
vertices s ∈  , where an edge exists between vertices s and
r if and only if r ∈ s. A set C ⊂  is called a clique if all
elements of C are neighbors of each other. A random field
X is called a Markov random field (MRF) with respect to
the neighborhood system  if, ∀s ∈  ,

P(Xs = xs|Xr = xr : r∈,r �= s)= P(Xs = xs|Xr = xr : r∈s).
(1)

Here P(E1|E2) denotes the conditional probability of E1
given E2. The right-hand side of (1) is often referred to as
the local characteristics of the MRF.

A potential U is a family {UA : A ⊂ } of functions on
the configuration space  , where UA :  → R, and UA(x)

depends only on xA
�
= {xs : s∈ A}. In other words,UA is only

a function of the values at the sites contained in the set A.
For convenience, we will denote UA(x) as UA(xA) from here
on. If UA ≡ 0 whenever A is not a clique or a singleton, U is
called a nearest-neighbor potential. If UA ≡ 0 whenever A is
not a pair or a singleton, U is called a pairwise potential. U
is called a pairwise, nearest-neighbor potential if it is both
a pairwise potential and a nearest-neighbor potential.

Given a potential U , the potential energy H(x) for configu-
ration x is defined as

H(x) = 
A⊂

UA(xA). (2)

In particular, for a pairwise, nearest-neighbor potential U ,
we can write H as

H(x) = 
s∈

U{s}(xs)+ 
(s,t)∈× , t∈s

U{s,t} (xs, xt). (3)

A random field X is called a Gibbs random field (GRF) if

P(X = x) =
e−H(x)/T

Z
, with Z =

z
e−H(z)/T . (4)

The probability measure shown in (4) is called a Gibbs dis-
tribution, and the underlying potential U is called a Gibbs
potential. T has the interpretation of temperature in the con-
text of statistical physics. Eq. (4) implies that a higher-energy
state has a lower probability, and that the influence of energy
on probability increases as T decreases. The Hammersley-
Clifford theorem establishes the equivalence between an
MRF and a GRF [17]: any MRF can be shown to have a
Gibbs distribution for an appropriately defined potential en-
ergy function H, and conversely, any GRF can be shown to
have the Markovian properties (1) with the neighborhood
system determined by the potentialU . This equivalence pro-
vides a tangible, convenient characterization of local inter-
actions among neighboring sites in MRFs through Gibbs
potentials.

2.1.2 Gibbs Sampling

In statistical physics, a GRF is often used to describe the
distribution of system configurations at the thermodynamic
equilibrium. However, direct evaluation of (4) and related
ensemble averages is often impossible due to the high car-
dinality of the configuration space (the latter rendering the
computation of Z intractable). Markov Chain Monte Carlo
(MCMC) methods, such as the Metropolis algorithm [21]
and the Gibbs sampler [18], can generate Markov chains on
the configuration space, with (4) as the limiting probability
measure. Next we illustrate such a process with the example
of sequential Gibbs sampling.

Given a configuration x = (x1, · · · ,xN) at time instant n, one
can update it to a different configuration y by updating the
values at each site sequentially. For example, for site s, one
can update xs to some value ys at time n+ 1 based on the
following probability (this is what is meant by sampling):
for ys ∈ s,

P(Xs(n+1) = ys |X\s(n) = x\s) =
e−H(ys,x\s)/T

 zs∈s e
−H(zs,x\s)/T

.

(5)
In (5), \s denotes the set of all sites other than s:

\s �
= {r ∈  : r �= s},

and x\s represents the components of x corresponding to the

sites in \s: x\s
�
= {xr : r ∈ \s}. The notation

(
ys, x\s

)
(likewise for (zs, x\s)) represents a configuration where site
s takes the value ys while other sites take the values x\s.
Note that the right-hand side of (5) is precisely the condi-
tional probability of Xs given the values at other sites for
a Gibbs distribution (4). It can be verified easily that the
evaluation of (5) involves only {xr : r ∈ s} for a Gibbs
field with a nearest-neighbor potential, and thus can be per-
formed efficiently. Following the above procedure, one can
update all sites in a prescribed order within N time steps.
This process generates a (homogeneous) Markov chain in
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the configuration space  , with positive N−step transition
probabilities P(x,y), ∀x,y ∈  . Here P(x,y) denotes the
probability of reaching y after N steps of sequential sam-
pling, starting from the configuration x. It can be shown that
the following detailed balance equation holds for P and
the Gibbs distribution P:

P(x)P(x,y) = P(y)P(y,x), (6)

which implies that the Gibbs measure P(x) is the (unique)
stationary distribution for the Gibbs sampling-induced
Markov chain [20]. In other words, starting from any initial
distribution , the sampling process will ultimately result in
a Gibbs distribution for the configurations.

The Gibbs distribution (4) depends on the temperature T .
The lower T is, the higher probabilities for the lowest-energy
configurations. In the limit of T → 0, (4) produces proba-
bilities concentrating solely on configurations of minimum
energy. Taking the idea of simulated annealing [22], Geman
and Geman proposed decreasing T gradually during Gibbs
sampling and established the convergence to the lowest-
energy configurations [18].

2.2 Extension to Autonomous Swarms

Motivated by the promise of Gibbs sampling in achieving
globally minimizing configurations through local interac-
tions, Baras and Tan extended the concepts of MRFs and
Gibbs sampling to the context of autonomous swarms [16].
Consider a group of mobile nodes moving in a bounded re-
gion within the two-dimensional (2D) or three-dimensional
(3D) space. The region is discretized into a lattice, and for
ease of presentation, each cell is assumed to be square with
unit dimensions. A mobile node is assumed to be a point that
moves from the center of one cell to that of another. Each
node has a sensing range Rs: it can sense the locations of
obstacles and other nodes within distance Rs. It also has an
interaction range Ri ≤ Rs: the moving decision of a node is
only influenced by nodes within the distance Ri, which form
its set of neighbors. In addition, each node can travel by at
most Rm ≤ Rs within each time step. Fig. 1 illustrates the
definitions of the three ranges in a 2D grid. The distances
on the lattice are defined using the Euclidean norm based
on the center locations of the cells.

The Ri-neighborhood relations induce a graph structure,
where the nodes form the vertices of the graph and an edge
exists between two nodes if and only if they are neighbors
of each other. A random field is then defined on this graph,
where each node is considered as a site and the random
variable associated with this site represents the location of
the node. In particular, we will denote the set of nodes as
 = {1,2, · · · ,N}, where N is the total number of nodes. Xs
(or xs) will denote the center location of the cell in which
node s resides. Similar notation, such as ys, zs, etc., will also
be used in the later discussion. We will use x = (x1, · · · ,xN)

R s

R i

Rm

Fig. 1. Illustration of the sensing range Rs, the interaction range
Ri, and the moving range Rm on a 2D grid.

to denote the configuration of the swarm. Given x, the set
of neighbors s(x) is defined as

s(x)
�
= {r ∈  : r �= s,‖xr − xs‖ ≤ Ri}.

The set of lattice cells within Rm from node s form the phase
space s. Unlike in the classical MRF case, the phase space
s here will vary with xs, the location of node s. A suitable
potential U can be defined to reflect the swarm coordination
objectives, from which the potential energy H(x) can be
evaluated, as explained in Section 2.1.1.

One can then perform Gibbs sampling with simulated an-
nealing to update the locations of the nodes. For a nearest-
neighbor potential, the sampling can be done by each node
locally. While simulation results were promising [16], the
analysis is challenging because the neighborhood system

(x)
�
= {s(x),s ∈ } varies with the swarm configuration.

Analytical results for classical MRFs cannot be applied di-
rectly, since the neighborhood system is assumed to be fixed
there [17, 20]. In particular, even with sequential sampling,
the detailed balance (6) no longer holds and the Gibbs
distribution is no longer the stationary distribution. In our
prior work [10], we analyzed a special sequential sampling
scheme with an assumption on limited global communica-
tion. However, due to feasibility considerations, one will be
mostly interested in parallel sampling schemes. Analysis of
parallel sampling is involved even for classical MRFs [20].
The goal of this paper is to provide rigorous analysis of a
parallel Gibbs sampling scheme for swarm coordination, for
the special but popular case of pairwise, nearest-neighbor
potentials.
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3 Analysis of the Parallel Gibbs Sampling Scheme

3.1 The Parallel Sampling Algorithm

Let n denote the index of time steps. Let X(n) = x =
(x1, · · · ,xN) be the swarm configuration at time n. Let

Fs(x)
�
= {zs : ‖zs − xs‖ ≤ Rm} be the set of accessible cell

locations for node s given the configuration x, determined
by the mobility constraint. Let F(x) be the set of configu-
rations that are accessible from x within one time step:

F(x)
�
= {z = (z1, · · · ,zN) : ‖zs− xs‖ ≤ Rm, s ∈ }.

Under parallel Gibbs sampling, all nodes will simultane-
ously update their locations based on the configuration x at
time n; in particular, the node s will move from xs to ys at
time n+1 with probability

PT ,s(xs,ys|x) =

⎧⎪⎨
⎪⎩

e
−H(ys ,x\s)/T

 zs∈Fs(x) e
−H(zs ,x\s)/T

if ys ∈ Fs(x)

0 if ys /∈ Fs(x)
.

(7)
For simulated annealing, the temperature variable T will be
a function of the time step n. The following assumptions are
made:

– (A1) The total number of lattice cells is bounded;
– (A2) Ri +Rm ≤ Rs;
– (A3) U is a pairwise, nearest-neighbor potential.

Remark 3.1 (A1) requires that the nodes move in a
bounded region, which is a reasonable assumption. It will
allow us to establish the ergodicity of the Markov chain
induced by Gibbs sampling under a constant temperature,
and consequently the convergence of the chain to a unique
stationary distribution.

Remark 3.2 (A2) implies that a node s at xs is able to
evaluate the set of new neighbors should it move to ys ∈Fs(x)
while other nodes stay put.

Remark 3.3 Similar to (3), (A3) implies that the corre-
sponding potential energy H(x) for configuration x can be
written as

H(x) = 
s∈

U{s}(xs)+ 
(s,t)∈× , t∈s(x)

U{s,t} (xs, xt). (8)

We can show that (A2) and (A3) together ensure the local
computability of (7) by node s. In particular, for ys, zs ∈

Fs(x),

H
(
ys, x\s

)
=U{s}(ys)+ t∈s(ys, x\s) U{s,t}(ys, xt)

+ terms not involving node s,
H
(
zs, x\s

)
=U{s}(zs)+ t∈s(zs, x\s) U{s,t}(zs, xt)

+ terms not involving node s.

Since H
(
ys, x\s

)
and H

(
ys, x\s

)
share the terms not in-

volving s,

e−H(ys,x\s)/T

 zs∈Fs(x) e−H(zs,x\s)/T

=
e
−
(

U{s}(ys)+ t∈s(ys , x\s) U{s, t}(ys,xt )
)

/T

 zs∈Fs(x) e
−
(

U{s}(zs)+ t∈s(zs , x\s) U{s, t}(zs,xt )
)

/T
. (9)

Evaluation of (9) thus only requires the knowledge of

Ūs(zs, x\s)
�
= U{s}(zs)+ t∈s(zs, x\s) U{s,t}(zs, xt) (10)

for all zs ∈ Fs(x) (since ys ∈ Fs(x)). From (A2), node s
at the current location xs is able to evaluate the set of its
neighbors should it move to zs ∈ Fs(x), implying the local
computability. Note that Ūs(zs, x\s) is well defined even if
s(zs, x\s) = /0, in which case Ūs(zs, x\s) = U{s}(zs).

Using (9), we can write (7) as

PT, s(xs,ys|x) =

1(ys ∈ Fs(x)) · e
−
(

U{s}(ys)+ t∈s(ys , x\s) U{s, t}(ys,xt )
)

/T

 zs∈Fs(x) e
−
(

U{s}(zs)+ t∈s(zs , x\s) U{s, t}(zs,xt)
)

/T
, (11)

where 1(·) denotes the indicator function. Since the nodes
make independent moving decisions at time n for given x,

the kernel PT (x,y)
�
= Prob(X(n+1) = y|X(n) = x) for the

parallel Gibbs sampling-induced Markov chain can be ob-
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tained from (11):

PT (x,y) = 
s∈

PT, s(xs,ys|x)
= 1(y ∈ F(x)) ·

e
− s∈

(
U{s}(ys)+ t∈s(ys , x\s) U{s, t}(ys, xt)

)
/T

z∈F(x) e
− s∈

(
U{s}(zs)+ t∈s(zs , x\s) U{s, t}(zs, xt )

)
/T

(12)

= 1(y ∈ F(x)) ·

e
− s∈

(
U{s}(xs)+U{s}(ys)+ t∈s(ys , x\s) U{s, t}(ys, xt)

)
/T

 z∈F(x) e
− s∈

(
U{s}(xs)+U{s}(zs)+ t∈s(zs , x\s) U{s, t}(zs, xt)

)
/T

(13)

= 1(y ∈ F(x)) · e−G(x, y)/T

 z∈F(x) e−G(x, z)/T
, (14)

where

G(x,y)
�
=


s∈

(U{s}(xs)+U{s}(ys)+ 
t∈s(ys, x\s)

U{s, t}(ys, xt)). (15)

The denominator of (12) is derived from that, for y ∈ F(x),
PT (x,y) is proportional to the expression in the numera-
tor, and that z∈F(x) PT (x,z) = 1. Eq. (13) is obtained from
(12) by multiplying both its denominator and numerator by
e− s∈ U{s}(xs). Note that the transition matrix PT has di-
mensions of q× q, where q denotes the cardinality of the
configuration space  .

Lemma 3.1 For y ∈ F(x), the function G is symmetric, i.e.,
G(x,y) = G(y,x).

Proof. A key observation is that t ∈ s(ys, x\s) ⇒ s ∈
t(xt , y\t). In other words, node t being a neighbor of node
s for the configuration (ys,x\s) implies that node s will be
a neighbor of node t for the configuration (xt , y\t) (or vice
versa). This is because both conditions mean ‖ys−xt‖ ≤ Ri.
One can then write

G(x,y)

= 
s∈

⎛
⎝U{s}(xs)+U{s}(ys)+ 

t∈s(ys, x\s)
U{s, t}(ys, xt)

⎞
⎠

= 
s∈

(
U{s}(ys)+U{s}(xs)

)
+ 

t∈


s∈t(xt , y\t )
U{t, s}(xt , ys)

= 
t∈

⎛
⎝U{t}(yt)+U{t}(xt)+ 

s∈t(xt , y\t)
U{t, s}(xt , ys)

⎞
⎠

= G(y,x),

where the aforementioned observation is used in arriving at
the second equality. �

3.2 Stationary Distribution Under Constant-T Sampling

Parallel Gibbs sampling produces a Markov chain X(n) for
the swarm configuration. We first characterize the stationary
distribution of X(n) for a fixed temperature T . This can then
be used to analyze the limiting behavior as T → 0 during
simulated annealing.

Theorem 3.1 Let the assumptions (A1)− (A3) hold. Under
parallel Gibbs sampling with a fixed T , the swarm configu-
ration X(n) has a unique stationary distribution T . Start-
ing from any distribution  for the swarm configuration,

lim
n→

Pn
T →T , (16)

where PT represents the transition matrix of the Markov
chain, as determined by (14). Furthermore, the explicit form
of T is

T (x) =
 z∈F(x) e−G(x, z)/T

 x′∈  z∈F(x′) e−G(x′, z)/T
, (17)

where  denotes the space of swarm configurations.

Proof. For a constant T , X(n) generated under the parallel
Gibbs sampling is a homogeneous Markov chain with the
transition matrix PT . Given any current configuration x, the
probability of reaching any y ∈ F(x) within one time step
is strictly positive. From (A1), there exists a finite integer
 > 0, such that, given any x and y in the configuration space
 , the probability of reaching y from x within  sampling
steps is positive. In other words, PT has a strictly positive
power P

T . Hence the Markov chain X(n) is ergodic and has
a unique, stationary distribution T [23]; furthermore, (16)
follows.

Next we verify that T has an explicit expression as in (17).
Denote the right-hand side of (17) as ̂T , and its denominator
as ZT . For y ∈ F(x),

̂T (x)PT (x, y) =
 z∈F(x) e−G(x, z)/T

ZT

· e−G(x, y)/T

 z∈F(x) e−G(x, z)/T

=
e−G(x, y)/T

ZT

=
 z∈F(y) e−G(y, z)/T

ZT

· e−G(y, x)/T

 z∈F(y) e−G(y, z)/T
(18)

= ̂T (y)PT (y, x), (19)

where Lemma 3.1 is used in (18). If y /∈ F(x), PT (x, y) =
PT (y, x) = 0 and (19) still holds. With (19), we can write,
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∀x ∈  ,


y∈

̂T (y)PT (y,x) = 
y∈

̂T (x)PT (x,y)

= ̂T (x) 
y∈

PT (x,y)

= ̂T (x), (20)

since  y∈ PT (x,y) = 1. Eq. (20) confirms that ̂T is a sta-
tionary distribution for the Markov kernel PT .T = ̂T then
follows from the uniqueness of the stationary distribution. �

Remark 3.4 From (16), the swarm configuration under par-
allel, constant-T , Gibbs sampling converges to the distribu-
tion T . Note that while it takes a form similar to a Gibbs
distribution, T is not a Gibbs distribution. This illustrates
the difference of the parallel sampling algorithm from the
sequential Gibbs sampling of a classical MRF, which would
result in a Gibbs distribution.

3.3 Convergence under Annealing

Let  be the minimum integer such that all entries of P
T are

strictly positive. Note that the definition of  is independent
of T . In annealing, the temperature T (n) will drop as a
function of time n.

Theorem 3.2 Let the assumptions (A1)− (A3) hold. Define

 �
= max

x
max

y, z∈F(x)
|G(x,y)−G(x,z)|.

Let T (n) be a cooling schedule such that

T (n) = Tk, k ≤ n < (k+1), (21)

where {Tk} is a sequence decreasing to 0 and satisfying

Tk ≥ 
lnk

. (22)

Then for any initial distribution  for the swarm configura-
tion,

(1)
lim
k→

Q1 · · ·Qk →0, (23)

where Qi
�
= P

Ti
, and 0 represents the limit of T ,

(17), as T → 0;

(2) Define Ĥ(x)
�
= min z∈F(x) G(x,z) and m0

�
= min x Ĥ(x).

The support M of the limiting distribution 0 is

M = {x : Ĥ(x) = m0}. (24)

Proof. Claim (1) concerns the characterization of the limiting
behavior of ‖Q1 · · ·Qk −0‖1, where ‖ · ‖1 denotes the 1-
norm of a vector. The proof uses the contraction property of
the Markov kernelQk, which is where the annealing schedule
(22) comes in. The full proof follows closely the steps in
proving Theorem 3.2 in [10], and is omitted here in the
interest of brevity.

To establish the support of 0, one can rewrite T as

T(x) =
 z∈F(x) e−(G(x,z)−m0)/T

 x′∈  z∈F(x′) e−(G(x′,z)−m0)/T
. (25)

As T → 0, e−(G(x,z)−m0)/T approaches 1 if G(x,z) = m0, and
approaches 0 otherwise. As a result, the numerator of0(x),
expressed as in (25), will be nonzero if and only if x ∈ M .
Claim (2) follows by noting that the denominator of 0(x)
is always positive and finite. �

Remark 3.5 From Theorem 3.2, the swarm configu-
ration under the parallel Gibbs sampling algorithm
with annealing converges to the (global) minimizer of
Ĥ(x) = min z∈F(x) G(x,z). Recall the definition of G in (15)
and note the expression for the original potential energy

H(x) = 
s∈

(
U{s}(xs)+

1
2 

t∈s(x)
U{s, t}(xs, xt)

)
, (26)

where 1
2 accounts for the fact that each pairwise interaction

is counted twice in (26). It can be seen that G(x,z) repre-
sents an energy term obtained by combining the components
from configurations x and z. In particular, G(x,x) = 2H(x).
Consequently, Ĥ(x) can be regarded as a potential energy
function that is modified from 2H(x). Since for each s ∈  ,
‖zs − xs‖ ≤ Rm, the difference |Ĥ(x)− 2H(x)| depends on
the moving range Rm per time step.

Remark 3.6 Given the physical constraint on the speed of a
mobile node, Rm is inversely proportional to the actual time
between steps n and n+1. The latter indicates how frequent
the nodes get feedback information about their neighbors for
making moving decisions. More frequent update would im-
ply a smaller Rm, and consequently, the difference between
the modified energy and the original energy, |Ĥ(x)−2H(x)|
becomes smaller. This can be interpreted as a tradeoff be-
tween the cost for information gathering and the achievable
performance in minimizing H.

Remark 3.7 The parallel Gibbs sampling algorithm
achieves global minimizers of the modified energy Ĥ(x),
which could be sufficiently close to the global minimizers
of the original energy H(x) when Rm is small. This result
does not require explicitly the connectedness of the infor-
mation graph during sampling. However, the assumption of
a bounded lattice implies a positive transition probability
between any two configurations over  steps, which conse-
quently implies that there is a positive probability for any
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configuration (including configurations with connected in-
formation graph) to exist every  steps. In other words, the
information graph associated with the swarm configuration
is connected with a positive probability every  steps. In
some sense, this is analogous to the joint connectedness
condition in the deterministic setting [1].

Corollary 3.1 Let the assumptions (A1)− (A3) hold, and
let  be defined as in Theorem 3.2. Let T (n) be a cooling
schedule such that T (n) ≥ ′

lnn , with ′ > . Then for any
initial distribution  , the swarm configuration under parallel
Gibbs sampling converges to M , the set of global minimizers
of Ĥ.

Sketch of proof. First consider a schedule T1(n) that
meets the conditions in Theorem 3.2: T1(n) = Tk = 

lnk ,
k ≤ n < (k + 1). It can be shown that there exists a
finite n0, such that when n ≥ n0, T (n) ≥ T1(n). Define

Qk
�
= PT(k)PT(k+1) · · ·PT((k+1)−1), and Q̂k

�
= P

Tk
. From

T (n) ≥ T1(n), one can establish that the contraction prop-
erty of Qk is non-weaker than that of Q̂k, ∀k > n0/ . The
rest of the proof follows similarly as for Theorem 3.2. �

4 Simulation Results

Simulation has been further performed to corroborate the
analysis and verify the effectiveness of the parallel sam-
pling algorithm. For comparison purposes, a deterministic,
gradient descent-type algorithm has also been implemented.
Under the gradient-type algorithm, the nodes are subject to
the same constraints on Ri, Rs, and Rm. The only difference
from the Gibbs sampling algorithm is that, when updating
its location, each node moves to the location that would
minimize the potential energy if other nodes stay put. Two
examples are presented next: 1) rendezvous, and 2) line for-
mation, both on a 50× 50 square lattice. For the sampling
algorithm, in view of Corollary 3.1, we have adopted sched-
ules of the form: T (n) = T0/ ln(n). T0 is chosen empirically
since the analytically determined values are found to be too
conservative in simulation.

4.1 Rendezvous

In the rendezvous problem, the potential is designed as,
U{s}(xs) = 0, ∀s ∈  , and for t ∈ s(x),

U{s, t}(xs, xt) =

⎧⎨
⎩ 10 if ‖xs− xt‖ = 0

− 1
‖xs−xt‖ otherwise

. (27)

The equation U{s}(xs) = 0 implies that there is no pre-
specified gathering point. By setting the potential of an over-
lapping pair to be high in (27), we discourage multiple
nodes from occupying the same cell and thus avoid over-
crowding. Figs. 2 and 3 show the snapshots of swarm con-
figurations at different times for the gradient-type algorithm

and the sampling algorithm, respectively. The initial config-
urations for both algorithms were the same. The number of
nodes was N = 40, and the parameters used in simulation
were: Rs = 13

√
2+2, Ri = 13

√
2, Rm = 2, and T0 = 5. From

Fig. 2, the nodes formed multiple clusters locally and were
stuck at a local minima of the potential energy under the
gradient-type algorithm. In comparison, under the sampling
algorithm, while the nodes tended to form two clusters at
n = 200, they successfully managed to escape from the trap
and reached rendezvous at n = 650. This example illustrates
the advantage of the Gibbs sampling algorithm over the tra-
ditional gradient-descent-type algorithm in global optimiza-
tion. Of course, the latter is achieved at a cost - it usually
takes the sampling algorithm over 10 times longer to con-
verge than the gradient-type algorithm.
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Fig. 2. Snapshots of a swarm of 40 nodes during rendezvous under
the gradient-type algorithm: (a) n = 2; (b) n = 5; (c) n = 10; (d)
n = 15.

4.2 Line Formation

The nodes are required to form a line that makes a 45◦ angle
with respect to the horizontal axis. The potential is designed
as, U{s}(xs) = 0, ∀s ∈  , and for t ∈ s(x),

U{s, t}(xs, xt) =

⎧⎨
⎩ 0 if ‖xs− xt‖ = 0

−|<xs−xt ,[1, 1]T >|√
2‖xs−xt‖ otherwise

,

where < · > indicates the inner product. The potential is
essentially a measure for the distance between 45◦ and the
angle made by the line connecting a pair of neighboring
nodes with respect to the horizontal line. The additive form
of the potential energy thus encourages nodes to have more
neighbors with desired angles, leading to the formation of
a single line; overlapping nodes, however, are discouraged
since a connecting line is not well defined in that case.
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Fig. 3. Snapshots of a swarm of 40 nodes during rendezvous under
the parallel Gibbs sampling algorithm: (a) Initial configuration;
(b) n = 200; (c) n = 300; (d) n = 650.

Figs. 4 and 5 show the snapshots of swarm configurations
under the gradient-type algorithm and the Gibbs sampling
algorithm, respectively. Here 50 nodes were simulated, with
Rs = 10

√
2+ 3, Ri = 10

√
2, Rm = 3, and T0 = 1. The two

algorithms started with the same initial configuration. With
the gradient-type algorithm, the swarm evolved into three
major stripes, each consisting of line segments of 45 ◦. In
contrast, with the Gibbs sampling algorithm, the swarm first
self-organized into several parallel line segments, which then
merged into a single line of 45 ◦. Fig. 6 compares the evo-
lution of the potential energy with the two algorithms, and
it is evident that the configuration was stuck in a local min-
imum under the gradient-type algorithm.

Multiple simulation runs were carried out, starting from dif-
ferent initial configurations. It is interesting to note that,
in all cases, the swarm configuration converged to the di-
agonal line as in Fig. 5 under Gibbs sampling. This can
be explained by the fact that the diagonal line is the only
configuration that can accommodate 50 vehicles with mini-
mum inter-vehicle separation larger than zero, thus support-
ing the (approximate) global optimization capability of the
algorithm. On the other hand, the gradient-type algorithm
fails to result in the desired configuration most of the time.
Fig. 7 shows the histogram of the potential energy for the
final swarm configuration achieved with the gradient-type
algorithm. Out of a total of 100 simulation runs, the desired
line formation was achieved only once.

5 Conclusion and Discussions

In this paper the parallel Gibbs sampling algorithm for
swarm coordination was analyzed. The explicit expression
for the stationary distribution of swarm configuration was
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Fig. 4. Snapshots of a swarm of 50 nodes during line formation
under the gradient-type algorithm: (a) n = 2; (b) n = 5; (b) n = 10;
(c) n = 15.
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Fig. 5. Snapshots of a swarm of 50 nodes during line formation
under the Gibbs sampling algorithm: (a) Initial configuration; (b)
n = 10; (b) n = 40; (c) n = 140.

derived for the special but popular case of pairwise poten-
tial, and the convergence of the algorithm under appropriate
annealing schedule was established. It was found that the
algorithm minimizes a modified potential energy Ĥ, where
the extent of modification from the original energy H is
related to the moving range Rm per time step. When Rm
is relatively small, the global minimizers of the modified
potential function will be close to those of the original po-
tential function. Simulation results were further presented
to compare the sampling algorithm with a deterministic
gradient-type algorithm. The Gibbs sampling algorithm
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Fig. 7. Histogram of the potential energy for the final swarm
configurations achieved with the gradient-type algorithm.

showed clear advantage in achieving globally optimal con-
figurations, at the cost of exploration time. While this algo-
rithm can provide high-level path planning for autonomous
swarms, it needs to be combined with lower-level path
planners and controllers in implementation, where more
detailed node dynamics and constraints are incorporated.

While only a pairwise potential is considered in this paper,
we note that the class of pairwise potentials encompasses
a broad range of interesting problems in swarming, such
as rendezvous, dispersion, and formation control. The pre-
sented algorithm is decentralized in the sense that there is
no centralized decision maker, and that each mobile node
makes its moving decisions based only on the locations of its
neighbors. In our analysis here, the nodes do need to know
the global time and the annealing schedule. However, these
assumptions are not considered restrictive. It is possible to
relax the assumption on the global time and allow each node
to have bounded uncertainties  on its knowledge about the

global time. In that case, we conjecture that the resulting
configuration x∗ will be close to the set M of global min-
imizers of Ĥ, with the bound on the distance between x∗
and M dependent on the bound on  . The annealing sched-
ule depends only on the potential and is not influenced by
the addition or removal of nodes. So it is reasonable for a
node to get the annealing schedule when it is informed of
the form of the potential (which corresponds to the specific
swarm mission).

Future work can be carried out in a few directions. First,
the analysis in this paper has been focused on the case of
pairwise potentials. We plan to extend the work to cases in-
volving nearest-neighbor potentials of other forms. Second,
the design of potentials corresponding to given swarm mis-
sions is a problem of interest. One needs to understand how
to encode configurations that are desired for a task as the
global minimizers of some potential function. This could be
intuitive for some simple cases (such as the rendezvous), but
is nontrivial in general. A more subtle issue is related to the
landscape of the potential function, which has an effect on
the convergence speed of the sampling algorithm. Finally,
we will also investigate the connection between the paral-
lel Gibbs sampling algorithm studied here and the continu-
ous, diffusions-based swarm coordination approach in [24],
when the time step for Gibbs sampling approaches zero.
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