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a b s t r a c t

State-feedback model predictive control (MPC) of discrete-time linear periodic systems with time-
dependent state and input dimensions is considered. The states and inputs are subject to periodically
time-dependent, hard, convex, polyhedral constraints. First, periodic controlled and positively invariant
sets are characterized, and a method to determine the maximum periodic controlled and positively
invariant sets is derived. The proposed periodic controlled invariant sets are then employed in the design
of least-restrictive strongly feasible reference-tracking MPC problems. The proposed periodic positively
invariant sets are employed in combination with well-known results on optimal unconstrained periodic
linear-quadratic regulation (LQR) to yield constrained periodic LQR control laws that are stabilizing and
optimal. One motivation for systems with time-dependent dimensions is efficient control law synthesis
for discrete-time systems with asynchronous inputs, for which a novel modeling framework resulting in
low dimensional models is proposed. The presented methods are applied to a multirate nano-positioning
system.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

State-feedback MPC theory for constrained discrete-time linear
time-invariant (LTI) systems is well established (Maciejowski,
2002; Mayne, Rawlings, Rao, & Scokaert, 2000; Qin & Badgwell,
2003). In this paper well-known LTI-MPC theory is generalized
to perform MPC of constrained discrete-time linear periodic
systems—useful extensions of LTI systems (Bittanti & Colaneri,
2009; Lovera & Varga, 2005; Meyer & Burrus, 1975; Varga, 2007).
Of particular interest are methods that accommodate periodically
time-dependent state and input dimensions. Key to the proposed
periodic MPC approach is the incorporation of periodic set
invariance concepts, and the application of solutions to reverse
periodic discrete-time algebraic Riccati equations (RP-DAREs), which
were considered for the optimal LQR of unconstrained linear
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periodic systems with time-dependent dimensions in Chu, Fan,
Lin, and Wang (2004) and Varga (2007, 2008). Invariant sets
(Blanchini, 1999) are indispensable in constrained MPC (Mayne
et al., 2000), as they yield tools to engineer the closed-loop
behavior of MPC control laws with a finite prediction horizon. In
the proposed periodic MPCmethods maximum periodic controlled
invariant sets are employed to least-restrictively enforce strong
feasibility (Definition 14) of reference-tracking MPC problems
(Theorem 16), for any prediction horizon length. This is crucial in
practice, where short prediction horizons are often required (Qin &
Badgwell, 2003). Furthermore, for performing constrained periodic
LQR, periodic positively invariant sets are used in conjunction
with solutions to RP-DAREs to enforce a sufficient condition for
closed-loop stability (Theorem 19), and to facilitate selecting the
prediction horizon length such that theMPCproblem is guaranteed
to yield the optimal solution (Theorem 20). The proposed periodic
MPCmethods are generalizations of LTI-MPCmethods, both in the
sense that the MPC concepts are extended from the LTI to the
periodic setting, but importantly also in that when the periodic
system has period length one they reduce to the well-known
LTI-MPC methods. Thus the MPC results of this paper will seem
very natural to readers familiar with Mayne et al. (2000).

Suitably general periodic set invariance has not been character-
ized. An appropriate definition for (maximum) periodic positively
(Definition 3) and controlled (Definition 4) invariant sets is pro-
posed here, and a method for their determination based on cyclic
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shift-invariant lifting (Bittanti & Colaneri, 2000; Flamm, 1991; Park
& Verriest, 1989) and invariant set methods for LTI systems (Blan-
chini, 1999; Dória & Hennet, 1999; Gilbert & Tan, 1991) is pre-
sented. Very closely related polyhedral maximum periodic con-
trolled invariant sets were considered in Blanchini and Ukovich
(1993). Ellipsoidal periodic positively invariant sets were consid-
ered in Böhm, Yu, and Allgöwer (2009). This paper considers poly-
hedral sets, which are more appropriate for systems with poly-
hedral constraints, and furthermore considers maximum invariant
sets, which are crucial for reducing conservativeness in MPC. Nei-
ther Blanchini and Ukovich (1993) nor Böhm, Yu et al. (2009) con-
sidered time-dependent dimensions. Conceptually distinct peri-
odic invariance for linear parameter varying systems was consid-
ered in e.g. Lee and Kouvaritakis (2006), and is not applicable here
as it does not account for periodically time-dependent dynamics
and constraints.

MPC of discrete-time linear/nonlinear periodic systems was
tackled in Böhm, Raff, Reble, and Allgöwer (2009), Böhm, Yu et al.
(2009), Kern, Böhm, Findeisen, and Allgöwer (2009), Kim, Lee, and
Kwon (2000) and Lee, Natarajan, and Lee (2001)/Böhm, Yu et al.
(2009) and Reble, Böhm, and Allgöwer (2009). Only unconstrained
systems were treated in Kim et al. (2000). State constraints were
not accommodated in Kern et al. (2009). In Lee et al. (2001)
the predicted open-loop input trajectory is updated only once
per period, introducing delays in responding to disturbances,
plant-model mismatches and reference changes, the cumulative
effects of which are collectively rejected only at integer multiples
of the period length (see Section 6). This may cause severe
performance degradation even at small disturbance/mismatch
levels, and causes performancedeteriorationwith increasedperiod
length at constant levels of disturbances/mismatches. Similar
delays are encountered in Böhm, Raff et al. (2009), where predicted
state-feedback control laws are recomputed once per period.
The proposed methods respond at each step to disturbances,
mismatches and reference changes. In Lee et al. (2001) the horizon
length must be a multiple of the period length, whereas the
proposed approach allows any horizon length, even one shorter
than one period length. The methods of Böhm, Yu et al. (2009)
and Reble et al. (2009) share key ingredients with the proposed
Theorem 19 to enforce stability when performing constrained
LQR. However, the use of ellipsoidal terminal constraint sets in
Böhm, Yu et al. (2009) and Reble et al. (2009) generally leads to
conservativeness, while in this paper the use ofmaximum periodic
invariant sets avoids conservativeness. However, Böhm, Yu et al.
(2009) and Reble et al. (2009) handle nonlinear systems, whereas
the proposed methods are limited to linear systems. In Böhm, Raff
et al. (2009), Böhm, Yu et al. (2009) and Reble et al. (2009) it was
not considered how to least-restrictively enforce strong feasibility
of reference-tracking MPC problems, or how to verify optimality
when performing constrained LQR. Time-dependent dimensions
were considered in Lee et al. (2001) but not in Böhm, Raff et al.
(2009), Böhm, Yu et al. (2009), Kern et al. (2009), Kim et al. (2000)
and Reble et al. (2009).

In this paper systems with time-dependent state and input
dimensions are proposed as a succinct model of systems with
asynchronous inputs, e.g. multirate inputs, where each input
channel1 may have a unique update frequency, and multiplexed
inputs, where input channels are updated in ordered sequence.
Unconstrained multirate LTI systems were considered in e.g.
Colaneri and De Nicolao (1995), Colaneri, Scattolini, and Schiavoni
(1992), Longhi (1994), Sågfors, Toivonen, and Lennartson (2000),
Scattolini and Schiavoni (1995) and Sezer and S̆iljak (1990),
constrainedmultiplexed LTI systems in Ling, Maciejowski, andWu
(2005) and Richards, Ling, and Maciejowski (2007). There the LTI

1 An input channel is one dimension u[k] of a multi-dimensional input vector u.

system is modeled by a linear periodic system with the time-
invariant state dimension extended by the input dimension. The
extended states are used either to store actual inputs (Colaneri &
De Nicolao, 1995; Colaneri et al., 1992; Longhi, 1994; Sågfors et al.,
2000; Sezer & S̆iljak, 1990), or to integrate the slew inputs (Ling
et al., 2005; Richards et al., 2007; Scattolini & Schiavoni, 1995),
for future use. Crucially, all inputs are stored even if needless.
Asynchronous inputs are modeled by either forcing to zero
(Colaneri & De Nicolao, 1995; Colaneri et al., 1992; Longhi, 1994;
Scattolini & Schiavoni, 1995; Sezer & S̆iljak, 1990), or eliminating
(Ling et al., 2005; Richards et al., 2007; Sågfors et al., 2000), rows
of the input distributionmatrix associated with inputs that are not
updated. The approach proposed here employs the latter method,
which results in a lower, possibly time-dependent number of
inputs. However, the proposed approach further exploits time-
dependent state dimensions to store only those inputs required
later. This may yield significantly lower dimensional models, and
is crucial for MPC and invariant set methods, where computational
complexity is sensitive to both state and input dimension. Another
motivation for time-dependent dimensions is that they are
generally required for minimal periodic system realizations from
input–output maps (Colaneri & Longhi, 1995; Gohberg, Kaashoek,
& Lerer, 1992; Varga, 2004).

This paper presents rigorous treatment of preliminary results
reported in Gondhalekar and Jones (2009).
Notation. The set of reals is denoted by R, the set of non-
negative/positive integers by N/N+, the set of consecutive non-
negative integers {j, . . . , k} by Nk

j . For sets A, B let A \ B := {x ∈
A|x �∈ B}. Let mod : N×N+ → N, mod(i, j) := mink∈N{i−kj|i−
kj ≥ 0}. Denote by In the n × n identity matrix, by 0{n,m} the n × m
zero matrix, by 0 the zero matrix with appropriate dimension, by
diag(a1, . . . , an) the block-diagonal matrix of n elements ai, by a[j]
element jof vector a, byρ(A) the spectral radius ofmatrixA. Denote
by A[:,I] and A[I,:] the submatrices of matrix A consisting of the
columns and rows of A with indices in set I ⊂ N+, respectively.
A sequence of elements xi ∈ X ∀i ∈ Nk

j is denoted by {xi ∈ X}ki=j.
Let ψ(i,k) denote the future value of ψ at step i + k, as predicted
from step i. Let ψi := ψ(i,0).

2. Unconstrained periodic LQR

Consider the discrete-time linear periodic system
xi+1 = Ajxi + Bjui, j := mod(i, p) (1)
with system step i ∈ N, period length p ∈ N+, inter-period step
index j ∈ Np−1

0 , state xi ∈ Rnj and input ui ∈ Rmj . The following
holds for all j ∈ Np−1

0 : Aj ∈ Rnmod(j+1,p)×nj , Bj ∈ Rnmod(j+1,p)×mj , and
nj,mj ∈ N+.

Remark 1. The presentedmethods are in concept applicablewhen
nj = 0 ormj = 0 for some values of j. To avoid notational abuses or
obfuscated notation only systemswith strictly positive dimensions
are explicitly considered. See Section 5 for an example where
mj = 0.

Let {xi ∈ Rnj}∞i=0 and {ui ∈ Rmj}∞i=0 describe some reference
state and input trajectory which should be tracked, respectively.
For brevity let χ := [x�, u�]� and r := [x�, u�]�. For initial
state xi ∈ Rnj the control objective is to minimize quadratic cost
Vj : Rnj → R,

Vj(xi) :=
∞�

k=i

[χk − rk]�Γmod(k,p)[χk − rk],

with Γj :=
�

Qj Sj
S�
j Rj

�
� 0, Qj = Q�

j ∈ Rnj×nj , Rj = R�
j ∈ Rmj×mj ,

Sj ∈ Rnj×mj ∀j ∈ Np−1
0 . Suppose the control objective is unconstrai-

ned periodic LQR: ri = 0 ∀i ∈ N. The minimizer V ∗
j (xi) := x�

i Pjxi
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is achieved by periodic linear state-feedback uk = Kmod(k,p)xk ∀k ∈
N∞

i , Kj ∈ Rmj×nj ∀j ∈ Np−1
0 given by (3), where {P0, . . . , Pp−1}, Pj ∈

Rnj×nj ∀j ∈ Np−1
0 is the unique, positive semi-definite, periodically

stabilizing solution of RP-DARE (2). See Chu et al. (2004) and Varga
(2007, 2008) for solutionmethods and conditions for the existence
of solutions of RP-DAREs.

Pj = Qj + A�
j Pmod(j+1,p)Aj −

�
B�
j Pmod(j+1,p)Aj + S�

j
��

·
�
B�
j Pmod(j+1,p)Bj + Rj

�−1 ·
�
B�
j Pmod(j+1,p)Aj + S�

j
�

(2)

Kj := −
�
B�
j Pmod(j+1,p)Bj + Rj

�−1 ·
�
B�
j Pmod(j+1,p)Aj + S�

j
�
. (3)

3. Periodic set invariance

In this section periodic set invariance (Blanchini, 1999; Blan-
chini & Ukovich, 1993; Böhm, Yu et al., 2009) is characterized, and
an approach for determining maximum periodic invariant sets is
presented. The proposed sets are employed in Section 4 for design-
ing constrained periodic MPC control laws with desirable proper-
ties. The sets are easily robustified against additive disturbances
using standard methods (Blanchini, 1999; Dória & Hennet, 1999).
Robustness is ignored here for brevity. If p = 1 then (1) is LTI and
well-known methods to determine invariant sets may be applied
(Blanchini, 1999; Dória & Hennet, 1999; Gilbert & Tan, 1991). For
the definitions below to be correct make Assumption 2.

Assumption 2. p ≥ 2.
System (1) is required to satisfy polyhedral constraints

Ejxi + Gjui ≤ Wj (4)

with Ej ∈ Rrj×nj ,Gj ∈ Rrj×mj ,Wj ∈ Rrj , rj ∈ N+ ∀j ∈ Np−1
0 .

This paper is restricted to constraints (4) as these lead to tractable
computational procedures.

Definition 3. A set {P0, . . . , Pp−1} of sets Pj ⊆ Rnj ∀j ∈ Np−1
0 is a

periodic positively invariant set for system (1) subject to (4) under
periodic linear state-feedback ui = Kmod(i,p)xi, Kj ∈ Rmj×nj ∀j ∈
Np−1

0 if and only if:

(Aj + BjKj)x ∈ Pmod(j+1,p) ∧ (Ej + GjKj)x ≤ Wj

∀x ∈ Pj ∀j ∈ Np−1
0 . (5)

The maximum periodic positively invariant set is the set {P∗
0, . . . ,

P∗
p−1} of sets P∗

j ⊆ Rnj ∀j ∈ Np−1
0 as follows:

P∗
j :=

�
x ∈ Rnj |xi+1 = (Ak + BkKk)xi ∧ (Ek + GkKk)xi ≤ Wk

∧ k = mod(i, p) ∀i ∈ N∞
j , xj = x

�
.

Sets P∗
j constituting the maximum periodic positively invariant

set contain each state xk such that applying periodic linear state-
feedback ui = Kmod(i,p)xi ∀i ∈ N∞

k achieves constraint satisfaction
indefinitely.

Definition 4. A set {C0, . . . , Cp−1} of sets Cj ⊆ Rnj ∀j ∈ Np−1
0 is a

periodic controlled invariant set for system (1) subject to (4) if and
only if:

∀j ∈ Np−1
0 ∀x ∈ Cj ∃u ∈ Rmj s.t.

Ajx + Bju ∈ Cmod(j+1,p) ∧ Ejx + Gju ≤ Wj. (6)

The maximum periodic controlled invariant set is the set {C∗
0, . . . ,

C∗
p−1} of sets C∗

j ⊆ Rnj ∀j ∈ Np−1
0 as follows:

C∗
j :=

�
x ∈ Rnj |∃{ui ∈ Rmmod(i,p)}∞i=j s.t.

xi+1 = Akxi + Bkui ∧ Ekxi + Gkui ≤ Wk

∧ k = mod(i, p) ∀i ∈ N∞
j , xj = x

�
.

SetsC∗
j constituting themaximumperiodic controlled invariant

set contain each state such that there exists an infinite input
trajectory such that applying this input trajectory achieves
constraint satisfaction indefinitely.

We define the parameters

A :=
�

0 Ap−1
diag(A0, . . . , Ap−2) 0

�
∈ Rn×n

B :=
�

0 Bp−1
diag(B0, . . . , Bp−2) 0

�
∈ Rn×m

K := diag(K0, . . . , Kp−1) ∈ Rm×n

E := diag(E0, . . . , Ep−1) ∈ Rr×n

G := diag(G0, . . . ,Gp−1) ∈ Rr×m

W := [W�
0 , . . . ,W�

p−1]� ∈ Rr

n :=
p−1�

j=0

nj, m :=
p−1�

j=0

mj, r :=
p−1�

j=0

rj

and consider cyclic shift-invariant lifted LTI system (7) with x ∈
Rn,u ∈ Rm (Bittanti & Colaneri, 2000; Flamm, 1991; Park &
Verriest, 1989):
xi+1 = Axi + Bui, Exi + Gui ≤ W. (7)

Equivalent conditions to Eqs. (5) and (6) are Eqs. (8) and (9),
respectively, where P := (P0 × · · · × Pp−1) ⊆ Rn and C :=�
C0 × · · · × Cp−1

�
⊆ Rn.

(A + BK)x ∈ P ∧ (E + GK)x ≤ W ∀x ∈ P (8)

∀x ∈ C ∃u ∈ Rm s.t. Ax + Bu ∈ C ∧ Ex + Gu ≤ W. (9)
Maximum positively and controlled invariant sets P∗ ⊆ Rn and

C∗ ⊆ Rn of cyclic shift-invariant lifted LTI system (7) are given by
Eqs. (10) and (11), respectively (Blanchini, 1999).
P∗ :=

�
x0 ∈ Rn|xi+1 = (A + BK) xi ∧ (E + GK) xi ≤ W ∀i ∈ N

�

(10)
C∗ :=

�
x0 ∈ Rn|∃{ui ∈ Rm}∞i=0 s.t.

xi+1 = Axi + Bui ∧ Exi + Gui ≤ W ∀i ∈ N
�
. (11)

Assumption 5. W > 0. (I.e.Wj > 0 ∀j ∈ Np−1
0 ; the origin is within

the interior of the constraints.)

Assumption 6. The pair (A, B) is stabilizable.

Lemma 7. The set C∗ exists, contains the origin in its interior and is
closed and convex.

Lemma 8. Suppose some periodic linear state-feedback gains Kj ∈
Rmj×nj ∀j ∈ Np−1

0 stabilize system (1), i.e. K satisfies ρ(A + BK) < 1.
Then the set P∗ exists, contains the origin in its interior and is closed
and convex.

The reader is referred to Blanchini (1999), Dória and Hennet
(1999) and Gilbert and Tan (1991) for proofs and discussion of
Lemmata 7 and 8.

Assumption 9. P∗ and C∗ are closed, convex polyhedra.
By Lemmata 7 and 8, sets P∗ and C∗ are closed and convex.

Thus either they are, or can be approximated arbitrarily closely
by, closed and convex polyhedra. If Assumption 9 does not hold
we suppose to have taken polyhedral under-approximations of C∗

and P∗ that are controlled and positively invariant, respectively.
Under Assumption 9, P∗ and C∗ can straightforwardly be unlifted
to yield maximum periodic invariant sets {P∗

0, . . . , P∗
p−1} and

{C∗
0, . . . , C∗

p−1} such that P∗ = (P∗
0 × · · · × P∗

p−1) and C∗ =
(C∗

0 × · · · × C∗
p−1).



Author's personal copy

R. Gondhalekar, C.N. Jones / Automatica 47 (2011) 326–333 329

Remark 10. Under Assumption 9 and by construction due to the
unlifting, sets P∗

j and C∗
j ∀j ∈ Np−1

0 are closed, convex polyhedra
containing the origin in their interiors.

Remark 11. Cyclic shift-invariant LTI system (7) allows math-
ematical insight from the invariant set theory of LTI systems
(Blanchini, 1999; Dória & Hennet, 1999; Gilbert & Tan, 1991) to be
directly applied to periodic invariant sets, e.g. via Lemmata 7 and
8. However, for the numerical determination of periodic invariant
sets, employing the periodic system directly, without lifting, may
result in shorter computation-times, especially when the period
length p is large. Maximum periodic controlled invariant sets with
time-dependent dimensions can also be determined by applying
the method of Blanchini and Ukovich (1993) with trivial modifica-
tions (details omitted), as is done in Section 6.

Note that cyclic shift-invariant lifted LTI system (7) is employed
nowhere in this paper outside of Section 3.

4. MPC of linear periodic systems

State-feedback periodic MPC control law synthesis for refe-
rence-tracking and periodic LQR is tackled next. The proposed
methods could be robustified against additive disturbances using
standard methods (Bemporad & Morari, 1999; Goulart, Kerrigan,
& Maciejowski, 2006). Robustness is not explicitly included in the
control law derivation as it is not a contribution of this paper, and
for brevity.

For prediction horizon length N ∈ N+, MPC achieves closed-
loop control of system (1) subject to (4) by applying at each step
i the first input u(i,0) of a predicted open-loop input trajectory
Ui := [u�

(i,0), . . . , u
�
(i,N−1)]� ∈ Rνmod(i,p) , νj := �j+N−1

k=j mmod(k,p) ∀j ∈
Np−1

0 . An optimal predicted open-loop input trajectory is deter-
mined by solving periodic MPC Problem 12 with cost matrices
Tj ∈ Rnj×nj , Tj � 0, Γj ∈ R(nj+mj)×(nj+mj), Γj � 0 and terminal con-
straint sets Tj ⊆ Rnj ∀j ∈ Np−1

0 . The solution to MPC Problem 12
may not be unique. Parameters N, Tj, Γj and Tj are the design pa-
rameters of MPC Problem 12. Note that prediction horizon length
N and system period length p are independent.

Problem 12. Determine

U∗
i (xi) := arg min

Ui∈Uj(xi)
Jj (xi,Ui)

subject to
Jj (xi,Ui) := [x(i,N) − x(i,N)]�Tmod(i+N,p)[x(i,N) − x(i,N)]

+
N−1�

k=0

[χ(i,k) − r(i,k)]�Γmod(i+k,p)[χ(i,k) − r(i,k)]

Uj(xi) :=




Ui ∈ Rνj

������

x(i,N) ∈ Tmod(i+N,p),
Emod(i+k,p)x(i,k) + Gmod(i+k,p)u(i,k)
≤ Wmod(i+k,p) ∀k ∈ NN−1

0






x(i,k+1) = Amod(i+k,p)x(i,k) + Bmod(i+k,p)u(i,k).

Remark 13. The exact choice of predicted reference values
r(i,k) depends on the available information about the reference
trajectory {rk}i+N

k=i at time i (see Section 6), and does not affect the
results of this paper (see Remark 17).

Define sets Xj of feasible states as follows: Xj := {x ∈ Rnj |Uj(x)
�= ∅} ∀j ∈ Np−1

0 . Note that sets Xj are independent of predicted
reference values r(i,k) and prediction cost matrices Γj and Tj.

Definition 14. MPC Problem 12 is strongly feasible if and only if
from every feasible state xk ∈ Xmod(k,p) the closed-loop state
trajectory {xi}∞i=k due to any sequence of feasible solutions {Ui ∈
Umod(i,p)(xi)}∞i=k remains within the sets of feasible states.

Note that strongly feasibleMPC problems are not guaranteed to
yield stabilizing control laws.

Definition 15. Suppose a specific set of parameters {N, Tj} in MPC
Problem 12 results in the sets X̂j ⊆ Rnj ∀j ∈ Np−1

0 of feasible states.
ThenMPC Problem 12 with {N, Tj} is termed least-restrictive if and
only if any other choice of parameters results in Xj ⊆ X̂j ∀j ∈ Np−1

0 .

Theorem 16. If Tj = C∗
j ∀j ∈ Np−1

0 in MPC Problem 12, then
MPC Problem 12 is a least-restrictive strongly feasible MPC problem.
Proof. Strong feasibility is enforced as follows. If at feasible state
xi MPC Problem 12 determines any solution Ui ∈ Uj(xi) then
x(i,N) ∈ C∗

mod(i+N,p). At the next state xi+1 = x(i,1) = Amod(i,p)xi +
Bmod(i,p)u(i,0) an admissible input trajectory up to but not including
the final control move u(i+1,N−1) is given by the shifted solution
of the step before: u(i+1,k) = u(i,k+1) ∀k ∈ NN−2

0 . Applying this
achieves x(i+1,N−1) ∈ C∗

mod(i+N,p). The existence of an admissible
final control move u(i+1,N−1) such that x(i+1,N) ∈ C∗

mod(i+N+1,p)
is guaranteed by the periodic controlled invariance property of
Eq. (6). By induction this holds recursively. Least-restrictiveness
results from the terminal constraint sets being the sets constituting
themaximum periodic controlled invariant set. For all j ∈ Np−1

0 the
sets Xj of feasible states are the N-step reach-sets to Tmod(j+N,p).
If Tj = C∗

j ∀j ∈ Np−1
0 then Xj = C∗

j ∀j ∈ Np−1
0 ∀N ∈ N+. By

Definitions 4 and 14 there cannot exist a strongly feasible MPC
problem with sets of feasible states which are strict supersets of
the sets constituting the maximum periodic controlled invariant
set. Therefore MPC Problem 12 is least-restrictive according to
Definition 15. �

Any non-maximum periodic controlled invariant set can be
employed in Theorem 16 to enforce strong feasibility of MPC
Problem 12, but may result in an MPC problem that is not least-
restrictive.

Remark 17. Theorem 16 is independent of reference trajectory ri
and predicted references r(i,k). In contrast, Theorems 19 and 20 are
developed specifically for periodic LQR to the origin: ri = 0 ∀i ∈ N.

Assumption 18. Γj � 0 ∀j ∈ Np−1
0 .

Assumption 18 states that stage cost matrices are positive
definite. The solution to MPC Problem 12 is thereby unique.
Less strict assumptions are possible but ignored here for brevity.
Suppose the solution {P0, . . . , Pp−1} of RP-DARE (2), periodic state-
feedback gains {K0, . . . , Kp−1} of (3), and any appropriate periodic
positively invariant set {P0, . . . , Pp−1} have been determined.

Theorem 19. Suppose ri = 0 ∀i ∈ N. If Tj = Pj, Tj = Pj ∀j ∈
Np−1

0 and r(i,k) = 0 ∀(i, k) ∈ N × NN
0 in MPC Problem 12, then

MPC Problem 12 results in a stabilizing control law.
Proof. This follows closely the discussion of Mayne et al. (2000).
Prediction cost Jmod(i,p)

�
xi,U∗

i (xi)
�
is an upper bound of predic-

tion cost Jmod(i+1,p)
�
xi+1,U∗

i+1(xi+1)
�
at the next step. If xi �= 0

then the upper bound is strict. The prediction cost is monotoni-
cally decreasing and thus a Lyapunov function of the closed-loop
system. Consider a feasible state xi �= 0. The solution U∗

i (xi)
achieves x(i,N) ∈ Pmod(i+N,p). At the next state xi+1 = x(i,1) a
feasible solution Ui+1 ∈ Umod(i+1,p)(xi+1) is given by u(i+1,k) =
u(i,k+1) ∀k ∈ NN−2

0 and u(i+1,N−1) = Kmod(i+N,p)x(i+1,N−1). Thus
Jmod(i+1,p)

�
xi+1,U∗

i+1(xi+1)
�
−Jmod(i,p)

�
xi,U∗

i (xi)
�

≤ −χ�
i Γmod(i,p)χi

< 0 by Assumption 18. �
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Theorem 20. Suppose ri = 0 ∀i ∈ N. If Tj = Pj, Tj = Pj ∀j ∈ Np−1
0

and r(i,k) = 0∀(i, k) ∈ N×NN
0 inMPC Problem 12, and if furthermore

solution U∗
i (xi) ofMPC Problem 12 is such that the terminal constraint

is not active (i.e. x(i,N) ∈ interior(Cmod(i+N,p))), then U∗
k (xk)∀k ∈ N∞

i
is infinite-horizon optimal.

Proof. This follows closely the discussion of Mayne et al. (2000).
Solution U∗

i (xi) is the first portion of the input trajectory that
is determined in closed-loop. As the terminal constraint is not
active the terminal cost incorporates the exact cost associated
with the infinite-horizon prediction beyond prediction horizon N .
Consider a feasible state xi and solution U∗

i (xi) such that x(i,N) ∈
Pmod(i+N,p) with no active constraint on terminal state x(i,N). Then
at the next state xi+1 = x(i,1) the solution U∗

i+1(xi+1) is given by
u∗

(i+1,k) = u∗
(i,k+1) ∀k ∈ NN−2

0 and u∗
(i+1,N−1) = Kmod(i+N,p)x(i+1,N−1).

Consequently U∗
i (xi) is infinite-horizon optimal. By induction this

holds recursively. �

If terminal constraint sets Tj are closed, convex polyhedra (see
Remark 10) then MPC Problem 12 can be written as a convex
quadratic programming (QP) problem.

5. Modeling systems with asynchronous inputs

In this section a model for systems with asynchronous inputs is
proposed. Consider system (1) and denote by u[k]i input channel k
at step i. Suppose ui is subject to

u[k]i = u[k]i−1 if k ∈ Îj

where Îj ⊆ {Nmj
1 ∪ ∅} denotes the set of indices of input channels

that cannot be updated at step j. For all j ∈ Np−1
0 let Īj := Nmj

1 \Îj ⊆
{Nmj

1 ∪ ∅} and denote by m̄j ∈ N and m̂j ∈ N the cardinalities of
Īj and Îj, respectively. Note that if Îj = Nmj

1 then m̄j = 0 (see
Remark 1). Let ūi ∈ Rm̄j contain inputs that are updated at step
i, and ûi ∈ Rm̂j inputs that remain unchanged from step i − 1.
Further define x̄i := [x�

i , û�
i ]� ∈ Rn̄j . Then a model of system (1)

containing fewer states and inputs than alternative methods (see
below) is defined as follows:

x̄i+1 =
�
Aj [Bj][:,Îj]
0 αj

�
x̄i +

�[Bj][:,Īj]
βj

�
ūi.

Matricesαj ∈ {0, 1}m̂mod(j+1,p)×m̂j ,βj ∈ {0, 1}m̂mod(j+1,p)×mj ∀j ∈ Np−1
0

are permutation matrices, and not explicitly defined here. The
re-modeling procedure of system (1) is performed as follows. For
all j ∈ Np−1

0 define

Aj := [A�
j , 0�

{m̂mod(j+1,p),nj}]
� ∈ R(nj+m̂j)×nj

Bj := [B�
j , [Imj ]�[Îmod(j+1,p),:]

]� ∈ R(nj+m̂j)×mj

Cj := [Imj ][:,Īj] ∈ {0, 1}mj×m̄j

Dj := [Imj ][:,Îj] ∈ {0, 1}mj×m̂j

Ej := [Inj , 0{nj,m̂j}] ∈ {0, 1}nj×(nj+m̂j)

Fj := [0{m̂j,nj}, Im̂j ] ∈ {0, 1}m̂j×(nj+m̂j)

such that

ui = Cjūi + Djûi, xi = Ejx̄i, ûi = Fjx̄i, (12)

x̄i+1 = Ajxi + Bjui. (13)

Substituting (12) into (13) and (4) yields:

x̄i+1 = (AjEj + BjDjFj)x̄i + (BjCj)ūi

(EjEj + GjDjFj)x̄i + (GjCj)ūi ≤ Wj.

Fig. 1. Asynchronous timing over two periods: p = 4.

To demonstrate, consider system (1) with p = 4 and mj =
2 ∀j ∈ N3

0. The two input channels are updated according to Fig. 1.
At j = 0both input channels, at j = 1onlyu[2], at j = 2onlyu[1], are
updated. At j = 3 neither input channel is updated (see Remark 1).
The system for i ∈ N4

0 is explicitly stated in Eq. (14). Note that
{m̄0, m̄1, m̄2, m̄3} = {2, 1, 1, 0} and n̄j = nj + mj − m̄j ∀j ∈ N3

0.
Values B̄3 = ∅ and ū3 = ∅ are notational abuses (see Remark 1),
but are intended to signify that the system is autonomous when
j = 3.

�
x1

u[1]0

�

� �� �
x̄1

=
� A0

0{1,n0}

�

� �� �
Ā0

x0����
x̄0

+
�

B0

1 0

�

� �� �
B̄0

u0����
ū0

(14)

�
x2

u[2]1

�
=

�
A1 [B1][:,{1}]

0{1,n1} 0

� �
x1

u[1]0

�
+

� [B1][:,{2}]
1

�
u[2]1

� x3
u[1]2
u[2]1

�

=
� A2 [B2][:,{2}]
0{1,n2} 0
0{1,n2} 1

� �
x2

u[2]1

�
+




[B2][:,{1}]

1
0



 u[1]2

x4 =
�
A3 B3

��
x�
3 u[1]2 u[2]1

�� + ∅∅.

In Scattolini and Schiavoni (1995) (slightly differently in
Colaneri and De Nicolao (1995), Colaneri et al. (1992), Longhi
(1994) and Sezer and S̆iljak (1990)) system (1) is modeled
according to Eq. (15) with M0 := I2,M1 := diag(0, 1),M2 :=
diag(1, 0),M3 := 0{2,2} and ūi = ui − ui−1. Note that n̄j = nj +
mj, m̄j = mj = 2 ∀j ∈ N3

0. Matrices Mj force [B̄j][:,{k}] to zero when
input channel k cannot be updated. This causes MPC Problem 12
to contain redundant decision variables, and may result in extra
complexity for invariant set methods. In this example the number
νj of decision variables is on average twice that when using the
model of Eq. (14).

Āj =
�

Aj Bj
0{2,nj} I2

�
∧ B̄j =

�
Bj
I2

�
Mj ∀j ∈ N3

0 (15)

B̄0 =
�
Bo
I2

�
, B̄1 =

�
B1
I2

�

[:,{2}]
,

B̄2 =
�
B2
I2

�

[:,{1}]
, B̄3 = ∅.

(16)

In Ling et al. (2005), Richards et al. (2007) and Sågfors et al.
(2000) system (1) is modeled by Āj and B̄j according to Eqs. (15)
and (16), respectively. Matrices B̄j of Eq. (16) contain only columns
of B̄j in Eq. (15) associatedwith input channels that can be updated.
This avoids the rank-defective B̄j matrices of Eq. (15). However,
the models of Eqs. (15) and (16) have larger state dimensions than
the model of Eq. (14). Excessive state dimensions may increase
the complexity of set invariance methods, invariant sets, and MPC
Problem 12.

Consider continuous-time double-integrator G(s) = s−2 of
Eq. (17), with two input channels updated according to Fig. 1,
and sample-period 0.1 s. The following constraints are imposed:
�x�∞ ≤ 2, �u�∞ ≤ 1, |[1 1]u| ≤ 1. The computation-times τ
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(20 run average) to determine the maximum controlled invari-
ant set C∗ of cyclic shift-invariant lifted LTI system (7) using the
three differentmodels are tabulated below. Set projectionwas per-
formed using Fourier elimination. The benefits of using model (14)
in this example are clear. Note that no general conclusions can be
drawn from this example, as Fourier elimination is sensitive to both
problem instance as well as problem size. However, smaller prob-
lems frequently result in shorter computation times. This motiva-
tional example is used because the plant of Section 6 resulted in
excessive computation-times. All computations presented in this
paper were performed on a 3.33 GHz processor with Matlab and
the Multi-Parametric Toolbox (Kvasnica, Grieder, & Baotić, 2004).

Model n m r τ [s] τ/τ ∗

Eq. (14) 12 4 40 τ ∗ := 32.93 1
Eq. (15) 16 8 40 121.55 3.69
Eq. (16) 16 4 40 83.79 2.54

ẋ =
�
0 1
0 0

�
x +

�
0 0
1 1

�
u. (17)

6. Multirate nano-positioning system example

Consider the simple model of a nano-positioning system in
Fig. 2. The inputs are base- and piezo-stage forces fb and fp. Mass
mb is typically a linear motor with large travel, mass mp a piezo
element for precision positioning and disturbance rejection, but
small travel. The continuous-time LTI dynamics (n = 4,m = 2)
are given by Eq. (18). The following coefficients approximate the
atomic force microscope (AFM) of Jones and Goncalves (2010), with
a slow, heavy base-stage and a fast, lightly damped piezo-stage:
mb = 10 g, mp = 1 g, δb = 10−3 N s/m, δp = 5 · 10−6 N s/m,
k = 0.25 N/m. The following constraints are imposed: |xb| ≤
0.4mm, |xp| ≤ 0.4mm, |xb−xp| ≤ 0.1mm, |ẋb| ≤ 0.03m/s, |ẋb−
ẋp| ≤ 0.1 m/s, |fb| ≤ 5 mN, |fp| ≤ 0.2 mN. The system is
sampled at 1 kHz. Due to the slow base dynamics, input fb is
updated only every 10th sample. This ismodeled as system (1)with
p = 10, n0 = 4,m0 = 2 and nj = 5,mj = 1 ∀j ∈ N9

1.

ẍb = 1
mb

�
−kxb − (δb + δp)ẋb + kxp + δpẋp + fb

�
(18a)

ẍp = 1
mp

�
kxb + δpẋb − kxp − δpẋp + fp

�
. (18b)

The maximum periodic controlled invariant set {C0, . . . , Cp−1}
was determined using the algorithm of Blanchini and Ukovich
(1993) (see Remark 11), requiring 19 iterations and 6.2 min (20
run average). Set projection was performed using Qhull (Barber,
Dobkin, & Huhdanpaa, 1996). The maximum periodic positively
invariant set {P0, . . . , Pp−1}, for system (1) under periodic linear
state-feedback ui = Kjxi with matrices Kj given by Eq. (3), was
determined by applying the algorithm of Gilbert and Tan (1991)
to cyclic shift-invariant lifted LTI system (7), and unlifting the
resulting maximum positively invariant set P∗. The algorithm
of Gilbert and Tan (1991) required 13 iterations. The entire
computation required 27.3 s (20 run average). Note that the
maximum periodic positively invariant set is not employed in this
example.

The control objective is reference-tracking of piezo-stage
position xp. The xp reference trajectory switches between±0.4mm
and is known in advance. The state-input reference trajectory ri
is determined such that a zero offset achieves minimum-energy

Fig. 2. Nano-positioning system schematic.

Fig. 3. Top: Piezo-stage position xp (mm), no mismatch. Middle: Base-stage
velocity ẋb (m/s), no mismatch. Bottom: Piezo-stage position xp (mm), with
mismatch. Constrained periodicMPC: blue, solid. Unconstrained periodicMPC: red,
dash–dotted. Lifted-MPC: green, dashed. Reference: black, solid. Note constraints
|xp| ≤ 0.4, |ẋb| ≤ 0.03. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

steady-state satisfaction of the xp reference to be tracked, for LTI
system (18) with synchronous inputs. Reference trajectory ri is
known in advance for all i ∈ N, and so the employed predicted
reference values are r(i,k) = ri+k ∀(i, k) ∈ N × NN

0 (see Remark 13).
Consequently the closed-loop system non-causally responds to
reference changes before they occur. Cost matrices Q and R equal
to the identity, S = 0, and a prediction horizon of 50 ms (N = 50)
were chosen.

Plotted in Fig. 3 are the piezo-stage position xp (top) and
base-stage velocity ẋb (middle). Two control laws are contrasted;
constrained periodic MPC (blue, solid) according to Theorem 16,
and unconstrained periodic MPC (red, dash–dotted), achieved by
solving MPC Problem 12 with Umod(i,p)(xi) = Rνmod(i,p) ∀i ∈ N.
In both cases Tj = 0 ∀j ∈ Np−1

0 . The solid black line denotes the
xp reference trajectory. Unconstrained control achieves a very fast
response at the expense of serious constraint violation in ẋb, and a
little constraint violation in xp. Constrained periodic MPC achieves
rigorous constraint satisfaction at the expense of a slightly sluggish
response in xp.

Next a plant-model mismatch is introduced such that: xi+1 =
0.99(Axi + Bui). Plotted in Fig. 3 (bottom) is the piezo-stage
position xp. Three control laws are contrasted; constrained
periodic MPC (blue, solid) as above, unconstrained periodic MPC
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(red, dash–dotted) as above, and Lifted-MPC (LMPC) (green,
dashed). In the LMPC approach the linear periodic system is
lifted according to Meyer and Burrus (1975) over an entire
period and LTI-MPC methods applied. LMPC recomputes the input
trajectory after every period, not at every step, and thus suffers
the idiosyncrasies of Lee et al. (2001) (similarly Böhm, Raff et al.,
2009) as explained in Section 1. The constrained/unconstrained
periodic MPC solutions do not track the reference as closely as in
the nominal case of Fig. 3(top), but have not changed significantly
in any way. The LMPC solution rigorously satisfies the constraints,
but produces a larger average error and is highly oscillatory.
Oscillations are generally undesirable, and occur because the lifting
to an LTI system reduces the effective sample-period to 0.1 kHz.
Thus the accumulated effects of the plant-model mismatch are
only rejected at every 10th step. With no plant-model mismatch
LMPC is nearly identical (thus not plotted) to constrained periodic
MPC. This demonstrates how even small disturbances/mismatches
may cause severe performance degradation in LMPC, whereas the
proposed periodic MPC approach degrades more gracefully with
increasing disturbance/mismatch levels.

The periodic MPC control law derivation of Section 4 does not
explicitly enforce robustness. However, the plant-modelmismatch
was chosen such that it does not destroy the strong feasibility
property. To see this, recall that the sets of feasible states are
convex and contain the originwithin their interiors (see Remark 10
and the proof of Theorem 16). In this example the strongly feasible
reference-tracking MPC problem formulation and Theorem 16
were employed, because except for Lee et al. (2001), which
employ LTI-MPC methods, the other referenced periodic MPC
methods cannot handle such situations. Similar periodic control
law considerations, not in anMPC context, weremade in Blanchini
and Ukovich (1993).

7. Conclusion

By characterizing suitably general periodic invariant sets, and
combining them with well-known results on optimal uncon-
strained periodic LQR, constrained periodic MPC problems that
are least-restrictive and strongly feasible, and constrained periodic
MPC problems that yield stabilizing and optimal control laws were
designed. Periodic systems with time-dependent dimensions pro-
vide a compact and unified modeling framework for synthesizing
control laws for systems with asynchronous control inputs. This
periodic modeling framework is trivially extensible to modeling
asynchronous outputs, e.g. caused by multiple measurement rates
(multirate), orwhen sampling outputs at fixed time-intervals in or-
dered sequence (multiplexed). Outputs were ignored here because
the discussion of control law synthesis focused on state-feedback.
The extension of output-feedback MPC theory from LTI to linear
periodic systems, and the use of periodic systems to model asyn-
chronous input/output behavior for control of nonlinear systems,
are of future research interest.
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