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ON IDENTIFICATION OF BOOLEAN CONTROL NETWORKS∗

BIAO WANG† , JUN-E FENG†‡ , AND DAIZHAN CHENG§

Abstract. A new analytical framework consisting of two phenomena: single sample and multiple
samples, is proposed to deal with the identification problem of Boolean control networks (BCNs)
systematically and comprehensively. Under this framework, the existing works on identification can
be categorized as special cases of these two phenomena. Several effective criteria for determining the
identifiability and the corresponding identification algorithms are proposed. Three important results
are derived: (1) If a BN is observable, it is uniquely identifiable; (2) If a BCN is O1-observable, it
is uniquely identifiable, where O1-observability is the most general form of the existing observability
terms; (3) A BN or BCN may be identifiable, but not observable. In addition, remarks present some
challenging future research and contain a preliminary attempt about how to identify unobservable
systems.

Key words. identification, controllability, observability, Boolean control networks, semi-tensor
product.
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1. Introduction. Boolean network (BN), proposed by Kauffman in 1969 [16],
is an ideal mathematical model of simulating the gene regulation networks. It quanti-
tates the interactions among genes within cells (or within a particular genome). The
expression, replication, transcription and other activities of genes can be directly re-
flected by system states and functions [17]. BN has prompted many researchers to
find and ask for similar models. As a result, a large number of models were born.
For example, some genes continuously adjust the glucose consumption of cells and so
provide the fuel by which they grow and multiply. For analyzing such a biological
system, Boolean control network (BCN) becomes a proper model [11, 15]. One of the
main tools for studying BNs and BCNs is called the semi-tensor product (STP) of
matrices, which was proposed by Prof. Cheng [5, 6, 9]. Its basic idea is to describe
the system behavior as a discrete time algebra form, by which, some classical control
ideas are incorporated into the analysis of BNs [2, 19, 21, 24, 35] and the control
design of BCNs [20, 23, 29, 30, 33, 34], as people have seen in recent years.

Many wild animals carry multiple viruses that have no effect on the animals
themselves, but may be both high contagious and deadly to human beings. Antiviral
immunity plays a key role against virus diseases. Its research involves the pathologic
manifestations, symptoms and detection technologies of viral disease, which is the
major cause of network identification being currently an important topic. Network
identification aims to find the methods or algorithms for constructing the dynamics
of systems. For an unknown biological system or an environment where some viruses
survive, only input-output data can be obtained, however, their changes can reflect
some particular functions and features of a system. Hence these data are directly used
to build the model describing the original complicated network. Some early results
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2 B. WANG, AND J.-E. FENG, AND D. Z. CHENG

considered identification of the network transition mappings [1, 22, 25, 26]. Under
the framework of STP, the identification of BNs can be equivalently transformed into
the identification of related structure matrices, which was proposed in [7] and was
extended to BCNs in [10]. [10] noticed that, a BCN is identifiable if and only if it
is controllable and O3-observable. This O3-observability originates from one of five
branching paths to the development of observability. We list these five definitions of
observability below.

Definition 1.1. A BCN is Oi-observable, (i = 1, 2, 3, 4, 5), if
(O1) [32] for any two distinct states x(0) 6= x̄(0), there exists an input sequence

(u(0), u(1), . . .), such that the corresponding output sequences are distinct:
(y(0), y(1), . . .) 6= (ȳ(0), ȳ(1), . . .);

(O2) [4] for any a state x(0) there exists an input sequence (u(0), u(1), . . .), such
that for any x̄(0) 6= x(0), the corresponding output sequences are distinct:
(y(0), y(1), . . .) 6= (ȳ(0), ȳ(1), . . .);

(O3) [18] there exists an input sequence (u(0), u(1), . . .), such that for any two
distinct states x(0) 6= x̄(0), the corresponding output sequences are distinct:
(y(0), y(1), . . .) 6= (ȳ(0), ȳ(1), . . .);

(O4) [12] for any two distinct states x(0) 6= x̄(0) and for any input sequence
(u(0), u(1), . . .), the corresponding output sequences are distinct: (y(0), y(1),
. . .)6= (ȳ(0), ȳ(1), . . .);

(O5) [14] there exists an output-feedback loop u(t) = ft(y(t)) (u(t) = f(y(t)) for
static control), such that for any two distinct states x(0) 6= x̄(0), the corre-
sponding output sequences are distinct: (y(0), y(1), . . .) 6= (ȳ(0), ȳ(1), . . .).

Most of the criteria and methods for judging the first four kinds of observability
(O1-O4) are not ideal, some are sufficient conditions, some are too complex to apply.
[31] proposed a unified approach based on finite automata to determine these four
observabilities, and presented corresponding four necessary and sufficient conditions.
This automata approach is more suitable for BCNs with fewer state nodes and input
nodes due to the high complexity of constructing deterministic finite automata. [8]
concentrated on the most general observability (O1), and presented a matrix-based
approach with lower complexity by STP. Mathematically speaking, the requirement
of input sequences used to recognize the initial state x(0) gradually increases from
O1-observability (the most general form) to O4-observability (the sharpest form).
Hence, O4 =⇒ O3 =⇒ O2 =⇒ O1, which is shown as a relation diagram in [31].
In particular, determining O3-observability is NP-hard [18]. O5-observability that
recognizes the initial state via output feedback, called output-feedback observability,
was first proposed in [13]. This one is much sharper than the first two observabilities.
[14] used paralled interconnected two identical BCNs to determine O5-observability,
by converting the observability problem of the original BCN to the set reachability
problem of the interconnected BCN.

As mentioned above, the identification of BCNs requires O3-observability. A nat-
ural question arises: what about the most general form, O1-observability? Motivated
by that, we further develop the identification problem for BCNs in this paper. Main
contributions are summarized as follows:

(1) Three important theoretical results are obtained: (3a) A BN is uniquely
identifiable if it is observable; (3b) A BCN is uniquely identifiable if it is O1-observable.
It is worth pointing out that O1-observability is the most general one of the existing
observability terms. (3c) A BN or BCN may be identifiable, but not observable.

(2) In combination with the phenomena in medical detection, we propose two new
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ON IDENTIFICATION OF BOOLEAN CONTROL NETWORKS 3

concepts: single sample and multiple samples to deal with the identification problem
of BCNs. Based on them, the identification problem is divided into four situations.
We point out that the existing works on identification are actually special cases of
these four situations.

(3) By virtue of the observability property, we form a one-to-one correspondence
between the state and the output sequence. Then four simple criteria to determine
the identifiability and four effective algorithms to construct the structure matrices are
proposed.

The rest of the paper is organized as follows. Section II contains preliminary no-
tations, fundamental definitions and problem formulation. Section III presents main
results on identification of BNs and BCNs, including several discriminant methods for
the identification property, several identification algorithms to construct the structure
matrices and illustrative examples. Remarks are given to show some challenging and
interesting future research. Finally, a table describes the relationships and compar-
isons of the results obtained in this paper, and Section IV concludes the paper.

2. Preliminaries.

2.1. Semi-tensor product. This section gives some necessary preliminaries.
More details can be referred to [9]. First, some notations are listed below:

• N = {0, 1, 2, . . .}: the natural number set.
• [a, b]N: all the natural numbers from a to b.
• δin: the ith column of the identity matrix In.
• ∆n := {δ1n, δ

2
n, . . . , δ

n
n}.

• 1n :=
∑n

i=1 δ
i
n.

• [δi1n δi2n · · · δimn ] := δn[i1 i2 · · · im].
• (δi1n , δi2n , . . . , δimn ) := δn(i1, i2, . . . , im).
• Coli(M): the ith column of matrix M .
• Col(M): the set of all columns of M .
• Lm×n: = {M |M ∈ R

m×n, Col(M) ⊆ ∆m}.
• [M ]i,j : the (i, j)th entry of matrix M .
• MT: the transpose of matrix M .
• Kronecker product: A⊗B = ([A]i,j ×B).
• K-R product: A ∗B = C, Coll(C) = Coll(A) ⊗ Coll(B).

Definition 2.1. [9] The semi-tensor product (STP) of two matrices A ∈ R
m×n

and B ∈ R
p×q is

A⋉B = (A⊗ I s
n
)(B ⊗ I s

p
),

where s is the least common multiple of n and p.

Obviously, the STP becomes the conventional matrix product if n = p. Hence
the symbol ⋉ is omitted in the sequel.

Lemma 2.2. [9] Let f(x1, . . . , xn) be a Boolean function, where x1, . . . , xn are
Boolean variables. Within the framework of vector form, f can be converted into
f : ∆2n → ∆2, and there exists a unique matrix Mf ∈ L2×2n , called the structure
matrix of f , such that

f(x1, . . . , xn) = Mf ⋉ x1 ⋉ · · ·⋉ xn.

This manuscript is for review purposes only.



4 B. WANG, AND J.-E. FENG, AND D. Z. CHENG

Consider a BCN with n state nodes, m input nodes and l output nodes as follows:

(2.1)





xi(t+ 1) = fi(u1(t), . . . , um(t), x1(t), . . . , xn(t)),
yj(t) = hj(x1(t), . . . , xn(t)),
i ∈ [1, n]N, j ∈ [1, l]N, t ∈ N,

where fi : Dm+n → D and hj : Dn → D are logical functions, xi ∈ D, uj ∈ D and
yk ∈ D are the state, input and output of the system, respectively.

From Lemma 2.2, each logical function fi (hj) has unique structure matrix Mfi

(Mhj
), then BCN (2.1) can be equivalently transformed into an algebraic form as

follows [9]:

(2.2)

{
x(t+ 1) = Fu(t)x(t),
y(t) = Hx(t),

where F = Mf1 ∗ Mf2 ∗ · · · ∗ Mfn , H = Mh1
∗ Mh2

∗ · · · ∗ Mhl
, x(t) = ⋉

n
i=1xi(t),

u(t) = ⋉
m
j=1uj(t), y(t) = ⋉

l
k=1yk(t). This form is called the algebraic state space

representation of (2.1).

2.2. Problem statement. The identification problem of BCN (2.2) is to con-
struct two structure matrices F and H via available data. Denote

Ui(pi) :={ui(t)}
pi

t=0 = (ui(0), ui(1), ui(2), . . . , ui(pi)),

Xi(pi) :={xi(t)}
pi

t=0 = (xi(0), xi(1), xi(2), . . . , xi(pi)),

Yi(pi) :={yi(t)}
pi

t=0 = (yi(0), yi(1), yi(2), . . . , yi(pi)),

and

{Ui(pi)} :={ui(0), ui(1), ui(2), . . . , ui(pi)},

{Xi(pi)} :={xi(0), xi(1), xi(2), . . . , xi(pi)},

{Yi(pi)} :={yi(0), yi(1), yi(2), . . . , yi(pi)}.

Definition 2.3. A BCN (2.2) is said to be identifiable, if its two structure ma-
trices F and H can be determined via available data: input data U1(p1), U2(p2), . . . ,
Uk(pk) and observed data Y1(p1), Y2(p2), . . . , Yk(pk).

A coordinate transformation ω = Gx could convert (2.2) into the following alge-
braic form:

{
ω(t+ 1) = GF (I2m ⊗GT)u(t)ω(t) =: F̂ u(t)ω(t),

y(t) = HGTω(t) =: Ĥω(t).
(2.3)

Due to the arbitrariness of state recognition, (2.2) and (2.3) are considered to be

identical in the same input-output data frame, so the set of all possible (F̂ , Ĥ) be-
comes the equivalence class of (F,H). A identifiable BCN is also said to be uniquely

identifiable in the sense of equivalence.

Assumption 1. This paper assumes the available data is sufficient. In other
words, the input data and the observed data contain all possible situations which the
system could generate.

Generally speaking, densely populated cities are good places for virus or infectious
diseases, which could spread easily from person to person. The Centers for Disease
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ON IDENTIFICATION OF BOOLEAN CONTROL NETWORKS 5

Control and Prevention can collect a large number of samples from different patients
infected by the same pathogen. Hence, Assumption 1 is reasonable and its imple-
mentation requires multiple samples from large numbers of patients (urine sample
or blood sample or cheek swab), not a single sample from one patient, since a single
sample may exhibit only part of characteristics of the virus. Multiple samples mean
that the observed data may be generated from different initial states, while, single
sample means that the observed data is generated from some initial state.

On the basis of the statement above, the identification of BNs and BCNs can be
divided into four cases:
Case 1 : the identification process of single sample in the BN records one group of

output data Y (p).
Case 2 : the identification process of multiple samples in the BN records k groups of

output data Y1(p1), Y2(p2), . . . , Yk(pk).
Case 3 : the identification process of single sample in the BCN records r groups of

input-output data U1(p1), Y1(p1), U2(p2), Y2(p2), . . . , Ur(pr), Yr(pr).
Case 4 : the identification process of multiple samples in the BCN records rk groups

of input-output data U i
1(p1), Y

i
1 (p1), U

i
2(p2), Y

i
2 (p2), . . . , U

i
r(pr), Y

i
r (pr), i ∈

[1, k]N.
Both Cases 1 and 3 collect the blood sample from only one patient, while Cases 2 and
4 collect from k patients. Case 3 divides the blood sample into multiple portions (r
portions) for testing with a variety of reagents. That is to say, r groups of input-output
data are generated from the same initial state, i.e., x1(0) = x2(0) = · · · = xr(0) (in
Case 3). Similarly, xi

1(0) = xi
2(0) = · · · = xi

r(0), i ∈ [1, k]N in Case 4.

3. Identification of BNs and BCNs.

3.1. Identification of BNs. [7] investigated the identification of the following
BN:

{
x(t+ 1) = Fx(t),
y(t) = x(t),

(3.1)

in which the observed data is presented directly by the system state. With a group of
observed data (x1(0) = δi02n , x1(1) = δi12n , . . .), the i0th column of F can be identified
as Coli0(F ) = δi12n and hence the next result is obtained.

Lemma 3.1. [7] (Multiple samples) BN (3.1) is uniquely identifiable, if and only
if the observed data contains all possible states:

{Y1(p1)} ∪ {Y2(p2)} ∪ · · · ∪ {Yk(pk)} = ∆2n .(3.2)

It is noted that the observed data considered in [7] may consist of several output
sequences (i.e., multiple samples), which is reasonable because a system may contains
multiple attractors and multiple attractors mean multiple state trajectories. When
the system state cannot be directly observed, BN (3.1) becomes

{
x(t+ 1) = Fx(t),
y(t) = Hx(t).

(3.3)

In the process of identifying this system, it is the most important to distinguish the
states.

Definition 3.2. In BN (3.3), a state pair (x(0), x̄(0)), x(0) 6= x̄(0) is said to be
distinguishable if the corresponding output sequences generated by them are distinct:

This manuscript is for review purposes only.



6 B. WANG, AND J.-E. FENG, AND D. Z. CHENG

(y(0), y(1), . . .) 6= (ȳ(0), ȳ(1), . . .). (3.3) is said to be observable if any state pair is
distinguishable.

Observability means that 2n distinct initial states generate 2n distinct groups of
observed data, i.e.,

(Hδi2n , HFδi2n , HF 2δi2n , . . .) 6= (Hδi
′

2n , HFδi
′

2n , HF 2δi
′

2 , . . .), i 6= i′.(3.4)

Since each state trajectory will fall into an attractor in 2n steps, the subsequent
state trajectory and output trajectory will repeat the previous data. Lemma 1 and
Proposition 1 in [12] show the following result.

Proposition 3.3. [12] BN (3.3) is observable if and only if for any i 6= i′,

(Hδi2n , HFδi2n , . . . , HF 2n−1δi2n) 6= (Hδi
′

2n , HFδi
′

2n , . . . , HF 2n−1δi
′

2 ).(3.5)

We call (Hδi2n , HFδi2n , . . . , HF 2n−1δi2n) the effective output sequence of state δi2n .
An effective output sequence corresponds to a state and its length is 2n steps. Under
the case of Assumption 1, if the system is observable, 2n distinct effective output
sequences can be found by searching and comparing all 2n-step output sequences
from sufficient observed data.

Assume that the following k groups of observed data are sufficient,

Yj(Tj) = (yj(0), yj(1), . . . , yj(Tj)), j ∈ [1, k]N.(3.6)

Let Y j
s represent the sth 2n-step output sequence to show up in Yj(Tj):

Y j
s =(yj(s− 1), yj(s), . . . , yj(s+ 2n − 2)), s ∈ [1, T ′

j]N,(3.7)

where T ′

j = Tj − 2n + 2. Then by retrieval from (3.6), an algorithm (Algorithm 3.1)
to find 2n distinct effective output sequences is established, and this algorithm names
the ith effective output sequence that occurs in Algorithm 3.1 as Yi, (i ∈ [1, 2n]N).

Algorithm 3.1 Retrieve all distinct effective output sequences

Input: data (3.6).
Output: Y1, Y2, . . . , Y2n .
1: set Y = ∅ and i = 1
2: for j = 1; j < k; j ++ do
3: for s = 1; s < T ′

j; s++ do

4: if Y j
s ∈ Y then

5: break;
6: else
7: Yi = Y j

s , Y = Y ∪ Y
j
i , i = i+ 1;

8: end if
9: end for

10: end for

Theorem 3.4. (Multiple samples) BN (3.3) is uniquely identifiable if it is ob-
servable.

Proof. From the analysis above, if (3.3) is observable, all distinct effective output
sequences Yi, i ∈ [1, 2n]N can be obtained by Algorithm 3.1 and enough observed data
(3.6).

This manuscript is for review purposes only.
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Identify Yi as the effective output sequence of state δi2n , i ∈ [1, 2n]N, then the
following k state sequences:

Xj(T
′

j) = (xj(0), xj(1), . . . , xj(T
′

j)), j ∈ [1, k]N(3.8)

can be derived by

xj(t) = δit2n , t ∈ [0, T ′

j], if (yj(t), yj(t+ 1), . . . , yj(t+ 2n − 1)) = Yit .(3.9)

Combining the observed data (3.6) and the state data (3.8), F and H can be con-
structed by

{
xj(t+ 1) = Fxj(t), t ∈ [0, T ′

j − 1]N, j ∈ [1, k]N,
H = [Y1(0) Y2(0) · · · Y2n(0)],

(3.10)

where Yi(0) represents the first element in Yi, i ∈ [1, 2n]N.
Note that the appointment δi2n of the effective output sequence Yi can be changed

in any order, due to the arbitrariness of state recognition. Then another (F̂ , Ĥ) is
derived, which is analogous to the case of (2.3). One kind of order corresponds to one

coordinate transformation w = Gx, and (F̂ , Ĥ) can be written as:
{

w(t + 1) = GFGTw(t) =: F̂w(t),

y(t) = Hx(t) = HGTw(t) =: Ĥw(t),
(3.11)

which implies both (F,H) and (F̂ , Ĥ) belong to an equivalence class. Hence, BN (3.3)
is uniquely identifiable.

On the basis of Theorem 3.4, an algorithm (Algorithm 3.2) to identify (F,H) is
established.

Algorithm 3.2 Identify (F,H) for BN (3.3) (Deal with Case 2).

Input: data (3.6).
Output: F,H .
Step 1 : Find all distinct effective output sequences by Algorithm 3.1.
Step 2 : For j ∈ [1, k]N and t ∈ [0, T ′

j], identify the state sequence (3.8) by (3.9).
Step 3 : Construct F and H based on (3.10).

Example 1. Consider a BN with 3 state codes and 1 output code, and assume
there are two groups of observed data:





Y1(14) = δ2(2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1),
= (y1(0), y1(1), y1(2), y1(3), . . . , y1(14)),

Y2(12) = δ2(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1),
= (y2(0), y2(1), y2(2), y2(3), . . . , y2(12)).

(3.12)

Step 1: All distinct effective output sequences are




Y1 = (y1(0), y1(1), . . . , y1(7)) = δ2(2, 1, 1, 2, 2, 2, 1, 2),
Y2 = (y1(1), y1(2), . . . , y1(8)) = δ2(1, 1, 2, 2, 2, 1, 2, 2),
Y3 = (y1(2), y1(3), . . . , y1(9)) = δ2(1, 2, 2, 2, 1, 2, 2, 2),
Y4 = (y1(3), y1(4), . . . , y1(10)) = δ2(2, 2, 2, 1, 2, 2, 2, 1),
Y5 = (y1(4), y1(5), . . . , y1(11)) = δ2(2, 2, 1, 2, 2, 2, 1, 2),
Y6 = (y1(5), y1(6), . . . , y1(12)) = δ2(2, 1, 2, 2, 2, 1, 2, 2),
Y7 = (y2(0), y2(1), . . . , y2(7)) = δ2(1, 2, 1, 2, 1, 2, 1, 2),
Y8 = (y2(1), y2(2), . . . , y2(8)) = δ2(2, 1, 2, 1, 2, 1, 2, 1).

(3.13)
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Step 2: Two state sequences are identified as




X1(8) = (x1(0), x1(1), x1(2), . . . , x1(8))
= δ8(1, 2, 3, 4, 5, 6, 3, 4, 5),

X2(5) = (x2(0), x2(1), x2(2), x2(3), x2(4), x2(5))
= δ8(7, 8, 7, 8, 7, 8).

(3.14)

Step 3: Based on x1(t+ 1) = Fx1(t), t ∈ [0, 8]N, we get

x1(1) = Fx1(0) ⇒ δ28 = Fδ18 , x1(4) = Fx1(3) ⇒ δ58 = Fδ48 ,

x1(2) = Fx1(1) ⇒ δ38 = Fδ28 , x1(5) = Fx1(4) ⇒ δ68 = Fδ58 ,

x1(3) = Fx1(2) ⇒ δ48 = Fδ38 , x1(6) = Fx1(5) ⇒ δ38 = Fδ68 .

Similarly, from x2(t+ 1) = Fx2(t), t ∈ [0, 5]N, we get

x2(1) = Fx2(0) ⇒ δ88 = Fδ78 , x2(2) = Fx2(1) ⇒ δ78 = Fδ88 .

It is clear that F = δ8[2 3 4 5 6 3 8 7]. On the other hand,

H =[Y1(0) Y2(0) · · · Y8(0)]

=[y1(0) y1(1) y1(2) y1(3) y1(4) y1(5) y2(0) y2(1)]

=δ2[2 1 1 2 2 2 1 2].

To sum up, the system is identified as:
{

x(t+ 1) = δ8[2 3 4 5 6 3 8 7]x(t),
y(t) = δ2[2 1 1 2 2 2 1 2]x(t).

(3.15)

If we identify Y7 ∼ δ18 , Y8 ∼ δ28 , Y1 ∼ δ38 , Y2 ∼ δ48 , Y3 ∼ δ58 , Y4 ∼ δ68 , Y5 ∼ δ78 and
Y6 ∼ δ88 , then the corresponding BN becomes:

{
x(t+ 1) = δ8[2 1 4 5 6 7 8 5]x(t),
y(t) = δ2[1 2 2 1 1 2 2 2]x(t).

(3.16)

Although two systems (3.15) and (3.16) are derived from different appointments of
effective output sequences, both of them belong to an equivalence class.

From this example, we can discern a special case: the observed multiple data
are exactly 2n distinct sequences (yi(0), yi(1), · · · , yi(2N − 1)), i = 1, 2, · · · , 2n. The
BN can also be identified by appropriately extending the length of the observed data
(further collection adds one more element to each sequence). In addition, Algorithms
3.1 and 3.2 also work with insufficient data, in which case, there exist some identical
groups of observed data induced by some states that are indistinguishable, such that
two structure matrices constructed are of low dimensions (F ∈ L2n×s, H ∈ L2l×s, s <

2n).
In previous studies [12, 28], the effective output sequences are used to judge the

observability, which is usually implemented by a tool called observability matrix:

O = [(PH)T (PHF )T · · · (PHF 2n−1)T]T,(3.17)

where P = [1 2 · · · 2l] is a row vector consisting of [1, 2l]N and aims to extract the
superscripts of all column vectors in H . For example, if H = δ2[1 2 2 1], PH =
[1 2 2 1]. The effective output sequence of state δi2n is recorded in the ith column of
O: Coli(O) = [PHδi2n PHFδi2n · · · PHF 2n−1δi2n ]

T. Therefore, finding 2n effective
output sequences is equivalent to constructing the observability matrix.
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Example 2. Recall Example 1.

Yi is identified as the of state δi2n . Hence, we have

O =











Py1(0) Py1(1) · · · Py1(5) Py2(0) Py2(1)
Py1(1) Py1(2) · · · Py1(6) Py2(1) Py2(2)

...
...

. . .
...

...
...

Py1(7) Py1(8) · · · Py1(12) Py2(7) Py2(8)











=

























2 1 1 2 2 2 1 2
1 1 2 2 2 1 2 1
1 2 2 2 1 2 1 2
2 2 2 1 2 2 2 1
2 2 1 2 2 2 1 2
2 1 2 2 2 1 2 1
1 2 2 2 1 2 1 2
2 2 2 1 2 2 2 1

























,

which is the observability matrix of system (3.13).

Proposition 3.5. If O and Ô are the observability matrix of (3.3) and (3.11),
respectively, then

O = ÔG or OGT = Ô.

Proof. From (3.17), it is clear that:

Ô = [(PĤ)T (PĤF̂ )T · · · (PĤF̂ 2n−1)T]T.(3.18)

Combining Ĥ = HGT and F̂ = GFGT, we get

Ô =[(PHGT)T (PHGTGFGT)T · · · (PHGT(GFGT)2
n
−1)T]T

=[(PHGT)T (PHFGT)T · · · (PHF 2n−1GT)T]T,

ÔG =[(PHGT)T (PHFGT)T · · · (PHF 2n−1GT)T]TG

=[(PHGTG)T (PHFGTG)T · · · (PHF 2n−1GTG)T]T

=[(PH)T (PHF )T · · · (PHF 2n−1)T]T = O.

Introducing the observability matrix O facilitates MATLAB programming. After
constructing such an observability matrix from observed data, x(t) can be determined
as δi2n if [Py(t) Py(t+1) · · · Py(t+2n− 1)]T = Coli(O). Proposition 3.5 shows that
the observability matrix of some system becomes that of another system by elemen-
tary column transformations, which further explains that different orders (3.8) (or
observability matrices) give rise to different systems (F,H). However, these systems
belong to an equivalence class.

Remark 3.6. If BN (3.3) is identifiable, then is it observable? Consider a BN with
F = δ4[3 3 4 4] and H = δ2[1 1 2 1]. Its state transition diagram is shown in Fig. 1.
This BN is unobservable since δ14 and δ24 have same effective output sequence.

When the system is unknown, with sufficient data Y (8) = δ2(1, 2, 1, 1, 1, 1, 1, 1, 1)
we can only find three distinct output sequences

Y1 = δ2(1, 2, 1, 1), Y2 = δ2(2, 1, 1, 1), Y3 = δ2(1, 1, 1, 1).
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10 B. WANG, AND J.-E. FENG, AND D. Z. CHENG

Fig. 1. The state transition diagram of an unobservable BN.

Then the corresponding state sequence can be determined as X(5) = δ4(1, 2, 3, 3, 3, 3).
If we know Y4 = Y1, x(1) = Fx(0) produces δ24 = Fδ14 and δ24 = Fδ44 . It follows that
F = δ4[2 3 3 2] and H = δ2[1 2 1 1]. This system and the original system coincide
in the sense of equivalence. This example shows that an unobservable system may be
identifiable.

Remark 3.7. To determine the observability, the dimensions of observability ma-
trix O could be (2n − 1) × 2n (see [12, 28]). That is to say, the condition (3.5) in
Proposition 3.3 can be improved as

(Hδi2n , HFδi2n , . . . , HF 2n−2δi2n) 6= (Hδi
′

2n , HFδi
′

2n , . . . , HF 2n−2δi
′

2n),(3.19)

which implies that the length of the effective output sequence can be further reduced
to (2n − 1) steps. In a 2n-step output sequence Y , its first (2n − 1) steps and last
(2n − 1) steps, respectively denoted by fe(Y ) and le(Y ), reflect two effective output
sequences, and hence they reflect two consecutive states. Assume Yi and Yi′ are two
output sequences stemming from δi2n and δi

′

2n , respectively. If le(Yi) = fe(Yi′ ), then
state δi

′

2n follows state δi2n , i.e., δ
i′

2n = Fδi2n . So, comparing Y1, Y2, . . . , Y2n generated
by Algorithm 3.1, we can directly construct F and H . For example, (3.13) satisfies

le(Y1) = fe(Y2), le(Y2) = fe(Y3), le(Y3) = fe(Y4), le(Y4) = fe(Y5),

le(Y5) = fe(Y6), le(Y6) = fe(Y3), le(Y7) = fe(Y8), le(Y8) = fe(Y7).

Then, Fδ18 = δ28 , F δ28 = δ38 , F δ38 = δ48 , F δ48 = δ58 , F δ58 = δ68 , F δ68 = δ38 , F δ78 = δ88 , F δ88 =
δ78 . Obviously, this process is simpler than Algorithm 3.2. However, extending this
method to BCNs is not easy and requires consideration of the input sequence.

3.2. Identification of BCNs. The identification problem of BCNs is com-
plicated because more attractors will emerge as the control is embedded. Consid-
ering BCN (2.2), the identification of F ∈ L2n×2m+n needs the input-state data
(U1(p1), X1(p1), . . . , Uk(pk), Xk(pk)) that could cover all the possibilities of ∆2m+n .
Then the identification problem is equivalent to checking

k⋃

i=1

{Ui(pi)Xi(pi)} = ∆2m+n ,(3.20)

where Ui(pi)Xi(pi) represents (ui(0)xi(0), ui(1)xi(1), . . . , ui(pi)xi(pi)).
An ideal situation that only one group (U1(p1), X1(p1)) (not k groups) is used

to solve the identification problem of F , which was divided into two cases H = I2n
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and H 6= I2n , and was analyzed in [10]. The observed data considered in [10] can be
seen as a special case of Case 3. Next we slightly explain the method of [10] and use
(U(p), X(p), Y (p)) instead of (U1(p1), X1(p1), Y1(p1)) for simplicity.

Under a designable input sequence U(p), the input-state pair (u(t), x(t)) to tra-
verse all the possibilities of ∆2m+n can be guaranteed by controllability. BCN (2.2)
is said to be controllable, if for any initial state x(0) = x0 ∈ ∆2n and any destina-
tion state xd ∈ ∆2n , there exists an input sequence U(T ), such that x(T + 1) = xd

[4]. When the system state is directly observable (H = I2n), the following lemma is
immediate.

Lemma 3.8. [10] Let H be the identity matrix I2n , then BCN (2.2) is uniquely
identifiable if and only if (2.2) is controllable.

If a system is controllable, a single test sample could traverse all the possibilities.
Hence Lemma 3.8 is based on only one group of input-output data. For the general
case of H 6= I2n , the observability is involved again.

The O3-observability property of BCN (2.2) can be viewed as the observability
property of BN (3.3) to some extent. Given an input sequence, a BCN is subject to
a fixed evolutionary mechanism, similar to a BN. Therefore, our main purpose is to
find all distinct output sequences generated by an input sequence that makes (2.2)
O3-observable. [10] designed an enough input sequence U(T ′) which could determine
the state sequence X(T ) (T < T ′) by combining the corresponding output sequence
Y (T ′ + 1), where X(T ) is the previous part of X(T ′ + 1) generated by U(T ′).

Lemma 3.9. [10] BCN (2.2) is uniquely identifiable from input-output data if and
only if it is controllable and O3-observable.

Lemma 3.9 is also based on only one group of input-output data. By control-
lability, there exists an input sequence U(T ′), such that the system runs along the
following state trajectory X(T ′ + 1) [10]:

X(T ′ + 1) = (x(0), x(1), x(2), . . . , x(T )︸ ︷︷ ︸
controllability

,

x(T + 1), x(T + 2), . . . ,

x(0)
q

x(ti0︸ ︷︷ ︸
controllability

), x(ti0 + 1), x(ti0 + 2), . . . , x(ti0 + p+ 1)︸ ︷︷ ︸
O3−observability

,

x(ti0 + p+ 2), x(ti0 + p+ 3), . . . ,

x(1)
q

x(ti1︸ ︷︷ ︸
controllability

), x(ti1 + 1), x(ti1 + 2), . . . , x(ti1 + p+ 1)︸ ︷︷ ︸
O3−observability

,

· · · , x(T ′ + 1)),
(3.21)

where T ′ + 1 = tiT + p, and X(T ) satisfies

{U(T )X(T )} = ∆2m+n .(3.22)

To explain the purpose of driving the system along this state trajectory, we take
the second and third rows as an example. The state transition from x(T + 1) to
x(ti0 ) = x(0) aims to find x(0) by controllability, and that from x(ti0) to x(ti0 +p+1)
aims to determine the value of x(0) by O3-observability. Continuing this process,
BCN (2.2) can be identified if these moments ti0 , ti1 , . . . , tiT are in place. Obviously,
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it is difficult to design such an input sequence U(T ′) before the system is known,
especially for the input sequence (u(T + 1), u(T + 2), . . . , u(T ′)) after time T , which
involves timing accuracy.

Here we provide a method to identify (F,H) with the help of multiple samples
(Case 3), which is different from [10] that used a single one. An input sequence is
called an O3-test of BCN (2.2) if it makes (2.2) O3-observable. From (3.21), we know
that the input sequence (u(T +1), u(T +2), . . . , u(T ′)) aims to find and identify each
state in (x(0), x(1), . . . , x(T )). Next, we simplify this process with the help of Case 3.

Assume that (u′

0, u
′

1, . . . , u
′

p) is an O3-test, and (u0, u1, . . . , uT ) satisfies

{u(t)x(t)|u(t) = ut, t ∈ [0, T ]N} = ∆2m+n .(3.23)

Then an O3-test could infiltrate the state at each time step by the following input
sequences:





U0(p) = (u′

0, u
′

1, . . . , u
′

p),
U1(p+ 1) = (u0, u

′

0, u
′

1, . . . , u
′

p),
U2(p+ 2) = (u0, u1, u

′

0, u
′

1, . . . , u
′

p),
· · ·

UT+1(p+ T + 1) = (u0, u1, . . . , uT , u
′

0, u
′

1, . . . , u
′

p).

(3.24)

Denote the corresponding observed data stemming from x0(0), x1(0), . . . , xT+1(0)
(x0(0) = x1(0) = · · · = xT+1(0)) as





Y0(p+ 1) = (y0(0), y0(1), . . . , y0(p+ 1)),
Y1(p+ 2) = (y1(0), y1(1), . . . , y1(p+ 2)),

· · ·
YT+1(p+ T + 2) = (yT+1(0), yT+1(1), . . . , yT+1(p+ T + 2)).

(3.25)

Since the system is O3-observable with respect to (u′

0, u
′

1, . . . , u
′

p), we can find all
distinct output sequences by retrieval from

Y j = (yj(j), yj(j + 1), . . . , yj(j + p+ 1)), j ∈ [0, T + 1]N.(3.26)

The corresponding retrieval algorithm (Algorithm 3.3) is given.

Algorithm 3.3 Retrieve all distinct output sequences

Input: data (3.25).
Output: Y1, Y2, . . . , Y2n .
1: set Y = ∅ and i = 1
2: for j = 0; j < T + 1; j ++ do
3: if Y j ∈ Y then
4: continue;
5: else
6: Yi = Y j , Y = Y ∪ {Yi}, i = i+ 1;
7: end if
8: end for

Identify Yi as the output sequence of state δi2n with respect to (u′

0, u
′

1, . . . , u
′

p),
then BCN (2.2) can be identified by input-output data (3.24) and (3.25). On the basis
of the discussion above, we provide an algorithm (Algorithm 3.4) to identify (F,H).
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Algorithm 3.4 Identify (F,H) for a controllable and O3-observable BCN (2.2) (Deal
with Case 3).

Input: an O3-test (u′

0, u
′

1, . . . , u
′

p), and (u0, u1, . . . , uT ) satisfying (3.23).
Output: F,H .
Step 1 : Construct input sequences (3.24) and record the observed data (3.25).
Step 2 : Find all distinct output sequences Y1, Y2, . . . , Y2n by Algorithm 3.3.
Step 3 : Identify the state sequence XT+1(T+1) = (xT+1(0), xT+1(1), . . . , xT+1(T+

1)) by

xT+1(t) = δit2n , t ∈ [0, T + 1]N, if (yt(t), yt(t+ 1), . . . , yt(t+ p+ 1)) = Yit .

Step 4 : Construct F and H based on

{
xT+1(t+ 1) = FutxT+1(t), t ∈ [0, T ],
H = [Y1(0) Y2(0) · · · Y2n(0)],

(3.27)

where Yi(0) represents the first element in Yi, i ∈ [1, 2n]N.

The following example originates from literature [10], in which an identification
process with single input sequence is shown. We use it to show how to use Algorithm
3.4.

Example 3. [10] Consider an O3-observable and controllable BCN (2.2) with
{

F = δ4[2 4 1 1 2 3 2 2],
H = δ2[2 1 1 2].

(3.28)

Fix the initial state x(0) = δ14 and set
{

(u0, u1, . . . , u10) = δ2(1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2),
(u′

0, u
′

1) = δ2(1, 1).

Case 3 divides the test sample into enough portions to be tested (x0(0) = x1(0) =
· · · = xr(0) = δ14).

Step 1: 12 groups of input sequence are constructed and are infiltrated to 12 test
samples: xk(0) = δ14 , k ∈ [0, 11]. Then the corresponding output sequences are

Y0(2) =δ2(2, 1, 2),

Y1(3) =δ2(2, 1, 2, 2),

Y2(4) =δ2(2, 1, 2, 2, 1),

Y3(5) =δ2(2, 1, 2, 2, 1, 2),

Y4(6) =δ2(2, 1, 2, 2, 1, 2, 2),

Y5(7) =δ2(2, 1, 2, 2, 1, 1, 2, 1)

Y6(8) =δ2(2, 1, 2, 2, 1, 1, 2, 1, 2),

Y7(9) =δ2(2, 1, 2, 2, 1, 1, 2, 1, 2, 2),

Y8(10) =δ2(2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1),

Y9(11) =δ2(2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2),

Y10(12) =δ2(2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1),

Y11(13) =δ2(2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2).
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Step 2: All distinct output sequences generated by (u′

0, u
′

1) are

Y1 =(y0(0), y0(1), y0(2)) = δ2(2, 1, 2),

Y2 =(y1(1), y1(2), y1(3)) = δ2(1, 2, 2),

Y3 =(y2(2), y2(3), y2(4)) = δ2(2, 2, 1),

Y4 =(y5(5), y5(6), y5(7)) = δ2(1, 2, 1),

which are the last three elements of Y0(2), Y1(3), Y2(4) and Y5(7), respectively.
Step 3: Since

(y0(0), y0(1), y0(2)) = Y1, (y1(1), y1(2), y1(3)) = Y2,

· · · · · ·

(y10(10), y10(11), y10(12)) = Y4, (y11(11), y11(12), y11(13)) = Y2,

one gets the state sequence

X11(11) =(x11(0), x11(1), . . . , x11(11))

=δ4(1, 2, 3, 1, 2, 4, 1, 2, 3, 2, 4, 2).

Step 4: Based on (3.27), this BCN is identified as

{
x(t+ 1) = δ4[2 3 1 1 2 4 2 2]u(t)x(t),
y(t) = δ2[2 1 2 1]x(t).

(3.29)

In the sense of O3-observability, the observability matrix of BCN (2.2) is analogous
to the observability matrix of BN (3.3), and can be written as:

O =




PH

PHFu′

0

PHFu′

1Fu′

0
...

PHFu′

p · · ·Fu′

1Fu′

0



(p+2)×2n

(3.30)

which consists of 2n distinct output sequences stemming from 2n initial states under
the input sequence (u′

0, u
′

1, . . . , u
′

p). For example, the observability matrix O of (3.29)
is

O =




2 1 2 1
1 2 2 2
2 2 1 1


 ,(3.31)

where the ith column of O corresponds with Yi, i ∈ [1, 4]N.
From the discussion above, one sees that, the identification problem is transformed

into three conditions:
1) The state trajectory of the system covers the entire state space;
2) There exists a method to distinguish all states;
3) There exist methods to implement 1) and 2).
These three conditions can be guaranteed by controllability, observability, and As-
sumption 1, respectively. Under the case of Assumption 1, we can find 2n distinct
effective output sequences, or 2n distinct output sequences generated by an O3-test,
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(or say the observability matrix O), based on available data. If such output sequences
are found or the observability matrix is constructed, the state sequence will be deter-
mined, and then the identification problem will be solved.

Case 3 relaxes the limitation on the number of input sequences and output se-
quences. Although (T + 2) input sequences are used in Algorithm 3.4, it can be
implemented in biological experiments by cloning or segmentation, like diagnosis of
disease in blood samples. Inspired by the idea of multiple input sequences, next
Lemma 3.9 will be extended to the most general form O1-observability.

Considering an O1-observable BCN (2.2), there exist N := 22n−1 − 2n−1 input
sequences U(i,i′)(p), 1 ≤ i 6= i′ ≤ 2n, such that δi2n and δi

′

2n can be distinguishable by
U(i,i′)(p). Arrange these input sequences as

Us(i,i′)(p) = (us(i,i′)(0), . . . , us(i,i′)(p)) = U(i,i′)(p),(3.32)

where the function s(i, i′) is defined by the following rule:

s(i, i′) =

{
i′ − i, i = 1,∑i−1

j=1(n− j) + i′ − i, i ≥ 2.
(3.33)

We call (3.32) an O1-test of BCN (2.2). Let Yi,s = (ysi (0), y
s
i (1), . . . , y

s
i (p + 1)) rep-

resent the output sequence stemming from δi2n with respect to Us(p), where ysi (t) =
HFus(t− 1) · · ·Fus(1)Fus(0)δ

i
2n . Construct data arrays Di, i ∈ [1, 2n]N as

Di = (Yi,1, Yi,2, . . . , Yi,N ).(3.34)

Then for any distinct state δi2n and δi
′

2n , we have Yi,s(i,i′) 6= Yi′,s(i,i′) and Di 6= Di′ .

Proposition 3.10. BCN (2.2) is O1-observable if and only if there exist 2n data
arrays constructed by (3.34) satisfying Di 6= Di′ , 1 ≤ i 6= i′ ≤ 2n.

Proposition 3.10 shows that 2n distinct states correspond to 2n distinct data
arrays in the sense of O1-observability. Hence, analogous to the method used in O3-
observability, by infiltrating O1-test (3.32) into x(0), x(1), . . . , x(T + 1) at each time
step, we construct input sequences Us

0 , U
s
1 , . . . , U

s
T+1, s ∈ [1, N ]N as





Us
0 = (us(0), us(1), . . . , us(p)),

Us
1 = (u0, us(0), us(1), . . . , us(p)),

Us
2 = (u0, u1, us(0), us(1), . . . , us(p)),
· · ·

Us
T+1 = (u0, u1, . . . , uT , us(0), us(1), . . . , us(p)),

(3.35)

and denote the corresponding observed data as,




Y s
0 = (ys0(0), y

s
0(1), . . . , y

s
0(p+ 1)),

Y s
1 = (ys1(0), y

s
1(1), . . . , y

s
1(p+ 2)),

Y s
2 = (ys2(0), y

s
2(1), . . . , y

s
2(p+ 3)),

· · ·
Y s
T+1 = (ysT+1(0), y

s
T+1(1), . . . , y

s
T+1(T + p+ 2)),

(3.36)

where (u0, u1, . . . , uT ) satisfies (3.23).
All data arrays generated by O1-test are recorded in

Dj
s = (ysj (j), y

s
j (j + 1), . . . , ysj (j + p+ 1)), j ∈ [0, T + 1]N.(3.37)
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According the following retrieval algorithm (Algorithm 3.5), we can find all distinct
data arrays Di, i ∈ [1, 2n]N.

Algorithm 3.5 Retrieve all distinct data arrays

Input: data (3.37).
Output: D1, D2, . . . , D2n .
1: set D = ∅ and i = 1
2: for j = 0; j < T + 1; j ++ do
3: Dj = (Dj

1, D
j
2, . . . , D

j
N)

4: if Dj ∈ D then
5: continue;
6: else
7: Di = Dj , D = D ∪ {Di}, i = i + 1;
8: end if
9: end for

Identify Oi as the data array stemming from δi2n , then the state sequence (x(0),
x(1), . . . , x(T + 1)) can be identified by

x(t) = δit2n , if Dt = Dit .(3.38)

Combining (u0, u1, . . . , uT ), (x(0), x(1), . . . , x(T +1)) and (y1T+1(0), . . . , y
1
T+1(T +1)),

F and H can be easily obtained.

Theorem 3.11. (Single sample) BCN (2.2) is uniquely identifiable if it is con-
trollable and O1-observable.

On the basis of the discussion above, we give an algorithm (Algorithm 3.6) to
identify BCN (2.2) which is O1-observable.

Algorithm 3.6 Identify (F,H) for a controllable and O1-observable BCN (2.2) (Deal
with Case 3).

Input: O1-test: U1(p), U2(p), . . . , UN(p), and (u0, u1, . . . , uT ) satisfying (3.32).
Output: F,H .
Step 1 : Construct input sequences (3.35) and record the observed data (3.36).
Step 2 : Find all distinct data arrays by Algorithm 3.5.
Step 3 : Identify the state sequence X(T +1) = (x(0), x(1), . . . , x(T +1)) by (3.38).
Step 4 : Construct F and H based on X(T + 1), (u0, u1, . . . , uT ), (y1T+1(0), . . . ,

y1T+1(T + 1)) and





x(t+ 1) = Futx(t),
y1T+1(t) = Hx(t),
t ∈ [0, T ].

(3.39)

Algorithm 3.6 is not a complex process, for the method used in [10], should be
relatively straightforward. The core of the identification problem is the complete
determination of state sequence X(T + 1). Compared with [10] (see (3.21)), the
method proposed here considers only the first T + 1 states and inputs, and avoids
the design of subsequent inputs u(T + 1), u(T + 2), . . .. Note that the determination
of the state sequence depends on the appointment of Di. Hence (F,H) generated by
Algorithm 3.6 belongs to the equivalence class of the original system.
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Remark 3.12. One idea for proving the necessity is to employ Lemma 3.9 and
a fact that O3-observability implies O1-observability. Logically, this is misleading,
because, Theorem 3.11 is based on multiple input sequences, and Lemma 3.9 is based
on single input sequence. Hence, we have identifiability ⇐= controllability + O1-
observability ⇐= controllability + O3-observability.

As predicted, the implement of multiple input sequences (Case 3) allows more
numerous systems to be identified. Next we consider whether the conditions of The-
orem 3.11 be further relaxed. The answer is yes. In Case 4, a large number of
samples from different patients are collected and each sample is divided into multi-
ple portions. If the state sequences X i

j(p) = (xi
j(0), x

i
j(1), . . . , x

i
j(p)) and the input

sequences U i
j(p) = (ui

j(0), u
i
j(1), . . . , u

i
j(p)) cover all the possibilities of ∆2m+n , i.e.,

k,r⋃

i=1,j=1

{U i
j(p)X

i
j(p)} = ∆2m+n ,(3.40)

then by infiltrating the O1-test to all states xi
j(t), i ∈ [1, k]N, j ∈ [1, r]N, t ∈ [0, p]N, the

identification problem can be solved.

Definition 3.13. Consider BCN (2.2) with a set of initial states P0 and a set of
destination states Pd.

i) Pd is set-P0 controllable, if for any xd ∈ Pd, there exist a state x(0) = x0 ∈ P0

and an input sequence U(T ), such that x(T + 1) = xd;
ii) (2.2) is set-P0 controllable, if ∆2n is set-P0 controllable.
iii) A state x0 is controllable, if (2.2) is set-P0 controllable and P0 is a singleton

set P0 = {x0}.

Theorem 3.14. (Multiple samples) Suppose the set of initial states is P0, then
BCN (2.2) is uniquely identifiable if it is set-P0 controllable and O1-observable.

Proof. Without loss of generality, assume P0 = {δ12n , δ
2
2n , . . . , δ

k
2n}, and the state

space is split into ∆2n = P 1
d ∪ P 2

d ∪ · · · ∪ P k
d , such that P a

d is set-{δa2n} controllable,
a ∈ [1, k]N. (P0 may contain more (than k) states and we only use those which make
the above condition true.)

Consider state δa2n and set P a
d , if P

a
d = δ2n{da1 , d

a
2 , . . . , d

a
θa
}, then for any state

δi2n ∈ P a
d , there exists an input sequence

Ua→i(p
a
i ) = (ua→i(0), ua→i(1), . . . , ua→i(p

a
i )),(3.41)

such that Fua→i(p
a
i ) · · ·Fua→i(1)Fua→i(0)δ

a
2n = δi2n .

Construct an input sequence as

U
j
a→i(p

a
i + 1) =(uj

a→i(0), u
j
a→i(1), . . . , u

j
a→i(p

a
i ), u

j
a→i(p

a
i + 1))

= : (ua→i(0), ua→i(1), . . . , ua→i(p
a
i ), δ

j
2m),(3.42)

under which, the state sequence stemming from δa2n becomes

X
j
a→i(p

a
i + 2) =(xj

a→i(0), x
j
a→i(1), . . . , x

j
a→i(p

a
i + 1), xj

a→i(p
a
i + 2))

= : (δa2n , xa→i(1), . . . , δ
i
2n , x

j
a→i(p

a
i + 2)),(3.43)

then we have

δ
j
2mδi2n = u

j
a→i(p

a
i + 1)xj

a→i(p
a
i + 1) ∈ {U j

a→i(pi + 1)Xj
a→i(pi + 1)}.(3.44)
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It follows that

∆2m+n =

2m⋃

j=1

{
δ
j
2mδi2n |δ

i
2n ∈ ∆2n

}

=

2m⋃

j=1

k⋃

a=1

{
δ
j
2mδi2n |δ

i
2n ∈ P a

d }
}

⊆
2m⋃

j=1

k⋃

a=1

{
U

j
a→i(pi + 1)Xj

a→i(pi + 1)|i ∈ {da1 , d
a
2 , . . . , d

a
θa
}
}

=
2m⋃

j=1

k⋃

a=1

2n⋃

i=1

{
U

j
a→i(pi + 1)Xj

a→i(pi + 1)
}
,(3.45)

which implies that enough input-state data could cover ∆2m+n .
By infiltrating the O1-test (3.32) to all states in X

j
a→i(p

a
i +2), BCN (2.2) can be

identified.

Corollary 3.15. (Multiple samples) Suppose BCN (2.2) is O1-observable and
the initial state set is P0. If Pd is the maximum set which is set-P0 controllable, then
|Pd| states can be identified.

Theorem 3.14 and Corollary 3.15 show that, the maximum level of identifying
BCN (2.2) depends on the relationship of all possible states stemming from the initial
state set. If the controllability is not available, the identification problem can still be
well done with the same method. In densely populated cities, the Centers for Disease
Control and Prevention can collect a large number of samples, which most likely
contain all possible initial states. That is to say, all possible test samples endowed
with 2n distinct initial states are collected. In Case 4, assume that Us (3.32) is an
O1-test of the system, and xi

1(0) = xi
2(0) = · · · = xi

r(0) = δi2n , i ∈ [1, 2n]N. Construct
input sequences





U i
s(p) = (ui

s(0), u
i
s(1), . . . , u

i
s(p)) = Us, s ∈ [1, N ]N,

U i
jN+s(p+ 1) = (ui

jN+s(0), u
i
jN+s(1), . . . , u

i
jN+s(p+ 1))

= (δj2m , Us), j ∈ [1, 2m]N, s ∈ [1, N ]N,

(3.46)

then we have

∆2m+n =
2m⋃

j=1

2n⋃

i=1

{δj2mδi2n}

=

2m⋃

j=1

2n⋃

i=1

{
ui
jN+s(0)x

i
jN+s(0)

}

⊆
2m⋃

j=1

2n⋃

i=1

{
U i
jN+s(p)X

i
jN+s(p)

}
.(3.47)

Then the system can be easily identified analogous to Theorem 3.14. Hence we have
the following result under the case of Assumption 1.

Theorem 3.16. (Multiple samples) BCN (2.2) is uniquely identifiable if it is O1-
observable.
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On the basis of the analysis above, the corresponding identification algorithm
(Algorithm 3.7) can be established.

Algorithm 3.7 Identify an O1-observable BCN (2.2) (Deal with Case 4).

Input: O1-test (3.32): U1(p), U2(p), . . . , UN(p).
Output: F,H .
Step 1 : Construct input sequences (3.46) and record the observed data

{
Y i
s (p+ 1) = (yis(0), y

i
s(1), . . . , y

i
s(p+ 1)), s ∈ [1, N ]N,

Y i
jN+s(p+ 2) = (Y i

jN+s(0), . . . , Y
i
jN+s(p+ 2)), j ∈ [1, 2m]N, s ∈ [1, N ]N.

(3.48)

Step 2 : Find all distinct data arrays by Algorithm 3.8.
Step 3 : Identify the states xi

1(0), x
i
jN+1(1), j ∈ [1, 2m]N, i ∈ [1, 2n]N, by

{
xi
1(0) = δai

2n , if (Y i
1 (p+ 1), . . . , Y i

N (p+ 1)) = Dai
,

xi
Nj+1(1) = δai

2n , if (Y
i

jN+1, . . . , Y
i

jN+s) = Dai
,

(3.49)

where Y
i

jN+s = (yijN+s(1), . . . , y
i
jN+s(p+ 2)).

Step 4 : Construct F and H based on

{
xi
Nj+1(1) = Fδ

j
2mxi

Nj+1(0) = Fδ
j
2mxi

1(0),
yi1(0) = Hxi

1(0).
(3.50)

Algorithm 3.8 Retrieve all distinct data arrays

Input: data (3.48).
Output: D1, D2, . . . , D2n .
1: set D = ∅ and a = 1
2: for i = 0; i < 2n; i++ do
3: for j = 0; j < 2n; j ++ do
4: if j = 0 then
5: Dj

s = Y i
s (p+ 1)

6: else
7: Dj

s = (yijN+s(1), . . . , y
i
jN+s(p+ 2))

8: end if
9: Dj = (Dj

1, D
j
2, . . . , D

j
N)

10: if Dj ∈ D then
11: continue;
12: else
13: Da = Dj , D = D ∪Da, a = a+ 1;
14: end if
15: end for
16: end for

Remark 3.17. There are two ways to construct the structure matrix H . One
is based on the state sequence and the output sequence, like (3.39) and (3.50) (in
Algorithms 3.6 and 3.7), the other is based on the first elements of the effective
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output sequences or the output sequences generated by O3-test or the data arrays
generated by O1-test, like (3.10) and (3.27) (in Algorithms 3.2 and 3.4).

Remark 3.18. It is important to point out that, the input sequence required for
identification is assumed to be known, whether in [10] (used O3-observability) or our
paper (O1-observability). For unknown systems, different input sequences are used
to implement Algorithm 3.7 (Algorithm 3.4, Algorithm 3.6) until the system is fully
identified. The former (O3-observability) covers an NP-hard problem[18], which has
been mentioned in the introduction part. So does our method relax, in a sense, the
difficulty of dealing with the identification problem? In other words, is the difficulty
of finding an O1-test also NP-hard?

Example 4. Consider the reduced model for the lac operon in the bacterium Es-
cherichia coli. This BCN has three state nodes {x1, x2, x3} and three input nodes
{u1, u2, u3}. x1: lac mRNA, x2: lactose in high concentration, x3: lactose in medium
concentration, u1: extracellular glucose, u2: high extracellular lactose, and u3: medium
extracellular lactose. The dynamics of this system can be written as [27]





x1(t+ 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t)),
x2(t+ 1) = ¬u1(t) ∧ u2(t) ∧ x1(t),
x3(t+ 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))).

(3.51)

This BCN is O1-observable when the outputs are considered as [3]





y1(t) = x1(t) ∨ ¬x2(t) ∨ x3(t),
y2(t) = ¬x1(t) ∨ x2(t) ∧ ¬x3(t),
y3(t) = ¬x1(t) ∧ ¬x2(t) ∨ x3(t).

(3.52)

Its algebraic form is





F = δ8[8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 1 1 5 3 3 3 7 1 1 1 5 3 3 3 7
3 3 3 7 4 4 4 8 4 4 4 8 4 4 4 8],

H = δ8[8 6 3 6 5 6 7 6].

(3.53)

Here we analyze the identification problem of this system. Fix the initial state
xi
1(0) = · · · = xi

r(0) = δi8, i ∈ [1, 8]N and choose the following O1-test

Us =

{
(δ58), s ∈ S,

(δ18), s ∈ Sc,
(3.54)

where S = {9, 10, 11, 12, 13, 20, 21, 22, 27} and Sc = [1, 28]N \ {9, 10, 11, 12, 13, 20, 21,
22, 27}.

Step 1: Construct input sequences

{
U i
s(0) = (ui

s(0)) = Us, s ∈ [1, 28]N,

U i
28j+s(1) = (ui

28j+s(0), u
i
28j+s(1)) = (δj8, Us), j ∈ [1, 8]N s ∈ [1, 28]N,
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then the output sequences stemming from states x1
1(0), x

1
2(0), . . . , x

1
r(0) are





Y 1
s (1) = δ8(8, 6), s ∈ Sc,

Y 1
s (1) = δ8(8, 8), s ∈ S,

Y 1
28+s(2) = Y 1

56+s(2) = Y 1
84+s(2) = Y 1

112+s(2) = δ8(8, 6, 6), s ∈ Sc,

Y 1
28+s(2) = Y 1

56+s(2) = Y 1
84+s(2) = Y 1

112+s(2) = δ8(8, 6, 7), s ∈ S,

Y 1
140+s(2) = Y 1

168+s(2) = δ8(8, 8, 6), s ∈ Sc,

Y 1
140+s(2) = Y 1

168+s(2) = δ8(8, 8, 8), s ∈ S,

Y 1
196+s(2) = δ8(8, 3, 6), s ∈ Sc,

Y 1
196+s(2) = δ8(8, 3, 8), s ∈ S,

Y 1
224+s(2) = δ8(8, 6, 6), s ∈ Sc,

Y 1
224+s(2) = δ8(8, 6, 5), s ∈ S,

and others are shown in Appendix A.
Step 2: All distinct data arrays generated by the O1-test (3.54) are

D1 =(D1
1 , D

1
2, . . . , D

1
28),

{
D1

s = δ8(8, 6), s ∈ Sc,

D1
s = δ8(8, 8), s ∈ S,

D2 =(D2
1 , D

2
2, . . . , D

2
28),

{
D2

s = δ8(6, 6), s ∈ Sc,

D2
s = δ8(6, 7), s ∈ S,

· · ·

D8 =(D8
1 , D

8
2, . . . , D

8
28),

{
D8

s = δ8(6, 6), s ∈ Sc,

D8
s = δ8(6, 3), s ∈ S,

which are the last two elements of Y 1
s (1), Y 1

28+s(2), Y 1
196+s(2), Y 1

224+s(2), Y 2
s (2),

Y 4
196+s(2), Y

5
s (1) and Y 6

s (1), respectively.
Step 3: Identify Di as the data array stemming from δi8, i ∈ [1, 8]N, then from

Step 2, we have

x1
28+1(1) = Fu1

28+1(0)x
1
28+1(0) ⇒ δ28 = Fδ18δ

1
8 ,

x1
56+1(1) = Fu1

56+1(0)x
1
56+1(0) ⇒ δ28 = Fδ28δ

1
8 ,

x1
84+1(1) = Fu1

84+1(0)x
1
84+1(0) ⇒ δ28 = Fδ38δ

1
8 ,

x1
112+1(1) = Fu1

112+1(0)x
1
112+1(0) ⇒ δ28 = Fδ48δ

1
8 ,

x1
140+1(1) = Fu1

140+1(0)x
1
140+1(0) ⇒ δ18 = Fδ58δ

1
8 ,

x1
168+1(1) = Fu1

168+1(0)x
1
168+1(0) ⇒ δ18 = Fδ68δ

1
8 ,

x1
196+1(1) = Fu1

196+1(0)x
1
196+1(0) ⇒ δ38 = Fδ78δ

1
8 ,

x1
224+1(1) = Fu1

224+1(0)x
1
224+1(0) ⇒ δ48 = Fδ88δ

1
8 ,

· · ·

and

y11(0) = Hx1
1(0) ⇒ δ88 = Hδ18 , y21(0) = Hx2

1(0) ⇒ δ68 = Hδ58 ,

y31(0) = Hx3
1(0) ⇒ δ38 = Hδ38 , y41(0) = Hx4

1(0) ⇒ δ68 = Hδ48 ,

y51(0) = Hx5
1(0) ⇒ δ58 = Hδ78 , y61(0) = Hx6

1(0) ⇒ δ68 = Hδ88 ,

y71(0) = Hx7
1(0) ⇒ δ78 = Hδ68 , y81(0) = Hx8

1(0) ⇒ δ68 = Hδ28 .
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This BCN therefore is identified as




F = δ8[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 6 1 7 1 3 3 3 1 6 1 7 1 3 3 3
3 2 3 6 3 4 4 4 4 2 4 2 4 4 4 4],

H = δ8[8 6 3 6 6 7 5 6].

(3.55)

Remark 3.19. A BN may be identifiable but not observable, as mentioned in
Remark 3.6. Similar to the method in BNs (see Remark 3.6), it is still possible to
identify an unobservable BCN. Therefore, observability is a stronger property than
identifiability in BNs and BCNs.

Remark 3.20. About the identification algorithm in the Matlab programming, the
storage method and storage space of the identification standard affect the execution
time of the algorithm, because the programming involves the storage and retrieval
of data. Hence, it is vital to plan for storage space needs at the beginning of the
design phase. Compared with 2n distinct effective output sequences or 2n distinct
output sequences generated by an O3-test or the corresponding observability matrix,
2n distinct data arrays generated by an O1-test require more storage space. How to
adjust the storage method and how to reduce the storage space are two challenging
and interesting topics.

Up to now, we have provided several ways to deal with different situations. The
comparison of them is needed and is shown in Table I, where Case 3’ considers one
group of input-output data, a special case of Case 3.

Approach System Case Condition 1 Condition 2
Lemma 3.1 [7] BN Case 2 H = I2l

Theorem 3.4
BN Case 2 Observability

Algorithm 3.2
Lemma 3.8[10] BCN Case 3 controllability H = I2l

Lemma 3.9[10]
BCN

Case 3′
controllability O3-observability

Algorithm 3.4 Case 3
Theorem 3.11

BCN Case 3 controllability O1-observability
Algorithm 3.6
Theorem 3.14 BCN Case 4 Set controllability O1-observability
Theorem 3.16

BCN Case4 O1-observability
Algorithm 3.7

Table 1

A comparison table of various methods

4. Conclusions. In this paper, we systematically explored the identification
problem of BNs and BCNs, gained new cognition. Based on the practical application,
we built a new analytical framework that consists of single sample and multiple sam-
ples, and then divided the identification problem into four situations. Four simple
criteria were proposed for determining the identifiability of BNs and BCNs, and the
corresponding identification algorithms were provided to identify related structure
matrices. It is worth noting that these algorithms are easy to implement by MAT-
LAB. Under this analytical framework, we found three novel and important results:
(1) A BN is uniquely identifiable if it is observable; (2) A BCN is uniquely identifiable
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if it is O1-observable; (3) The necessity of (1) or (2) does not hold. At last, we pre-
sented a table to reveal the relationships of the proposed results, which could be used
to further analyze the relationships of identifiability, controllability, O1-observability
and O3-observability, as a foreshadowing.

The authors believe that this new analytical framework is a very powerful ex-
planation tool. On the basis of this paper, there are several natural and interesting
problems remaining for further study. For example: (1) If a BN or BCN is unobserv-
able, some states produce same output sequence, which implies that some columns in
the structure matrices F and H are indeterminate. A very natural question is whether
an unobservable system can be identified, or, how to identify an unobservable system?
(2) The assumption (Assumption 1) that the input-output data is sufficient is a high-
light of this paper. How to generalize this idea to other systems, like singular BNs or
switched BCNs?

Appendix A. The observed data of Step 1 in Example 4. The output
sequences stemming from states x2

1(0), x
2
2(0), . . . , x

2
r(0) are




Y 2
s (1) = δ8(6, 6), s ∈ Sc,

Y 2
s (1) = δ8(6, 8), s ∈ S,

Y 2
28+s(2) = Y 2

56+s(2) = Y 2
84+s(2) = Y 2

112+s(2) = δ8(6, 6, 6), s ∈ Sc,

Y 2
28+s(2) = Y 2

56+s(2) = Y 2
84+s(2) = Y 2

112+s(2) = δ8(6, 6, 7), s ∈ S,

Y 2
140+s(2) = Y 2

168+s(2) = δ8(6, 8, 6), s ∈ Sc,

Y 2
140+s(2) = Y 2

168+s(2) = δ8(6, 8, 8), s ∈ S,

Y 2
196+s(2) = δ8(6, 3, 6), s ∈ Sc,

Y 2
196+s(2) = δ8(6, 3, 8), s ∈ S,

Y 2
224+s(2) = δ8(6, 6, 6), s ∈ Sc,

Y 2
224+s(2) = δ8(6, 6, 5), s ∈ S.

The output sequences stemming from states x3
1(0), x

3
2(0), . . . , x

3
r(0) are




Y 3
s (1) = δ8(3, 6), s ∈ Sc,

Y 3
s (1) = δ8(3, 8), s ∈ S,

Y 3
28+s(2) = Y 3

56+s(2) = Y 2
84+s(2) = Y 3

112+s(2) = δ8(3, 6, 6), s ∈ Sc,

Y 3
28+s(2) = Y 3

56+s(2) = Y 2
84+s(2) = Y 3

112+s(2) = δ8(3, 6, 7), s ∈ S,

Y 3
140+s(2) = Y 3

168+s(2) = δ8(3, 8, 6), s ∈ Sc,

Y 3
140+s(2) = Y 3

168+s(2) = δ8(3, 8, 8), s ∈ S,

Y 3
196+s(2) = δ8(3, 3, 6), s ∈ Sc,

Y 3
196+s(2) = δ8(3, 3, 8), s ∈ S,

Y 3
224+s(2) = δ8(3, 6, 6), s ∈ Sc,

Y 3
224+s(2) = δ8(3, 6, 5), s ∈ S.

The output sequences stemming from states x4
1(0), x

4
2(0), . . . , x

4
r(0) are




Y 4
s (1) = δ8(6, 6), s ∈ Sc,

Y 4
s (1) = δ8(6, 5), s ∈ S,

Y 4
28+s(2) = Y 4

56+s(2) = Y 4
84+s(2)

= Y 4
112+s(2) = Y 4

224+s(2) = δ8(6, 6, 6), s ∈ Sc,

Y 4
28+s(2) = Y 4

56+s(2) = Y 4
84+s(2)

= Y 4
112+s(2) = Y 4

224+s(2) = δ8(6, 6, 7), s ∈ S,

Y 4
140+s(2) = Y 4

168+s(2) = δ8(6, 5, 6), s ∈ Sc,

Y 4
140+s(2) = Y 4

168+s(2) = δ8(6, 5, 3), s ∈ S,

Y 4
196+s(2) = δ8(6, 7, 6), s ∈ Sc,

Y 4
196+s(2) = δ8(6, 7, 3), s ∈ S.
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The output sequences stemming from states x5
1(0), x

5
2(0), . . . , x

5
r(0) are





Y 5
s (1) = δ8(5, 6), s ∈ Sc,

Y 5
s (1) = δ8(5, 3), s ∈ S,

Y 5
28+s(2) = Y 5

56+s(2) = Y 5
84+s(2) = Y 5

112+s(2) = δ8(5, 6, 6), s ∈ Sc,

Y 5
28+s(2) = Y 5

56+s(2) = Y 5
84+s(2) = Y 5

112+s(2) = δ8(5, 6, 7), s ∈ S,

Y 5
140+s(2) = Y 5

168+s(2) = δ8(5, 3, 6), s ∈ Sc,

Y 5
140+s(2) = Y 5

168+s(2) = δ8(5, 3, 8), s ∈ S,

Y 5
196+s(2) = Y 5

224+s(2) = δ8(5, 6, 6), s ∈ Sc,

Y 5
196+s(2) = Y 5

224+s(2) = δ8(5, 6, 5), s ∈ S.

The output sequences stemming from states x6
1(0), x

6
2(0), . . . , x

6
r(0) are





Y 6
s (1) = δ8(6, 6), s ∈ Sc,

Y 6
s (1) = δ8(6, 3), s ∈ S,

Y 6
28+s(2) = Y 6

56+s(2) = Y 6
84+s(2) = Y 3

112+s(2) = δ8(6, 6, 6), s ∈ Sc,

Y 6
28+s(2) = Y 6

56+s(2) = Y 6
84+s(2) = Y 3

112+s(2) = δ8(6, 6, 7), s ∈ S,

Y 6
140+s(2) = Y 6

168+s(2) = δ8(6, 3, 6), s ∈ Sc,

Y 6
140+s(2) = Y 6

168+s(2) = δ8(6, 3, 8), s ∈ S,

Y 6
196+s(2) = Y 6

224+s(2) = δ8(6, 6, 6), s ∈ Sc,

Y 6
196+s(2) = Y 6

224+s(2) = δ8(6, 6, 5), s ∈ S.

The output sequences stemming from states x7
1(0), x

7
2(0), . . . , x

7
r(0) are





Y 7
s (1) = δ8(7, 6), s ∈ Sc,

Y 7
s (1) = δ8(7, 3), s ∈ S,

Y 7
28+s(2) = Y 7

56+s(2) = Y 7
84+s(2) = Y 7

112+s(2) = δ8(7, 6, 6), s ∈ Sc,

Y 7
28+s(2) = Y 7

56+s(2) = Y 7
84+s(2) = Y 7

112+s(2) = δ8(7, 6, 7), s ∈ S,

Y 7
140+s(2) = Y 7

168+s(2) = δ8(7, 3, 6), s ∈ Sc,

Y 7
140+s(2) = Y 7

168+s(2) = δ8(7, 3, 8), s ∈ S,

Y 7
196+s(2) = Y 7

224+s(2) = δ8(7, 6, 6), s ∈ Sc,

Y 7
196+s(2) = Y 7

224+s(2) = δ8(7, 6, 5), s ∈ S.

The output sequences stemming from states x8
1(0), x

8
2(0), . . . , x

8
r(0) are





Y 8
s (1) = δ8(6, 6), s ∈ Sc,

Y 8
s (1) = δ8(6, 7), s ∈ S,

Y 8
28+s(2) = Y 8

56+s(2) = Y 8
84+s(2) = Y 8

112+s(2)
= Y 8

196+s(2) = Y 8
224+s(2) = δ8(6, 6, 6), s ∈ Sc,

Y 8
28+s(2) = Y 8

56+s(2) = Y 8
84+s(2) = Y 8

112+s(2)
= Y 8

196+s(2) = Y 8
224+s(2) = δ8(6, 6, 7), s ∈ S,

Y 8
140+s(2) = Y 8

168+s(2) = δ8(6, 7, 6), s ∈ Sc,

Y 8
140+s(2) = Y 8

168+s(2) = δ8(6, 7, 3), s ∈ S.
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