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and corrupted measurements provided by a set of sensors. The delays, which make the data available
Out-Of-Sequence (O0S), appear when using physically distributed sensors, communication networks and
pre-processing algorithms. The potentially corrupted measurements can be generated by malfunctioning

sensors or communication errors. Our algorithms, designed to work with real-time control systems,
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handle these problems with a streamlined memory and computational efficient reorganization of the
basic operations of the Kalman and Information Filters (KF & IF). The two versions designed to deal only
with valid measurements are optimal solutions of the OOS problem, while the other two remaining are
suboptimal algorithms able to handle corrupted data.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The state of a complex control system is estimated by its
fusion center with the data provided by its sensors. The time
and order of arrival of the information at the fusion center
depends on many factors, such as the physical distribution of the
sensors and the communication network used to send the data.
A difficult scenario occurs when the delays and the sequence of
arrival of the information are not fixed, constituting the named
Out-Of-Sequence Problem (OOSP) (Bar-Shalom, 2002). Another
important problem happens when some data are provided by
malfunctioning sensors or corrupted during the communication,
and these behaviors are not modeled in the estimation algorithms.
The fusion system is then in charge of assessing the validity of the
information and deciding how to treat the erroneous data (Hall,
1992). Finally, both problems are usually aggravated in networked
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real-time control systems because the solution adopted to tackle
them can affect the stability of its feedback loops (Hespanha,
Naghhtabrizi, & Xu, 2007; Sinopoli et al., 2004).

In the case of sequential fusion algorithms, such as the KF
and IF (Mutambara, 1998), there are three naive solutions to deal
with the OOSP. The first, rejecting the delayed information, is
only appropriated with spurious delayed measurements because it
increases the uncertainty and reduces the reliability of the control
system (Hespanha et al., 2007; Sinopoli et al., 2004). The second,
buffering all the data related with an instant before estimating
its state (Lopez-Orozco, de la Cruz, Besada, & Rupiezed, 2000), is
not valid for control systems where the response is needed before
all the data are available. Finally, the third consists of storing the
estimates of the state, the control signals, and the sensor data for all
the time instances; rolling back to the time-stamp associated with
the measurement which has just arrived, and re-starting the fusion
process from that measurement (Kosaka, Meng, & Kak, 1993). This
last solution lets the fusion center obtain the same results as if it
had received the data without delays. However, it increases the
memory needs of the fusion center and its computational overload
introduces delays that can affect the controller. The new 0OO0S
versions of some estimators, such as Anxi, Diannong, Weidong,
and Zhen (2005), Bar-Shalom (2002), Bar-Shalom, Mallick, Chen,
and Washburn (2004), Challa, Evans, Wang, and Leggy (2002),
Feng, Ge, and Wen (2008), Hilton, Martin, and Blair (1993), Ito,
Tsujimichi, and Kosuge (1998), Lanzkron and Bar-Shalom (2004),
Lu, Zhang, Wang, and Teo (2005), Mallick, Coraluppi, and Carthel
(2001), Matveev and Savkin (2003), Nettleton and Durrant-Whyte
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2001), Rheaume and Benaskeur (2008), Shen, Zhu, Song, and Luo
2009), WenHui, Lin, GuoHai, and AnXi (2006), Zhang, Li, and Chen
2002), Zhang, Li, and Chen (2003), Zhang, Xie, Zhang, and Soh
2004) and Zhang, Li, and Zhu (2005) for the KF, reduce these delays
and memory needs.

The erroneous data problem can be tackled by including a
validation step for testing if the measurements are coherent with
the state of the system and rejecting them when they are not (Hall,
1992). When the OOSP is also present, the two problems interact.
On the one hand, a validation test dependent on the estimate
of the state that only considers the measurements available so
far is influenced by their order of arrival. On the other hand, the
estimates will depend on the data which have not been rejected
because they successfully pass the validation test.

This paper presents a set of simple memory and computational
efficient algorithms designed to estimate the state of MIMO linear
control systems with additive non-correlated Gaussian noise in the
transition and measurement models with all the valid available
data received up to this point with random delays. They extend
the range of applicability of our first OOS algorithm, named IFAsyn
(IF for Asynchronous data) in Besada-Portas, Lopez-Orozco, and de
la Cruz (2007) and Besada-Portas, Lopez-Orozco, Besada, and de la
Cruz (2009) and hereafter IFAsyn-I (IFAsyn-version I), to systems
that work without prior knowledge of the measurement time-
stamps, assimilate multiple measurements with different time-
stamps in a single update step, and incorporate a validation step
to detect corrupted data. When the validation step is disabled,
they find the same optimal solution as the KF. When the validation
step is enabled, their results and the KF ones can differ, although
our experiments show that the differences are negligible. The new
algorithms, hereafter IFAsyn-(II, III, IV, V), also reduce the memory
and computational needs of IFAsyn-I.

This paper also includes a comprehensive comparison of our
00S algorithms with many others. In short, all versions of [FAsyn
are computationally efficient, simple to implement, and general
in scope because they already: (1) include the control signal and
(2) consider the multisensor case. Besides, IFAsyn-(Il, III, IV, V)
work without prior knowledge of the data time-stamps, [FAsyn-
(I, V) assimilate multiple measurements in a single iteration, and
IFAsyn-(IV, V) include a validation step.

The paper is organized as follows: Section 2 introduces
some background, Section 3 describes our algorithms, Section 4
compares them with other algorithms, Section 5 analyzes the
influence of the validation step in the results, and finally, Section 6
presents the conclusions.

— e~ —~ —

2. Background

2.1. Problem statement

A discrete MIMO linear control system with additive Gaussian
noise and S sensors is modeled'by Eq. (1), where ¥; is the state of
the system at time ¢; z;; the measurement of sensor s at time ¢;
u; ;, the control signal applied from the previous time step ¢p to the

1 Note that when tp is substituted by t — 1, the first expression of Eq. (1) becomes
X = F(_1X_1 + U1 + v 1, which is the usual equation in discrete linear
systems, used to present IFAsyn-I in Besada-Portas et al. (2009, 2007). Our new
notation better suits the aperiodicity of the events supported by the versions of
IFAsyn introduced in this paper. The evaluation of F; ,, u,, Q:, depends on
the system. For instance, when it is a discretized version of a continuous system
modeled by x(t) = Ax(t) + u(t) + v(t), the three variables can be calculated as
Uy = fy T OOUDAT Frpy = ¢t = tp) and @, = f3 7 $(0QDIP (1),
where x(t) and x(t) are the continuous state and its time denvate at time t, A the
transition matrix, u(t) the control signal at t, Q (t) the covariance of the continuous
zero mean noise v(t), and ¢(t) = e,

current t; F; ;, and H;; the transition and measurement matrices,
and v, ¢, and v, random Gaussian variables with zero mean and
covariances Q; ;, and R; ;.

X =F X, + U, + 0, (1)
Zg = Hs,[Xt + vt withs=1:8S.

The objective of the fusion algorithm is to estimate the cur-
rent system state and covariance (X, P) given its original
values (Xgj0, Pojo), the model parameters and control signals
{Fk.kp7 Qk,kp ’ Hs,k7 RS,ka uk,kp}v and the data {Es,k.a = ZS,’<|a 2 k9 a S
t} measured by sensor s at time k, which have arrived at the fusion
center at time a (a > k), and which is already available (a < t).In
addition, the algorithm is also responsible for detecting and reject-
ing erroneous data produced by failures not modeled in the sensor
covariance matrices.

2.2. Estimating the state with non-delayed data (&; , ;)

When the measurements are available without delays (&; ; .),
(R¢|e» Prie) can be obtained by sequentially using the prediction
and update steps of the KF (Mutambara, 1998). An equivalent
approach, with the same two steps, is the IF (Mutambara, 1998).
They operate in two different spaces, KF in the state space (X,
P;¢) and IF in the information space (J¢, Ym), that are related by

the state projection operation {J;; = PN xj”, Yy = Py (Ls).
In each iteration they only need their previous time tp space
variables (X5, Pepitp OF Yepitp, Yeppr,) and the current time ¢
parameters and data (F¢,, Q:.cp. Hs¢, Rs ¢, Ur . & ¢ ). Further, as
the prediction (Eq. (2)) is simpler in the KF and the update of
multiple measurements (Eq. (3)) is easier in the IF (Mutambara,
1998), the estimation problem can be solved by combining KF
predictions, IF updates and state projections. Finally, the IF update
can be divided in a projection of the measurement into the
information space (3)(_Ly), the accumulation of all the projected
measurements (3)(+), and the assimilation of the accumulated
data with the previous information (3)(A).

X, = Fe 0o X100 + U 1,
Py, = F Py, F! T Qi

{is,t = H;[R;t1§s,t,t’ L, = HsT,rRsTt]Hsz} (Lm)
5 S

io=Y il = le,t} +) : (3)

=1 s=1

{j’tlt =j’t|tp + ih Yt\t = Yt|tp + It} (A)
To deal with erroneous measurements, a validation test that checks
if &, o is coherent with the estimate of the state is sometimes
included before the KF/IF update step (Hall, 1992). If the test is
passed, & ; , is used to update the estimate, otherwise it is rejected.
Data association distances (Fukunaga, 1990) are used as validation
tests because they are quick geometric methods to quantify the
disagreement that exists between &, , and its predicted value
(Hs i Xk, )- A typical validation test consists in comparing the
obtained distance with a threshold I;. The Mahalanobis distance
ds kq in Eq. (4) is often used because it weighs the discrepancy
between Es k.o and Hs, k&,dkp with the inverse of the covariance of the
predicted measurement value (Hy, kPk“q,  « + Rs k). Thus, it grows
w1th the discrepancy and decreases with the uncertainty. Further,

ds k.o follows a chi-square distribution Xn of as many degrees of
freedom ng as the number of elements in 55 r.a- Consequently, the
validation test only rejects valid measurements with a probability
lower than o when the cumulative probability P(x,fs < k) =
1 — /2. See Johnson and Wichern (1998), for further details.

ds,k,a f ls

T T —1
ds,k,a - es,k,a(Hs,kpk\kas,k + Rs,k) € k.a (4)
— H 1 X1 )-

} (P) (2)

es,k,a = (Es,k,a
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Fig. 1. Division in the IF update step between the sensorial information at j and the
previous one. Av(j) = {s|§s_j_a§t} stands for the set of sensors whose measurements
at time j are already available at the current time t.

2.3. Estimating the state with OOS data (& ;. )

When some delayed data arrive at the fusion center (&, ),
the KF and IF cannot use it to update the current (X, P¢|). The
new developed algorithms will be equivalent to the KF and IF when
their results with OOS data are the same as the results of the KF and
IF with the same data without delays.

It is important to highlight that their equivalency will only hold
for open control systems, that is when u; does not depend on x;.
The dependency u; = f(x;) that exists in closed loop controllers
will break that equivalency when any u, is calculated before
a delayed &, , (k < t,a > t)is used to update the values of

(Reie, Peye)-
3. IFAsyn: an IF for the OOSP

3.1. Fundamentals

The origin of IFAsyn is the Junction Tree Algorithm (JTA)
presented in Lauritzen (1992), which is an exact inference
algorithm for Bayesian Networks (BNs) (Cowell, Dawid, Lauritzen,
& Spiegelhalter, 1999) with continuous random variables and
linear Gaussian dependencies that estimates the state of any set
of variables of the BN given the data. As the order in which
the data are introduced does not change the final estimates, the
JTA is itself an optimal solution for estimating the state of the
variables of any OOSP with continuous random variables and linear
Gaussian dependencies. Therefore, the JTA can directly solve our
problem, although it spends too many memory and computational
resources. To minimize them, we analyzed how it works in detail
in Besada-Portas (2004), taking into account its equivalence with
the IF when the measurements are not delayed (Murphy, 1998),
and conclude that the JTA works for the OOSP because it separates
the information that has already been propagated from the new
incoming one.

This type of division also appears naturally in the IF update step
(3), as Fig. 1 highlights. The addition (+) separates the estimate
with all the sensorial information previous to j (Jj;,, Yjj,) from
the sensorial information of instant j which is already available,
projected into the information space and accumulated (i =
Zsel\v(}') isj, I = ZseAv(/) I; ;). The separation can be exploited by

(1) storing Wjijp» Yiijp » lj, I;) for each time step j, and (2) updating the
values of (i;, I;) and {¥kk, » Yik,| Yk > j} when any &, jq arrives at
the fusion center. The new values of (i, I;) are easily calculated with
a measurement projection (3)(_Ly) and accumulation (3)(+). For
each k, updating the values of {jlk”q,, Yy, } requires a measurement
assimilation (3)(A), a projection (ls) into the state space, a
prediction (2)(P), and a projection (_ s) into the information space.
The predictions (2)(P) also need the control signal u;, ; from each
j to the next jy, and thus for each time step (¥, Yijp. ij, Ij, Wy j)
need to be stored.

3.2. IFAsyn-(1, II, I1): IFAsyn without validation step

IFAsyn-I, the first version of IFAsyn presented in Besada-Portas
(2004) and Besada-Portas et al. (2009, 2007), was developed for

SData(és k,a> LI, kU)

//&s.k.a 111) Measurement of sensor s at time k
//LI (in/out): Time ordered list with information data
/ //.‘, ; (in/out): Time up to with LI has its info updated

Rl
Zsk*HT sk&s,k,a? Isk*HT R Hs ks //3-(Lar)
//Get data from the list for k or previous kp

kp = LI.Get(k, y,Y 2, I);

if (k==kp)then // There is information for &
|1,7z—i-1,5;C IfI—i-Is;C7 //3.(+)
else //There is no data for k: initialize it

|i= is,k;I =I,,;9=0;Y =0 //No data for 4,V

end
L1.Set(k,y,Y,4,1I);
kuy = min(kp, kv );

//Set data for k
//LI updated up to kg

~

Fig. 2. SData: projecting ’;‘syjym accumulating its information, and storing it in LI.

CData(ug, LC, LI, k)

//ug (in): Control signal applied from k

//LC (in/out): Time ordered list with control functions
//LI (in/out): Time ordered list with information data
//ku (in/out): Time up to with LI has its info updated

LC.Set(k,u); //Store control function wy in LC

kp = LI.Get(k,y,Y,4,I);

if (k! = kp) then //No information for k: initilize it
//no data for (gg, Yi), ix. = 0,1 =0
LI.Set(k,0,0,0,0);

end

kuy = min(kp, ky); //Last updated time kq

Fig. 3. CData: incorporating the entries in LC & LI for the new control function.

systems where the time-stamp of all the possible & ; ; is known
beforehand. Its prediction step combined the KF prediction (2)
with the initialization of the projection measurement variables
(iy = 0, I, = 0). Its update step implemented the idea presented
in Section 3.1 exactly. It stored the five variables for all the time-
steps where a measurement can be taken and a control signal
changed. Finally, the re-propagation cycle could go through time-
steps without previously available ‘;‘S‘j’a, overloading the system
unnecessarily.

The novel versions of IFAsyn presented in this section do not
require the previous knowledge of the time-stamp of & ; , and
accommodate its memory and computation requirements to the
available information. They reorganize IFAsyn-I steps and combine
them with the management of two dynamic lists, LC and LI,
that respectively store the control functions u; starting at j, and
the information variables (Jjj,. Yjj, i I;) for the time-stamps
associated with changes of the control functions u; and already
assimilated & ; ;. They are controlled by the next functions. ky =
LI. Next(k) returns the time-stamp of the entry of LI whose time
comes after k (—1 if it does not exist). ky = LI. Get(k,y,Y,i,1I)
returns (y,Y,i,I) for time k if they exist or for the closest
previous time if they do not, plus the time ki of the returned
information. LI. Set(k, y, Y, i, I) sets in LI the values of time-stamp
k to (y, Y, i,I), modifying the stored values if there is already an
entry for k or creating a new one if it does not. LC.Set(k, uy) stores
the control function starting at k. u, x, = LC.Get(k,, k1) calculates
and returns the control signal uy, \, applied from k; to ko2

The new versions of IFAsyn are built over 3 functions, SData,
CData and Update&Get, whose steps are detailed in pseudo-code
in Figs. 2-4. SData projects the new &;; , (3)(_Lum), accumulates it
to others related to the same time- stamp (3)( ), and stores it in
LI. CData incorporates the new u; that starts at k in LC and creates

2 LC can also store the requested u, i, to have them available when they are
needed again. Its storage requirements can be minimized deleting all Uy whose
time intervals partially coincide with the interval of the newly required uy, , .
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Update&Get(kc, LC,LI, ky, ikCVCC s PkC“‘?C)
//kc (in): Update variables up to time k¢
/L( (in/out): Time ordered list with control functions
/ /LI (in/out): Time ordered list with information data
/A[ (in/out): Time up to with LI has its info updated
//Cl;( ke s Pro|ke (out): updated state and cov. at ko

k=min(ky, kc); //Repropagate or get state at ke

//Get data for ki, or ko or the previous time to k¢
k=LI. Get(k yk‘kP,Yk‘kP,zk,Ik);
while (k <= k¢)
Yrlk = Uklkp T 05 Yre = Yk\kp +Ip; //3.(4)
mk\k - k|kyk\kv Pk|k = Mkv //(LS)
f (k < k¢) then /'/I\((p on predicting up to k¢

kp = LI.Next(k)7 //Time of following entry in LI
//kn (time after prediction): when there is no entry in
//LI for k¢, at some point kp=—1 (end of LI)

//or kp>kc. In these cases, kny = k¢

if (kp == —1)V (krp > ko) then kn = kc;

else kny = kp, en

T = F; @ + LC.Get(kn,

PkNue FkN kl::c\kF (bn, k) //2.(P)

T |k = kN,k kel Fry &+ Qin b

Yknlk = kN‘kmk:N\jv YkN\k—PkNl|k§ //(Ls)
//Update local variables for nex iteration
kp =k; k=kN; YUklkp = Uky|ki Yklkp = Yin |k
if kp==—-1)V(kr >kc)then//No info in LI at k¢
ix = 0; I, = 0; //No sensorial info in LI at k¢
else //Data in LI for k, Get and Set information
LI. Get(k y, Y, ig, I); //Get L; I, throw away y,Y
LI.Set(k, yk\kpvyk:\kpvlkz-[k) //Set Yrkps Yilkp
ky = k; //LI updated up to /\
end
end
end
Brolke = Erjks Prolke = Prik; //Return estimate at ke

Fig. 4. Update&Get: updating LI entries with the stored data and returning the
estimates, up to the given time kc.

0; kU_o-LI_@ LC 0;
Start {LI Set(t, P, 0,0)

0/0 Zoj0, P 0\0 J

=i
( it\tvpt\t? ’ @

| CData(us, LC, LI, ki) | | SData(€ x4, LT, ku) |

I H H T
Y y

|
| Update&Get(t, LC, LI, ki, @41, Pyjy) ||
|

le— —

Fig. 5. Flowcharts of IFAsyn-II & IFAsyn-IIl. Solid black arrows are common to
both algorithms, red dotted ones refer to IFAsyn-II and blue dashed ones refer to
[FAsyn-IIl. Ovals represent events and boxes show the functions to be run. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

a new entry in LI for that instant if it does not exist. Update&Get
re-propagates the already projected and accumulated sensorial
information through LI up to a given time k¢ using a series of
assimilations (3)(A), predictions (2)(P) and projections (_Ls), and
returns (Xy, k. » Pic [k )- SData and CData modify the number of list
entries when needed, while Update&Get only changes the contents
of their elements.? ky identifies up to which time-stamp the LI
entries have their (¥, , Yk, ) already updated with the available
data.

The new IFAsyn-II and IFAsyn-Ill are depicted in the two
flowcharts represented simultaneously in Fig. 5, where the yellow
ovals show a change in u, a requirement of the current (X¢, Py¢),

3 When LC also stores Uy i, Update&Get can modify the number of Uy i entries
in LC when calling LC.Get (k3, k1).

0;ky = 0; Ll_w Lc_w

Start: {LI Set(t, O‘Owo‘o, o0+ 0:0)

C 24¢, Pye? )

Update&Get(k LC’, LI, kU, i’k\k? Pk\k))
IsValid({svk,t, LI, :i:k\/w Pk\k? Ualld)

@ no

= — =" yes

| SData(&s k¢, L1, kv ) I

| CData(uy, LC, LI, kU)I

¥ ¥

1
|
| Update&Get (t, LC, LT, k. @y, Py) |1
|

Fig. 6. Flowcharts of IFAsyn-IV & IFAsyn-V. Solid black arrows are common to
both algorithms, red dotted ones refer to IFAsyn-IV and blue dashed ones refer
to [FAsyn-V. Ovals represent events and boxes show the functions to be run. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

and a &, arrival; the boxes indicate the functions to be carried
out, and the colors and arrow types identify to which filter they
are related. IFAsyn-II, whose flowchart contains the black and
red dotted arrows, calculates (X, Py) with all the available
information whenever there is a new &, , or u;, or when it is
required by an external event. Hence, it calls Update&Get after
including any new & , . or u; with SData or CData. IFAsyn-III, whose
flowchart contains the black and blue dashed arrows, minimizes
the computational cost postponing the re-propagation of the new
& 1. Or u until (R, Pyye) are required by an external event. The
speed-up is achieved when at least two pieces of data (§;  , and/or
u,) are stored by SData and/or CData before calling Update&Get.
Finally, when we incorporate a new uy, for all the time-stamps of
the possible & , ;, IFAsyn-II behaves as IFAsyn-I.

IFAsyn-(I, 11, 1) are optimal MMSE algorithms for our OOSP
because the order of their operations makes them roll back to the
time-stamp of the older piece of data (ky) and re-start the fusion
process with the sensorial information already projected into the
information space. Therefore, they obtain the same results with
00S data as the KF with the same data without delays.

3.3. IFAsyn-(1V, V): IFAsyn with validation step

Including a validation step based on a distance between &; , ,
and its estimated value in IFAsyn lets it detect and reject corrupted
measurements whose errors are not modeled by R ;. Although its
inclusion before the update operation of the KF is straightforward,
executing it in IFAsyn requires considering some important aspects
that affect the final results of the filters. Our filters with validation
step are named IFAsyn-1V and IFAsyn-V and are depicted in the
flowcharts in Fig. 6, IFAsyn-IV with black and red dotted arrows,
and IFAsyn-V with black and blue dashed ones.

First, the assimilation of any 0OS & , , changes (&, P;;;) for all
j > k. This could modify the results of the validation tests that the
&, ., with a bigger time-stamp (I > k) which arrived at the fusion
center earlier (@ < t) has already passed. Although redoing the
validation tests to incorporate the new valid measurements and to
eliminate the new invalid ones will let our filters obtain the same
results as KF or IF, the prohibitive computational cost associated
with it makes us reject this option. Consequently, our filters carry
out the validation test of each &; , , only once before incorporating
itinto the projected sensorial information with SData. Additionally,
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I%Vahd({s k,a> LT, &g ks Prx, valid)

//€s k.o (in): Measurement of sensor s at time k

I (in): Time ordered list with information data

Lk |k, Prix (input): updated state and covariance at k
valid (out): true if

€s k.o 1s valid
//We assume that Update&Get has been called before
kp = L1.Get(k, Uxlkp, Yilkp ik Ir);
if (k ==kp) then //There is an (11‘(1\ in LI for k
. -1
|wk\kp =Yk Gilkps Prjep = k\kp //(Ls)
else //There is no info in LI for k
| Zrikp = Trks Prlkp = Prjks

end \
/Do a validation test, for example (4)

es,k,a = (Es,k,a - Hs,kiizk\kp)
id — e T -
valid = €T, (HqkPuppHY) + Rs 1)

1
€5 k,a < ls

Fig. 7. IsValid: validating if a measurement is valid.

in order to minimize the influence of the OOS reception of the data,
the test for & ; , is carried out with the already updated state and
covariance at k, and thus IFAsyn-1V and IFAsyn-V call Update&Get
before the validation step function IsValid.

Second, when the 00S &, ; has the same time-stamp as an
already validated and assimilated & 1o (t > a) the validation of
& 1. can be done using the estimate of the state and covariance
that already includes & ; (X, Pyx) or the state and covariance
that does not (X, , Py, )- We opt for the second choice? because
the original validation test (Eq. (4)) is carried out according to it and
because by not considering &, , to validate &, ,, the validation
step evicts to give a higher validation priority for a given time-
stamp to the measurements that have arrived first.

[FAsyn-IV and IFAsyn-V extend IFAsyn-II and IFAsyn-III with
a validation step, using the pseudo-code of Fig. 7 for IsValid.
Including Update&Get before IsValid to reduce the effects of the
00S arrival of §; , , in IsValid, makes IFAsyn-V lose part of I[FAsyn-
Il speed-up. As none of these re-validates the already assimilated
& o their results with OOS data can differ from the ones from
KF with the same data without delays. However, when the filters
are well tuned the re-validations should almost not vary and the
results of our filters and KF should be similar. When all the filters,
including KF, are badly tuned, they can accept non-valid §; ; , and
return incorrect results. The OOSP either alleviates or aggravates
the problem depending on the arrival order.

Finally, to further reduce the memory requirements of any
IFAsyn, we can use another operation that deletes those entries
that are outside a time window from LI and LU, at the expense of
not being able to assimilate those & , , whose time-stamps are not
longer included. '

4. Related work

In this section we describe many other OOS algorithms and
compare them with IFAsyn. Considering their core idea and some
of the assumptions made during its development, we can classify
them into the following 4 groups:

Group 1, (Anxi et al., 2005; Bar-Shalom, 2002; Bar-Shalom et al.,
2004; Hilton et al., 1993; Ito et al., 1998; Mallick et al., 2001):
the retrodiction KF algorithms use the transition model (1) to
backwardly retrieve the state at the &, , time-stamp. They invert
F; i, that makes them valid only for discrete systems with non-
singular F; i (a property that holds for all discretized continuous
systems). They have low memory and computational needs, and all

4 IsValid uses (xyx, Pyx) when there is no entry in LI for k because in that case
they are equal to (X, , Pyjip )-

except Bar-Shalom (2002) are always suboptimal. The optimality
of Bar-Shalom (2002) only holds when §; ; , is not older than any
already assimilated &, , (k > I) (i.e, when § , , are delayed only
one time lag), and Bar-Shalom et al. (2004) is usually considered
the standard suboptimal solution.

Group 2, (Challa et al., 2002; Feng et al., 2008; Lu et al., 2005;
Matveev & Savkin, 2003; Zhang et al., 2004): KF algorithms
that modify the model (1) and use non-delayed KF equations to
assimilate any &; , .. First, Challa et al. (2002) and Matveev and
Savkin (2003) augment the state to include the last W states
and modify the transition and measurements models (Eq. (1)) to
consider the state extension. In order to calculate a value of W that
lets them assimilate all §; , , they need to know (1) the value of the
maximum permitted delay and (2) the time-stamp of every §; , , to
ensure that there is a slot available for each measurement time step
k in the extended state system. Challa et al. (2002) uses the normal
KF in the extended model and thus it operates in a large state space,
while Matveev and Savkin (2003) exploits the sparse structure
of the extended transition and measurement matrices to obtain
a new set of expressions and thus loses the simplicity of Challa
etal. (2002). Second, Feng et al. (2008) augments the measurement
space, modifies the measurement equations in (1), and assimilates
& .. with the KF for systems with correlated measurement and
state noise. Its optimality only holds when the &, , delays are
no bigger than one time step. Third, Lu et al. (2005) and Zhang
et al. (2004) readjust their models with a reorganization of the
innovation sequence that makes them directly apply the third
naive solution.

Group 3,(Zhang et al., 2002, 2005): KF algorithms that pre-calculate
sets of variables to be ready to update the current state as soon as
any &, , arrives. They need to know beforehand the time-stamp
of all the possible & 1. to have sets of variables ready for each of
them. Further, the pre-calculation of the sets of variables has to
be re-started after each & ; , is assimilated. Finally, their inherent
complexity makes any modification difficult.

Group 4, (Lanzkron & Bar-Shalom, 2004; Nettleton & Durrant-
Whyte, 2001; Rheaume & Benaskeur, 2008; WenHui et al., 2006;
Zhang et al, 2003): For each time step they store (Xj;, Pj;)
or (Jj, Yj;), and forward the information of any new &, to
sequentially update all the states and covariances from the time-
stamp of &, , (Nettleton & Durrant-Whyte, 2001; WenHui et al.,
2006; Zhang et al., 2003) or only the current ones (Lanzkron & Bar-
Shalom, 2004; Rheaume & Benaskeur, 2008). Besides, Nettleton
and Durrant-Whyte (2001) is really close to IFAsyn, although it
avoids state projections (_Ls) with an IF prediction that inverts
F; j,. Accordingly, Nettleton and Durrant-Whyte (2001) is not valid
for some discrete systems and, as we want to estimate (X, Pyjk)
we have to include (_Ls) in it as well. Zhang et al. (2003) is more
complex than IFAsyn because instead of updating (X;;, P;;) directly
it updates some extra variables first and (&;;, P;;) later. A close
inspection of WenHui et al. (2006) shows that it does the same
operations as IFAsyn substituting (i;, I;) for &;; — ¥iip» Yis — Yjip)
and the values in the information space for the projected ones
in the state space. Finally, Lanzkron and Bar-Shalom (2004) and
Rheaume and Benaskeur (2008) are the closest approximated
algorithms to ours. When a new &; , , arrives, Lanzkron and Bar-
Shalom (2004) and Rheaume and Benaskeur (2008) substitute the
update step in IFAsyn for: (1) two direct predictions (one with the
new & , . and another without it) of (Viik Yik) to the actual time ¢,
and (2) an update of the values of (J;, Y¢|¢) using their old values
and the values obtained from the two predictions.

Finally, Shen et al. (2009) combines the exact retrodiction
solution in Bar-Shalom (2002) and the forward update in Zhang
et al. (2003) to develop a complex new optimal OOS algorithm,
belonging to groups 1 and 4, that collects several delayed {§ }
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Table 1

IFAsyn versus other algorithms. Column ALG identifies the algorithm; SUP, its
support; F~!, when it inverts F; u, if it includes u,; MS, if it is multisensorial; WK,
if it works without previous knowledge of the possible & , , time-stamps; SI, if it
can assimilate multiple measurements in a single iteration, and VAL, if it includes
a validation step. An ‘x’ means that it has that column property and a ‘+’ that it
can be modified to include it (Shen et al. (2009) can assimilate a group of & , , in
a single iteration but needs to be modified to include a second batch). The 11 top
filters are optimal and remain optimal when correctly modified to incorporate more
properties except our validation step, while the 4 bottom ones are suboptimal.

ALG SUP F1 u; MS WK SI VAL
[FAsyn-I IF X X + + +
IFAsyn-II IF X X X + +
IFAsyn-III IF X X X X +
Challa et al. KF + + X

(2002)

Matveev and KF X X X

Savkin (2003)

Zhang et al. KF + +

(2002)-Al

Zhang et al. KF + +

(2005)-Al

Nettleton and IF X X X + + +
Durrant-Whyte

(2001)

Zhang et al. KF + + + + +
(2003)-Al

WenHui et al. KF + + + + +
(2006)

Shen et al. (2009) KF X + X X x [+
IFAsyn-IV IF X X X + X
IFAsyn-V IF X X X X X
Bar-Shalom et al. KF X + X X

(2004)

Lanzkron and KF + + X + +
Bar-Shalom

(2004) and

Rheaume and

Benaskeur (2008)

and assimilates them in a single iteration that only updates the
final (X, Prc). However, it cannot assimilate a second group of
delayed (&, .} with | < t after the previous collection {&; ; ,} has
already been assimilated, unless it is modified to also update the
intermediate (X;;, Pjj, k <j < t).

Besides the properties that let us divide the algorithms into
these 4 groups, the algorithms can also be distinguished by other
characteristics. The most relevant ones are presented in Table 1,
which includes all the optimal filters that can work with &,
delayed more than one time lag except Lu et al. (2005) and Zhang
et al. (2004) (third naive solution). It also includes two suboptimal
filters whose degree of suboptimality is a small percentage of the
Root Mean Square Error (RMSE): Bar-Shalom et al. (2004) as the
standard one and Lanzkron and Bar-Shalom (2004) and Rheaume
and Benaskeur (2008) as the closest to IFAsyn. The table shows
that IFAsyn, which can be classified as group 4, is the current
most general approach: IFAsyn-(I-V) do not invert F; ;,, include
u; ;, and work with multiple sensors; IFAsyn-(II-V) do not need to
know beforehand the time-stamp of & , ,; [FAsyn-(Ill, V) assimilate
groups of & , . in a single iteration; and IFAsyn-~(IV, V) include a
validation step.

IFAsyn is really easy to implement because it basically combines
KF predictions, IF updates, and state projections. Its capacity
of working without any prior knowledge of the &, time-
stamps is obtained only with the inclusion of two managed lists.
Furthermore, it can assimilate multiple measurements &, , in a
unique iteration with only postponing the update procedure. Its
simplicity, which comes directly from its IF support, is only beaten
by Challa et al. (2002) that directly uses the usual KF steps but
needs to know beforehand the time-stamp of all §; ; ,.

Finally, an analysis of the stability of a control system that
uses IFAsyn (or Challa et al. (2002), Nettleton and Durrant-Whyte
(2001), Shen et al. (2009), WenHui et al. (2006), Zhang et al. (2003)
and Zhang et al. (2002, 2005)) is out of the scope of this paper. On
the one hand, IFAsyn-(I, II, Il) are equivalent to Matveev and Savkin
(2003) and therefore share their stability properties. In addition,
although they assimilate the OOS data, the magnitude of the delays
is important because while & ; , is not available the control system
works with intermittent observations that can instantaneously
affect its stability (Hespanha et al., 2007; Sinopoli et al., 2004).
The problem is not presented by IFAsyn-(I, II, IlI) and Challa et al.
(2002), Matveev and Savkin (2003), Nettleton and Durrant-Whyte
(2001), Shen et al. (2009), WenHui et al. (2006), Zhang et al. (2002,
2005) and Zhang et al. (2003), as they update the state as quickly as
its computational requirements allow, but it has to be considered
when they are used inside real-time control loops. On the other
hand, IFAsyn-(IV, V) need to have a well-tuned validation step to
properly assess the validity of & , .. Although, a correct validation
is also needed for the proper performance of the system that uses
the KF with non-delayed data, O0S &, , affect the problem and
special care should be taken.

4.1. Memory and computational cost comparison

In this section we analyze the memory and computational cost
of the filters in Table 1, based on the following two assumptions:
(1) since every filter can use u; ;, and multiple sensors, we modify
the filters which do not use them originally to include them before
performing the comparison, and (2) as some filters cannot easily
incorporate the validation step, our comparison will not consider
it, excluding IFAsyn-(IV, V). Besides, some filters need to know a
priori the time-stamps of §; , . and the window time W. Hence, we
initially consider that they all work with the same prefixed time
step, store the variables of the last W time-steps, and represent
the control functions w, with uy,, .

Table 2 shows that IFAsyn-(I, II, Ill) need more memory
than Bar-Shalom et al. (2004), Lanzkron and Bar-Shalom (2004),
Nettleton and Durrant-Whyte (2001), Rheaume and Benaskeur
(2008), Shen et al. (2009), WenHui et al. (2006) and Zhang
et al. (2003) because IFAsyn-(l, II, Ill) separate (¥;,, Yjj,) from
(i;, I;) while Nettleton and Durrant-Whyte (2001) stores (¥, Yj;)
and Bar-Shalom et al. (2004), Lanzkron and Bar-Shalom (2004),
Rheaume and Benaskeur (2008), Shen et al. (2009), WenHui et al.
(2006) and Zhang et al. (2003) store (X;;, Pj;). However, the extra
memory in IFAsyn-(I, II, IIl) make them numerically more accurate.
Dropping the last assumptions of the previous paragraph reduces
the memory needs of IFAsyn-(Il, III) and Shen et al. (2009): ours
store u; functions starting atj and (3, . Yjij, , ij. I;) for j related with
already assimilated & ;, and u; changes, and Shen et al. (2009)
stores (X;;, , Pjjj,) and u; for j related with u; changes.

Table 3 shows the computational cost of the filters, calculated
analytically counting® the number of FLoating Point Operations
(FLOPs) used to carry out a prediction and assimilation of a set of
m & . r» each delayed r; time-steps (r; = t — k;).6 IFAsyn-(I, II)

5 The count is carried out using LightSpeed Matlab Toolbox (http://
research.microsoft.com/minka/software/lightspeed/) and symbolic variables with
the matrices sizes. We minimize the number of operations of all the filters, counting
an operation that is repeated in consecutive equations only once. We do not
compute the number of FLOPs needed to obtain uy,  because it depends on the
problem and penalizes all the filters in the same way.

6 We do not exactly compute the number of FLOPs in Shen et al. (2009) because
the filter is too complex. Furthermore, we do not consider the extra operations to
update the intermediate (X;;, Pj;;). Hence, the number of FLOPs in Shen et al. (2009)
in Table 3 is a lower bound. Further, under the initial assumptions and whenm = 1
the exact number of FLOPs in Shen et al. (2009) equal the ones in Zhang et al. (2003).


http://research.microsoft.com/minka/software/lightspeed/
http://research.microsoft.com/minka/software/lightspeed/
http://research.microsoft.com/minka/software/lightspeed/
http://research.microsoft.com/minka/software/lightspeed/
http://research.microsoft.com/minka/software/lightspeed/
http://research.microsoft.com/minka/software/lightspeed/
http://research.microsoft.com/minka/software/lightspeed/
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Table 2

Memory Comparison. The first column contains algorithms; the second, stored variables (following the notation of this paper for those which have the same meaning as
ours, and the notation of their own papers for the rest); the third, memory requirements considering that x; and u; ;, have n, elements, and the fourth, a rated comparison
(best less memory) considering W > 2.

ALG Stored variables (for the last W time-stamps) Memory needs Rated
Shen et al. (2009) & WenHui et al. (2006) & Zhang et al. (2003)-Al x,l,, ,U and u;, jwithj=t+1-W :t W (ny + n2) + Wn, 1st
Nettleton and Durrant-Whyte (2001) ym Yjjand w;, ; withj =t +1—-W : ¢t W (ny +n?) + Wn, 1st
IFAsyn-(1, 11, I1I) Yiiip» Yiijp. i, I and wj, jwithj =t +1—-W : t W (2ny + 2n2) + Wny 2nd
Zhang et al. (2005)-Al {(Unzer 1w Bains Pans 7 U B 1)) WQ@2n, + 3n2) + Wn, 3rd
Zhang et al. (2002)-Al Unzes 1w i, Pan, X)), "r(\'l)v T Wty 1)} W(@2n, + 4n2) + Wny 4th
Challa et al. (2002) & Matveev and Savkin (2003) Augmented X and P (with Wn, and (an)2 elements) Wny + W?n? 5th
Bar-Shalom et al. (2004) & Lanzkron and Bar-Shalom (2004), X, Pjjandu;, jwithj =t +1—-W :t W (ny + n2) + Wn, 1st

Rheaume and Benaskeur (2008)

Table 3
Computational Cost Comparison. First column, algorithms; second, number of FLOPs for carrying out a prediction and the assimilation of m measurements. Each §;, . . has

n, elements and is delayed r; time-steps, X, and u, . have n, elements, the maximum permitted delay is W — 1, ryqe = max(r;), B = —n + 18n + fnz and C = 4nf + nf.

ALG Number of FLOPs
IFAsyn-(I, 1) {(Bnd 44202 + Bn) > ird + (=202 + @n, —2Dn2 + @n2 +n, — Hny +Bim + C
[FAsyn-III (En + 42n fnx)rmax + (——n + (2n,m — 20)n + (2n2m +n,m— —)nx + Bm)

Challa et al. (2002)
Matveev and Savkin (2003)

(AnHW3 + ((An;m + Dn2)W?2 + ((6n2m? + n;m)n)W + (2nim® + 18n2m? + n,m)

n2m)W? + (4n2 + 2((m* + m)n, — Dn2 + 2n2 — n,)m*n)W + ((2n,m? + 3)nx +(2n2 —n,)m? +
2n,m)ny + (B — n?)m? 4 n?m)

{(7n3 + B = 3)m2 + (2 + n; + Dne+ (End 4+ 9n2 + 2n,)W? + (=70 + (n; + 2)n2 + (n2 + 2n; —
yne+ (Znd +9n2 + In,))W + (2803 + (6n, — 6)n? + (6n2 — Dy + (B — n;))}m + C

{(4n} + (3n; — 2)nZ + nZne + BYW? + (—4n} + (n; + Dnf + (n2 +n, — D+ 3BW + (120 + (6n, —
2)n +6n nx+B)}m+C

{(83n3 +98n2 + 2n) > 1) 4 (—2nd 4+ @n, — 170 + 2n2 +n, — Pyn, + Bym 4+ C
{(8n} + (6n, + 16)n + (6n2 + 14)nx +B) > )+ (B0} 4+ @n, + 3902 + 2n2 + 1, +
{(11n} + 63n2 4 10n,) Y-, 13} + {4n3 + @n; +40)n2 + 2n2 4+ n, + P)n, + Bym + C
{@m* +6m+ Hnd + (17 — m)n + Ui rme + {(4m? — 2m)n? + 2n,(m* + m® + m) — m? + 3m +
3)n? + 22m* + 4m?) + n,(m* — m))nx + (nim?® + 17n2m? + Ln,m))

{@n2) Y} + {120} + (94 + 6n)n? + (2 + 6n§)nx +Bim+C

{@n2) Y} + {3203 4+ (102 + 2n)n2 + (22 + n; + L)ny + Bjm + C

Zhang et al. (2002)-Al
Zhang et al. (2005)-Al

Nettleton and Durrant-Whyte (2001)
Zhang et al. (2003)-Al

WenHui et al. (2006)

Shen et al. (2009) (see footnote 5)

Byne+Bim+C

Bar-Shalom et al. (2004)

Lanzkron and Bar-Shalom (2004), Rheaume and
Benaskeur (2008)
Validation { %

3 + 2n; +20)n2 + 22 +n; + Hyne + (End + 2002 + Tn, — 1))m

m=1,n =5, n =5, W=16 m=1,n =5, n =5, W=r,+1 m=1,n =5, 1,=9, W=10

—=—|FAsyn —=—|FAsyn
Challa (02) Challa (02)
——Zhang (02) +Zhang (02)
» Zhang (05) » Zhang (05) »
% i Nettleton (01) % i Nettleton (01) % 01)
T Zhang (03) & Shen (09) z Zhang (03) & Shen (09) P Zhang (03) & Shen (09)
—e—WenHui (06) —e—WenHui (06) w —e—WenHui (06)
Matveev (03) Matveev (03) Matveev (03)
—<Bar-Shalom (04) —<—Bar-Shalom (04) —<Bar-Shalom (04)
Lanzkron (04), Rheaume (08) Lanzkron (04), Rheaume (08) Lanzkron (04), Rheaume (08)
Delay (r‘) Delay (r‘) Number of states (nx)

(a) Different delays. (b) Maximal delay. (c) Different ny.

n =5,n =5, W=10
=2 M7

n =5, n =5, W=10
o0y

—a—IFAsyn—(L): (=9
g —oIFAsyn—(lll):r =9 3
° ChaHya (0(2)) " " 10 —a—IFAsyn—(LI): r=9
g 10° f“*‘.‘.‘.ﬂ [Aaar:;ii:n((oosj) Rheaume (08): r=9 g 10 : IFASY”_I“:. e~
z Pﬁ cesscese i z P er PR RoRd) —+—IFAsyn-IV: r‘=9
\ f,, ceee Shen (09):1, =9 . < Ay Vi 0
1 Shen (09):r =6 10

max

Shen (09):r__ =3

max 5

5 10 15 5 10 15
Number of measurements (m) Number of measurements (m)
(d) Different m. (e) Validation.

Fig. 8. FLOPs comparison. Note that only the name of the first author and last two digits of the publication year are presented in the graphics to shorten the references.

and Bar-Shalom et al. (2004), Lanzkron and Bar-Shalom (2004),
Nettleton and Durrant-Whyte (2001), Rheaume and Benaskeur
(2008), WenHoui et al. (2006), Zhang et al. (2003) and Zhang et al.
(2002, 2005) assimilate each & . , separately, but while I[FAsyn-(],
1) and Bar-Shalom et al. (20045 Lanzkron and Bar-Shalom (2004),
Nettleton and Durrant-Whyte (2001), Rheaume and Benaskeur

(2008), WenHui et al. (2006) and Zhang et al. (2003) have a linear
dependency on the sum of the r; and on m, Zhang et al. (2002, 2005)
depend on W?m. IFAsyn-III and Challa et al. (2002), Matveev and
Savkin (2003) and Shen et al. (2009) assimilate the set of variables
in a single iteration: IFAsyn-IIl depends on the maximum delay
(rmax) and on m, Challa et al. (2002) on W?> and m?, Matveev and
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Fig. 9. Influence of the validation step on IFAsyn. V stands for valid, NV for non-valid, EQ for equal, and DIF for different.

Table 4
Linear system: (x;, y;) represents the mobile position, 6; its orientation, and (AxX¢y1,¢, AYei1,¢, A6 1.)" the control signal.
Transition Sensor 1(S1) Sensor 2 (S2) Sensor 3 (S3)
Xtt1 Xt AXpye Xe+1 Xei1
Model Yerr | = Ye | + | AVesre | + Vg 21041 = (Org1) + v 241 = | Yeg1 | + w2 Z3041 = (y[+1) + e
9[+1 6[ A9[+1.f 0f+1 t
001 0 0\° , 0.1 0 0\ 2
; T 0.1 0 0.05 0
Variance Qi1 = 0 0.01 2 Rit41 = (ﬁ) Ryv1 = 2 Ryiy1 = ( 0 0'05)
Py 0 0 —
180 180

Savkin (2003) on W?m and on Wm?, and Shen et al. (2009) on
maxm? and on m3. The asymptotic behavior of their number of
FLOPs is shown in Fig. 8(a)-(c) when m 1 and Fig. 8(d) when
we have several & , . to assimilate at ¢, all delayed r; = 9. In
Fig. 8(a) we increment its r; for a fixed W, in Fig. 8(b) we modify
the maximum delay (r; = W — 1), in Fig. 8(c) we change the size
of the state, and in Fig. 8(d) we modify m. Fig. 8(a)-(c) show that
when m = 1 IFAsyn-(l, II, Ill) coincide and are the best optimal
filters, followed always by WenHui et al. (2006) and sometimes
by Matveev and Savkin (2003). Eventually, Matveev and Savkin
(2003) can outperform our filters, however its dependency on W2
instead of on r;, makes us consider ours as computationally better
for systems which can have big random delays. Besides, when the
delay grows, IFAsyn-(, II, IIl) are outperformed by the suboptimal
(Bar-Shalom et al., 2004; Lanzkron & Bar-Shalom, 2004; Rheaume
& Benaskeur, 2008), the best being Lanzkron and Bar-Shalom
(2004) and Rheaume and Benaskeur (2008). Fig. 8(d) shows that
[FAsyn-III is the best of the optimal algorithms when m grows,
followed by IFAsyn-(1, II). The suboptimal (Lanzkron & Bar-Shalom,
2004; Rheaume & Benaskeur, 2008) is initially better, but as it
assimilates & . . one by one, it gets worse than IFAsyn-1Il. We also
represent the behavior of Shen et al. (2009) at lower 1,4, because
when we drop the last initial assumptions, Shen et al. (2009) can
potentially have less steps than IFAsyn-III, and we want to see what
happen in that situation: Shen et al. (2009) degrades rapidly and
IFAsyn-lIl is better with only a few & , .. The other filters are not
presented in Fig. 8(d), because IFAsyn- (I 11) lower bound (Nettleton
& Durrant-Whyte, 2001; WenHui et al., 2006; Zhang et al., 2002,
2003, 2005), and Lanzkron and Bar-Shalom (2004) and Rheaume
and Benaskeur (2008) do the same for Bar-Shalom et al. (2004).

The previous analysis does not consider the validation step,
whose number of FLOPs for m &, , is shown in the last row
of Table 3. The number of FLOPs in IFAsyn-IV and IFAsyn-V can
be obtained incrementing the number of FLOPs in IFAsyn-II and
[FAsyn-III with that value. Fig. 8(e) compares the number of FLOPs
in our 5 filters as the number of &, , grows. Although visually
comparing IFAsyn-II with IFAsyn-1V, and IFAsyn-III with IFAsyn-
V could suggest that the computational overload for the same
number of & , , is different, it is the same.

In conclusion, the memory and computation comparison
show that when assimilating single &, , the best optimal filters

are WenHui et al. (2006) and any IFAsyn-(I, II, III). WenHui
et al. (2006) minimizes the memory while only incrementing
the computational cost of our filters and Matveev and Savkin
(2003). Our filters usually minimize the computation needs of
the rest, doubling the memory of WenHui et al. (2006). When
several & , , are assimilated together [FAsyn-III is usually the best
computational option and Shen et al. (2009) the best memory-wise
option. Whereas, the quickest suboptimal are Lanzkron and Bar-
Shalom (2004) and Rheaume and Benaskeur (2008).

Finally, the filters Lanzkron and Bar-Shalom (2004), Nettleton
and Durrant-Whyte (2001), Rheaume and Benaskeur (2008),
WenHui et al. (2006) and Zhang et al. (2003) belonging to group
4 could also benefit from the use of managed lists to store their
3 variables to make them work in a similar fashion as IFAsyn-III.
That is, they can be modified to have an equivalent memory and
computational benefit.

5. Experimental results

In this section we illustrate with an example the usual influence
of the O0S data in IFAsyn-(IV, V), the versions of IFAsyn that
become suboptimal due to the inclusion of the validation step.
IFAsyn-(I, II, III) are not considered because their optimality is
ensured by their design. The example consists of comparing the
results of IFAsyn-(IV, V) and KF for the mobile system in Table 4,
with its 3 sensors (S1-compass, S2-sonars, S3-GPS) providing & ,
every 0.1sduring 60s (600 & , , per sensor). Both filters work with
the same measurements, the KF with all of them without delay and
[FAsyn-(IV, V) with a part of them delayed according to Fig. 9(a),
which shows the delay (y-axis, 1 s means 10 time-steps) of the
&, . taken at each k (x-axis). In both cases S3 provides corrupted
&, 1 during the last 30 s and the filters have a validation test that
should consider incorrect less than 5% of the non-corrupted &; ;
(a 0.05). The test shows the behavior we have observed in
our experiments with properly tuned filters: their results are only
punctually different. Therefore, the influence of the OOS in the
validation step is negligible.

The results of the experiment are presented in Fig. 9(b)-(d).
Fig. 9(b) shows the results of the validation tests carried out by
[FAsyn-(IV, V) with the delays in Fig. 9(a). The validation test
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rejects (NV) all the corrupted &; , , from S3 (last 30 s), plus a small
percentage of the rest. Although a similar figure could be presented
for KF when § , , are not delayed, we prefer to include Fig. 9(c)
that shows the differences in the validation tests of the two filters.
We can observe that all § , . except 5 from S2 maintain the same
validation results. This small difference, only a 0.28% of all the
& 1.» is due to the presence of delays in S1 and S3 between the
period of 10-30 s, which makes IFAsyn-(IV, V) validate &, , from
S2 before a part of the & ; , from S1 and S3 have been assimilated.
The influence in the values of the states is shown in Fig. 9(d), with
5 abrupt changes in all the states for the same instant of times.
Considering that during the experiments the value of x, y and 0 vary
60, 25 m and 1 rad, the biggest change in the three axis is around
0.02% of the total change. Thus, the differences are negligible, both
in the number of &; , , whose validation test is different and in the
changes in the values of the states.

The experiment shows the usual influence of the validation test
in IFAsyn-(IV, V) for a well-tuned case. When the models or the
tests are badly tuned, both the KF without delayed & , , or IFAsyn-
(IV, V) with OOS data can obtain erroneous results. That is, a correct
validation test and parameter tuning is needed by all the filters, and
although the O0S data make IFAsyn-(IV, V) lose its optimality, they
do not necessarily aggravate the problems that the validation test
imposes on KF.

6. Conclusions

We present several filters to estimate the state of linear control
systems for the OOSP with corrupted data. IFAsyn-(I, II, III) are
optimal solutions that avoid recalculating the information of the
already received measurements, although they re-propagate it.
They are computationally better than other optimal solutions and
easier to implement as they consist in a cleverly organized group of
KF prediction, IF update operations, and state projections. IFAsyn-
(Iv, V) extend IFAsyn-(II, IlI) with the inclusion of a validation
step that lets them detect and reject erroneous measurements.
Our filters are also more general (see Table 1 for a complete
comparison).
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