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a b s t r a c t

Asymptotic stability and boundedness have been two of most popular topics in the study of stochastic
functional differential equations (SFDEs) (see e.g. Appleby and Reynolds (2008), Appleby and Rodkina
(2009), Basin and Rodkina (2008), Khasminskii (1980), Mao (1995), Mao (1997), Mao (2007), Rodkina and
Basin (2007), Shu, Lam, and Xu (2009), Yang, Gao, Lam, and Shi (2009), Yuan and Lygeros (2005) and Yuan
and Lygeros (2006)). In general, the existing results on asymptotic stability and boundedness of SFDEs
require (i) the coefficients of the SFDEs obey the local Lipschitz condition and the linear growth condition;
(ii) the diffusion operator of the SFDEs acting on a C2,1-function be bounded by a polynomial with the
same order as the C2,1-function. However, there are many SFDEs which do not obey the linear growth
condition. Moreover, for such highly nonlinear SFDEs, the diffusion operator acting on a C2,1-function is
generally bounded by a polynomial with a higher order than the C2,1-function. Hence the existing criteria
on stability andboundedness for SFDEs are not applicable andwe see thenecessity to developnewcriteria.
Our main aim in this paper is to establish new criteria where the linear growth condition is no longer
needed while the up-bound for the diffusion operator may take a much more general form.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Systems in many branches of science and industry do not only
depend on the present state but also the past ones. Stochastic
functional differential equations (SFDEs) have been widely used to
model such systems (see e.g. Kolmanovskii and Myshkis (1992),
Kolmanovskii and Nosov (1981), Mao (1991), Mao (1994), Mao
(2007), Mao and Yuan (2006) andMohammed (1986)). Asymptotic
stability and boundedness have been two of most popular topics
in the study of SFDEs and there is an extensive literature in these
areas (see e.g. Appleby and Reynolds (2008), Appleby and Rodkina
(2009), Basin and Rodkina (2008), Khasminskii (1980), Mao (1995)
Mao (1997), Mao (2007), Rodkina and Basin (2007), Shu et al.
(2009), Yang et al. (2009), Yuan and Lygeros (2005) and Yuan and
Lygeros (2006)).

In general, an SFDE has the form

dx(t) = f (xt , t)dt + g(xt , t)dB(t) (1)

on t ≥ 0 with initial data x0 = ξ ∈ C([−τ , 0]; Rn), where f : C
([−τ , 0]; Rn) × R+ → Rn and g : C([−τ , 0]; Rn) × R+ → Rn×m.

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor James Lam under
the direction of Editor Ian R. Petersen.
∗ Corresponding author. Tel.: +44 1415483669; fax: +44 1415483345.

E-mail address: x.mao@strath.ac.uk (X. Mao).

(The notations used in this section will be explained in Section 2).
In general, both f and g are required to obey the standard local
Lipschitz condition and the linear growth condition (see e.g.
Kolmanovskii and Myshkis (1992), Mao (2007) and Mohammed
(1986)). One of the useful stability criteria is the following result:

Theorem 1 (Mao and Yuan (2006, Theorem 8.7 on page 308)).
Assume that both f and g satisfy the local Lipschitz condition
and the linear growth condition. Let V ∈ C2,1(Rn

× R+; R+), w ∈

W([−τ , 0]; R+) and p, λ1, λ2, c1, c2 be all positive constants with
λ1 > λ2. If

c1|x|p ≤ V (x, t) ≤ c2|x|p, ∀(x, t) ∈ Rn
× R+,

and

LV (ϕ, t) ≤ −λ1|ϕ(0)|p + λ2

∫ 0

−τ

w(u)|ϕ(u)|pdu

for all (ϕ, t) ∈ C([−τ , 0]; Rn) × R+, then for every initial data
ξ ∈ C([−τ , 0]; Rn), the solution of Eq. (1) obeys

lim
t→∞

1
t
log(E|x(t)|p) ≤ −λ,

where λ > 0 is the unique root to λ2eλτ
= λ1 − λ2.

However, there are many SFDEs to which the above theorem and
other existing stability criteria cannot be applied. For example,

0005-1098/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
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consider the scalar SFDE

dx(t) = [−x(t) − x3(t) + (D(xt))2]dt + D̄(xt)dB(t) (2)

with initial data x0 = ξ ∈ C([−τ , 0]; R), where B(t) is a scalar
Brownian motion and both D and D̄ are bounded linear operators
from C([−τ , 0]; R) to R. By the classical Riesz theorem (see e.g.
Natanson (1964)), there is a function of bounded variation A(·) on
[−τ , 0] with A(−τ) = 0 such that

D(ϕ) =

∫ 0

−τ

ϕ(θ)dA(θ), ϕ ∈ C([−τ , 0]; R).

It is well-known that any function of bounded variation can be
written as the difference of two non-decreasing functions. In other
words, we can write A = A1 − A2, where both A1 and A2 are non-
decreasing functions on [−τ , 0] with A1(−τ) = A2(−τ) = 0.
Hence, for ϕ ∈ C([−τ , 0]; R),

D(ϕ) =

∫ 0

−τ

ϕ(θ)dA1(θ) −

∫ 0

−τ

ϕ(θ)dA2(θ),

which implies,

|D(ϕ)| ≤ K
∫ 0

−τ

|ϕ(θ)|dµ(θ) (3)

where K = A1(0) + A2(0) and µ = (A1 + A2)/K which is a
probability measure on [−τ , 0]. Similarly, there is a probability
measure µ̄ on [−τ , 0] and a positive constant K̄ such that

|D̄(ϕ)| ≤ K̄
∫ 0

−τ

|ϕ(θ)|dµ̄(θ). (4)

For illustration, we assume that K = K̄ = 1. When we attempt to
apply the existing theory of SFDEs, we encounter two problems:

(i) The drift coefficient f (ϕ, t) := −ϕ(0) − ϕ3(0) + (D(ϕ))2

does not obey the linear growth condition although they are locally
Lipschitz continuous. To the authors’ best knowledge, there is so far
no result that shows that this equation has a unique global solution
for the given initial data.

(ii) Even if there is no problem with the existence of the global
solution, we still encounter another problem when we attempt
to apply e.g. Theorem 1 to deduce the exponential decay of the
solution. To see this new problem, let us set V (x, t) = x2. Then

LV (ϕ, t) = 2ϕ(0)[−ϕ(0) − ϕ3(0) + (D(ϕ))2] + (D̄(ϕ))2

≤ −
7
5
|ϕ(0)|2 − 2|ϕ(0)|4 +

5
3

∫ 0

−τ

|ϕ(θ)|4dµ(θ)

+

∫ 0

−τ

|ϕ(θ)|2dµ̄(θ). (5)

The terms −2|ϕ(0)|4 +
5
3

 0
−τ

|ϕ(θ)|4dµ(θ) with a higher order
than the order of V (x, t) = x2 appear on the right-hand side and
these prevent Theorem 1 from being used.

It is due to these problems that we see the necessity to develop
new stability criteria for the SFDE (1) where the linear growth
condition may not hold while the bound on the operator LV may
take a much more general form.

2. Existence-and-uniqueness theorem

Throughout this paper, unless otherwise specified, we use the
following notation. Let | · | be the Euclidean norm in Rn. If A is a
vector or matrix, its transpose is denoted by AT . If A is a matrix, its
trace norm is denoted by |A| =


trace(ATA). Let R+ = [0, ∞) and

τ > 0. Denote by C([−τ , 0]; Rn) the family of continuous functions
ϕ from [−τ , 0] to Rn with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|.

Denote by W([−τ , 0]; R+) the family of mappings w : [−τ , 0] →

R+ such that
 0
−τ

w(u)du = 1. Let (Ω, F , {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e. it is increasing and right continuous while F0
contains all P-null sets). Let B(t) = (B1(t), . . . , Bm(t))T be an m-
dimensional Brownian motion defined on the probability space. If
x(t) is an Rn-valued stochastic process on t ∈ [−τ , ∞), we let
xt = {x(t + θ) : −τ ≤ θ ≤ 0} for t ≥ 0 whence xt is a
C([−τ , 0]; Rn)-valued stochastic process.

Consider a nonlinear SFDE
dx(t) = f (xt , t)dt + g(xt , t)dB(t), t ≥ 0, (6)
where f : C([−τ , 0]; Rn) × R+ → Rn and g : C([−τ , 0]; Rn) ×

R+ → Rn×m. In order to solve the equation we need to know the
initial data and we assume that they are given by

x0 = ξ ∈ C([−τ , 0]; Rn). (7)
The well-known conditions imposed for the existence and

uniqueness of the global solution are the Local Lipschitz condition
and the linear growth condition (see e.g. Mao (1991), Mao (1994),
Mao (2007) and Mohammed (1986)). To be precise, let us state
these conditions.

Assumption 1 (The Local Lipschitz Condition). For each integer i ≥

1 there is a positive constant Ki such that

|f (ϕ, t) − f (φ, t)|2 ∨ |g(ϕ, t) − g(φ, t)|2 ≤ Ki‖ϕ − φ‖
2

for thoseϕ, φ ∈ C([−τ , 0]; Rn)with ‖ϕ‖∨‖φ‖ ≤ i and any t ∈ R+.

Assumption 2 (The Linear Growth Condition). There is a positive
constant K̄ such that

|f (ϕ, t)|2 ∨ |g(ϕ, t)|2 ≤ K̄(1 + ‖ϕ‖
2)

for all (ϕ, t) ∈ C([−τ , 0]; Rn) × R+.

In this paper we shall retain the local Lipschitz condition but
replace the linear growth condition by a more general condition
in order to guarantee the existence of a unique global solution.
To state this general condition, we need a few more notations.
Denote by C(Rn

×[−τ , ∞]; R+) the family of continuous functions
from Rn

× [−τ , ∞) to R+. Let C2,1(Rn
× [−τ , ∞); R+) denote the

family of all continuous non-negative functions V (x, t) defined on
Rn

×[−τ , ∞) such that they are continuously twice differentiable
in x and once in t . Given V ∈ C2,1(Rn

× [−τ , ∞); R+), we define
the functional LV : C([−τ , 0]; Rn) × R+ → R by
LV (ϕ, t) = Vt(ϕ(0), t) + Vx(ϕ(0), t)f (ϕ, t)

+
1
2
trace[gT (ϕ, t)Vxx(ϕ(0), t)g(ϕ, t)],

where Vx(x, t) = (Vx1(x, t), . . . , Vxn(x, t)) and Vxx(x, t) = (Vxixj
(x, t))n×n. Let us emphasise that LV is defined on C([−τ , 0];
Rn) × R+ while V on Rn

× [−τ , ∞).
Motivated by the example discussed in Section 1, i.e. the SFDE

(2), let us now propose our more general conditions.

Assumption 3. There are two functions V ∈ C2,1(Rn
× [−τ , ∞);

R+) and U ∈ C(Rn
×[−τ , ∞); R+), two probability measures µ(·)

and µ̄(·) on [−τ , 0] as well as a positive constant K , such that

lim
|x|→∞

inf
0≤t<∞

V (x, t) = ∞, (8)

while for all (ϕ, t) ∈ C([−τ , 0]; Rn) × R+,

LV (ϕ, t) ≤ K

1 + V (ϕ(0), t) +

∫ 0

−τ

V (ϕ(θ), t + θ)dµ̄(θ)


−U(ϕ(0), t) +

∫ 0

−τ

U(ϕ(θ), t + θ)dµ(θ). (9)

We can now state our new existence-and-uniqueness theorem.
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Theorem 2. Let Assumptions 1 and 3 hold. Then for any given initial
data (7), there is a unique global solution x(t) to Eq. (6) on t ∈

[−τ , ∞). Moreover, the solution has the property that

EV (x(t), t) ≤ (0.5 + C)eKt − 0.5, ∀t > 0, (10)

where C = V (x(0), 0) + K
 0
−τ

V (x(s), s)ds +
 0
−τ

U(x(s), s)ds.

As the main aim of this paper is to establish new criteria
on asymptotic stability and boundedness, we defer the proof to
the Appendix. However, we would like to emphasise that the
conditions in our theorem above are in terms of a pair of Lyapunov
functions V and U and our theorem is a generalisation of the
classical Khasminskii test (Khasminskii, 1980) on non-explosion
for stochastic differential equations which is in terms of a single
Lyapunov function.

3. Asymptotic stability and boundedness

With the notations introduced in the previous section, we can
now state one of our main results.

Theorem 3. Let Assumptions 1 and 3 hold except (9) which is
replaced by

LV (ϕ, t) ≤ α1 − α2V (ϕ(0), t) + α3

∫ 0

−τ

V (ϕ(θ), t + θ)dµ̄(θ)

−U(ϕ(0), t) + α

∫ 0

−τ

U(ϕ(θ), t + θ)dµ(θ), (11)

whereα1 ≥ 0,α2 > α3 ≥ 0 andα ∈ (0, 1). Then for any given initial
data (7), the unique global solution x(t) to Eq. (6) has the property that

lim sup
t→∞

EV (x(t), t) ≤
α1

ε
, (12)

where ε = ε1 ∧ ε2 while ε2 = − log(α)/τ and ε1 > 0 is the unique
root to the following equation

α2 = ε1 + α3eε1τ . (13)

If moreover α1 = 0, then

lim sup
t→∞

1
t
log(EV (x(t), t)) ≤ −ε (14)

and∫
∞

0
EU(x(t), t)dt < ∞. (15)

Proof. We first observe that (11) is stronger than (9). So, by
Theorem 2, for any given initial data (7), Eq. (6) has a unique global
solution x(t) on t ≥ −τ . Let k0 > 0 be sufficiently large for
‖ξ‖ < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t ≥ 0 : |x(t)| ≥ k},

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes
the empty set). By the Itô formula and condition (11), we compute
that, for t ≥ 0,

E

eε(t∧τk)V (x(t ∧ τk), t ∧ τk)


− V (x(0), 0)

= E
∫ t∧τk

0
eεs (εV (x(s), s) + LV (xs, s)) ds

≤
α1eεt

ε
− (α2 − ε)E

∫ t∧τk

0
eεsV (x(s), s)ds

+ α3E
∫ t∧τk

0
eεs
∫ 0

−τ

V (x(s + θ), s + θ)dµ̄(θ)


ds

− E
∫ t∧τk

0
eεsU(x(s), s)ds + αE

×

∫ t∧τk

0
eεs
∫ 0

−τ

U(x(s + θ), s + θ)dµ(θ)


ds. (16)

But, by the Fubini theorem (see Loève (1963)), we compute

E
∫ t∧τk

0
eεs
∫ 0

−τ

V (x(s + θ), s + θ)dµ̄(θ)


ds

= E
∫ 0

−τ

∫ t∧τk

0
eεsV (x(s + θ), s + θ)ds


dµ̄(θ)

≤ eeτE
∫ 0

−τ

∫ t∧τk

0
eε(s+θ)V (x(s + θ), s + θ)ds


dµ̄(θ)

≤ eeτE
∫ 0

−τ

∫ t∧τk

−τ

eεsV (x(s), s)ds

dµ̄(θ)

= eeτE
∫ t∧τk

−τ

eεsV (x(s), s)ds

≤ eeτ
∫ 0

−τ

V (x(s), s)ds + eeτE
∫ t∧τk

0
eεsV (x(s), s)ds.

Similarly

E
∫ t∧τk

0
eεs
∫ 0

−τ

U(x(s + θ), s + θ)dµ(θ)


ds

≤ eeτ
∫ 0

−τ

U(x(s), s)ds + eeτE
∫ t∧τk

0
eεsU(x(s), s)ds.

Substituting these into (16) gives

E

eε(t∧τk)V (x(t ∧ τk), t ∧ τk)


≤ C1 +

α1eεt

ε
− (α2 − ε − α3eετ )E

×

∫ t∧τK

0
eεsV (x(s), s)ds

− (1 − αeετ )E
∫ t∧τk

0
eεsU(x(s), s)ds,

where C1 = V (x(0), 0)+α3eετ
 0
−τ

V (x(s), s)ds+αeετ
 0
−τ

U(x(s),
s)ds. On the other hand, for ε ≤ ε1 and ε ≤ ε2, we note from the
definitions of ε1 and ε2 that

α2 − ε − α3eετ
≥ 0 and 1 − αeετ

≥ 0. (17)

We therefore obtain

E

eε(t∧τk)V (x(t ∧ τk), t ∧ τk)


≤ C1 +

α1eεt

ε
.

Letting k → ∞ we obtain that

EV (x(t), t) ≤ C1e−εt
+

α1

ε
, ∀t ≥ 0, (18)

and assertion (12) follows.
In the case when α1 = 0, (18) becomes

EV (x(t), t) ≤ C1e−εt , ∀t ≥ 0

which yields assertion (14). To prove the other assertion (15), we
can show by the Itô formula and condition (11) that

0 ≤ V (x(0), 0) +

∫ 0

−τ

[α3V (x(s), s) + αU(x(s), s)]ds

− (1 − α)E
∫ t

0
U(x(s), s)ds.
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This implies

E
∫ t

0
U(x(s), s)ds ≤

1
1 − α


V (x(0), 0)

+

∫ 0

−τ

[α3V (x(s), s) + αU(x(s), s)]ds


for all t ≥ 0. Applying the Fubini theorem and then letting t → ∞

we obtain the desired assertion (15). �

Let us point out that the assertion


∞

0 EU(x(t), t)dt < ∞

obtained in the theorem above is useful. For example, if we further
have U(x, t) ≥ c|x|2 for some positive constant c , then this
assertion implies that


∞

0 E|x(t)|2dt < ∞, which is known as the
H∞-stability.

Theorem 4. Let all the assumptions of Theorem 3 hold and α1 = 0.
Then for any given initial data (7), the unique global solution x(t) to
Eq. (6) has the property that

lim
t→∞

1
t
log(V (x(t), t)) ≤ −ε a.s. (19)

where ε > 0 is the same as defined in Theorem 3.

Proof. The Itô formula shows that for any t ≥ 0,

eεtV (x(t), t) = V (x(0), 0)

+

∫ t

0
eεs [εV (x(s), s) + LV (xs, s)] ds + M(t), (20)

where M(t) =
 t
0 eεsVx(x(s), s)g(xs, s)dB(s), which is a local mar-

tingale with the initial value M(0) = 0. By condition (11) with
α1 = 0, we have∫ t

0
eεs [εV (x(s), s) + LV (xs, s)] ds

≤ −(α2 − ε)

∫ t

0
eεsV (x(s), s)ds

+ α3

∫ t

0
eεs
∫ 0

−τ

V (x(s + θ), s + θ)dµ̄(θ)


ds

−

∫ t

0
eεsU(x(s), s)ds

+ α

∫ t

0
eεs
∫ 0

−τ

U(x(s + θ), s + θ)dµ(θ)


ds.

But, in the same way as we did in the proof of Theorem 3, we can
show that∫ t

0
eεs
∫ 0

−τ

V (x(s + θ), s + θ)dµ̄(θ)


ds

≤ eeτ
∫ 0

−τ

V (x(s), s)ds + eeτ
∫ t

0
eεsV (x(s), s)ds

and∫ t

0
eεs
∫ 0

−τ

U(x(s + θ), s + θ)dµ(θ)


ds

≤ eeτ
∫ 0

−τ

U(x(s), s)ds + eeτ
∫ t

0
eεsU(x(s), s)ds.

Hence∫ t

0
eεs [εV (x(s), s) + LV (xs, s)] ds

≤ α3eeτ
∫ 0

−τ

V (x(s), s)ds

− (α2 − ε − α3eeτ )
∫ t

0
eεsV (x(s), s)ds + αeeτ

×

∫ 0

−τ

U(x(s), s)ds − (1 − σeeτ )
∫ t

0
eεsU(x(s), s)ds.

Recalling (17) we see that∫ t

0
eεs [εV (x(s), s) + LV (xs, s)] ds

≤ eeτ
∫ 0

−τ

[α3V (x(s), s) + αU(x(s), s)]ds.

Substituting this into (20) we get

eεtV (x(t), t) ≤ V (x(0), 0)

+ eeτ
∫ 0

−τ

[α3V (x(s), s) + αU(x(s), s)]ds + M(t). (21)

Applying the non-negative semi-martingale convergence theorem
(see e.g. Lipster and Shiryayev (1989, Theorem 7 on page 139) or
Mao and Yuan (2006, Theorem 1.10 on page 18)), we obtain that

lim sup
t→∞


eεtV (x(t), t)


< ∞ a.s.

Hence, there is a finite positive random variable ζ such that

sup
0≤t<∞


eεtV (x(t), t)


≤ ζ a.s.

This implies

lim sup
t→∞

1
t
log(V (x(t), t)) ≤ −ε a.s.

as required. �

Two theorems above give asymptotic estimates on EV (x(t), t)
or V (x(t), t). With a little bit more information on V (x, t), e.g.
V (x, t) ≥ c|x|p, we can obtain asymptotic estimates on x(t). We
state these results as a corollary.

Corollary 1. Let the assumptions of Theorem 3 hold. If there is
moreover a pair of positive constants c and p such that

c|x|p ≤ V (x, t) ∀(x, t) ∈ Rn
× [−τ , ∞).

Then for any given initial data (7), the unique global solution x(t) to
Eq. (6) obeys

lim sup
t→∞

E|x(t)|p ≤
α1

εc
, (22)

where ε > 0 is the same as defined in Theorem 3. If, furthermore,
α1 = 0, then

lim sup
t→∞

1
t
log(E|x(t)|p) ≤ −ε (23)

and

lim sup
t→∞

1
t
log(|x(t)|) ≤ −

ε

p
a.s. (24)

The following theoremestimates the limit of the average in time
of the moment.
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Theorem 5. Let Assumptions 1 and 3 hold except (9) which is
replaced by

LV (ϕ, t) ≤ α1 − α2V (ϕ(0), t) + α2

∫ 0

−τ

V (ϕ(θ), t + θ)dµ̄(θ)

−U(ϕ(0), t) + α

∫ 0

−τ

U(ϕ(θ), t + θ)dµ(θ), (25)

where α1, α2 ≥ 0 and α ∈ (0, 1). Then for any given initial data (7),
the unique global solution x(t) to Eq. (6) has the property that

lim sup
t→∞

1
t

∫ t

0
EU(x(s), s)ds ≤

α1

1 − α
. (26)

In particular, if there is moreover a pair of positive constants c and p
such that

c|x|p ≤ U(x, t) ∀(x, t) ∈ Rn
× [−τ , ∞), (27)

then

lim sup
t→∞

1
t

∫ t

0
E|x(s)|pds ≤

α1

c(1 − α)
. (28)

Proof. We once again observe that (25) is stronger than (9). So, by
Theorem 2, for any given initial data (7), Eq. (6) has a unique global
solution x(t) on t ≥ −τ . Let τk be the same stopping time defined
in the proof of Theorem 3. For any t ≥ 0, by the Itô formula and
condition (25), we compute that

EV (x(t ∧ τk), t ∧ τk) ≤ V (x(0), 0) + α1t − α2E
∫ t∧τk

0
V (x(s), s)ds

− α2E
∫ t∧τk

0

∫ 0

−τ

V (x(s + θ), s + θ)dµ̄(θ)


ds

− E
∫ t∧τk

0
U(x(s), s)ds

+ αE
∫ t∧τk

0

∫ 0

−τ

U(x(s + θ), s + θ)dµ(θ)


ds. (29)

But, by the Fubini theorem, we compute∫ t∧τk

0

∫ 0

−τ

U(x(s + θ), s + θ)dµ(θ)


ds

=

∫ 0

−τ

∫ t∧τk

0
U(x(s + θ), s + θ)ds


dµ(θ)

≤

∫ 0

−τ

∫ t∧τk

−τ

U(x(s), s)ds

dµ(θ)

≤

∫ t∧τk

−τ

U(x(s), s)ds. (30)

Similarly,∫ t∧τk

0

∫ 0

−τ

V (x(s + θ), s + θ)dµ̄(θ)


ds

≤

∫ t∧τk

−τ

V (x(s), s)ds. (31)

Substituting these into (29), we get

EV (x(t ∧ τk), t ∧ τk)

≤ C̄ + α1t − (1 − α)E
∫ t∧τk

0
U(x(s), s)ds, (32)

where C̄ = V (x(0), 0) +
 0
−τ

[α2V (x(s), s)ds + αU(x(s), s)]ds.
Consequently

(1 − α)E
∫ t∧τk

0
U(x(s), s)ds ≤ C̄ + α1t.

Letting k → ∞ and then by the Fubini theorem we get

(1 − α)

∫ t

0
EU(x(s), s)ds ≤ C̄ + α1t.

This implies the required assertion (26), which yields the other
assertion (28) if the additional condition (27) is fulfilled. �

If we compare our new results with the known result,
Theorem 1, we see the following significant improvements:

• The linear growth condition on the coefficients f and g is no
longer required.

• The bound for LV is in a much weaker form.
• Our new results do not only deal with the asymptotic moment

estimation but also the path-wise (almost sure) estimation.

4. Examples

Let us discuss a number of examples to illustrate these
advantages. In the following examples, we let B(t) be a scalar
Brownian motion.

Example 1. Let us first return to the SFDE (2), where D and D̄ obey
(3) and (4), respectively, with K = K̄ = 1. Recalling (5), we
observe that condition (11) is fulfilled with V (x, t) = x2,U(x, t) =

2x4, α1 = 0, α2 =
7
5 , α3 = 1, α =

5
6 . Set ε = ε1 ∧ ε2, where

ε2 = log(1.2)/τ and ε1 > 0 is the unique root to the equation
7
5 = ε1 + eε1τ . By Theorems 3 and 4, we can conclude that the
solution of the SFDE (2) has the following properties that

lim sup
t→∞

1
t
log(E|x(t)|2) ≤ −ε,

lim sup
t→∞

1
t
log(|x(t)|) ≤ −

ε

2
a.s.

and∫
∞

0
E|x(t)|4dt < ∞.

Example 2. Consider a scalar SFDE with an additive noise of the
form

dx(t) = [−x3(t) + (D(xt))2]dt + σdB(t) (33)

on t ≥ 0 with initial data x0 = ξ ∈ C([−τ , 0]; R). We assume that
D obeys (3) (but we do not ask K = 1 anymore). We claim that for
any integer p ≥ 1, the solution obeys

lim sup
t→∞

E|x(t)|2p < ∞. (34)

Let V (x, t) = x2p and compute

LV (ϕ, t) = 2pϕ2p−1(0)[−ϕ3(0) + (D(ϕ))2]

+ p(2p − 1)σ 2ϕ2p−2(0). (35)

By the Young inequality

uαv1−α
≤ αu + (1 − α)v, ∀u, v ≥ 0, α ∈ (0, 1),

we can show that

ϕ2p−1(0)(D(ϕ))2 ≤ |ϕ(0)|2p+1
+ K 2p+1

∫ 0

−τ

|ϕ(θ)|2p+1dµ(θ).
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It then follows from (35) that

LV (ϕ, t) ≤ κ(ϕ(0)) − |ϕ(0)|2p − (2pK 2p+1
+ 1)|ϕ(0)|2p+1

+ 2pK 2p+1
∫ 0

−τ

|ϕ(θ)|2p+1dµ(θ), (36)

where κ(z) = −2p|z|2p+2
+ (2pK 2p+1

+ 2p + 1)|z|2p+1
+ |z|2p +

p(2p− 1)σ 2
|z|2p−2 for z ∈ R. Clearly κ(·) is bounded above, say by

κ̂ , in R. We hence have

LV (ϕ, t) ≤ κ̂ − |ϕ(0)|2p − (2pK 2p+1
+ 1)|ϕ(0)|2p+1

+ 2pK 2p+1
∫ 0

−τ

|ϕ(θ)|2p+1dµ(θ). (37)

Hence, condition (11) is fulfilled with U(x, t) = (2pK 2p+1
+

1)|x|2p+1, α1 = κ̂, α2 = 1, α3 = 0, α =
2pK2p+1

2pK2p+1+1
. The desired

result (34) follows from Theorem 3.

Example 3. Let us finally consider a 2-dimensional SFDE
dx1(t) = x1(t)


[a11 − a12x21(t) + a13D(x2,t)]dt

+ a14

D(x2,t)dB(t)


,

dx2(t) = x2(t)

[a21 − a22x22(t) + a23D(x1,t)]dt

+ a24

D(x1,t)dB(t)


,

(38)

where aij’s are all positive constants, x1,t = {x1(t + θ) : −τ ≤ θ ≤

0}, x2,t = {x2(t + θ) : −τ ≤ θ ≤ 0} and D : C([−τ , 0); R) → R is
defined by

D(φ) =
1
τ

∫ 0

−τ

|φ(θ)|dθ.

Such SFDEs have been used to model population systems under
noise and are known as the stochastic power law logistic model
(see Bahar and Mao (2008) and the references therein). Let
V (x, t) = x2. Then the corresponding functional LV : C([−τ , 0];
R2) × R+ → R has the form

LV (ϕ, t) = 2ϕ2
1(0)[a11 − a12ϕ2

1(0) + a13D(ϕ2)]

+ 2ϕ2
2(0)[a21 − a22ϕ2

2(0) + a23D(ϕ1)]

+ a214ϕ
2
1(0)D(ϕ2) + a224ϕ

2
2(0)D(ϕ1),

where ϕ = (ϕ1, ϕ2)
T

∈ C([−τ , 0]; R2). By the Young inequality
(stated in Example 2), we can show

ϕ2
1(0)D(ϕ2) ≤ |ϕ1(0)|3 +

1
τ

∫ 0

−τ

|ϕ2(θ)|3dθ

and

ϕ2
2(0)D(ϕ1) ≤ |ϕ2(0)|3 +

1
τ

∫ 0

−τ

|ϕ1(θ)|3dθ.

Hence

LV (ϕ, t) ≤ 2ϕ2
1(0)[a11 − a12ϕ2

1(0)]

+ (2a13 + a214)


|ϕ1(0)|3 +
1
τ

∫ 0

−τ

|ϕ2(θ)|3dθ


+ 2ϕ2
2(0)[a21 − a22ϕ2

2(0)]

+ (2a23 + a224)


|ϕ2(0)|3 +
1
τ

∫ 0

−τ

|ϕ1(θ)|3dθ


≤ κ(ϕ(0)) − |ϕ(0)|2 − U(ϕ(0)) +
1
2τ

∫ 0

−τ

U(ϕ(θ))dθ,

where U(x) = 2ā(|x1|3 + |x2|3) for x ∈ R2 with ā = (2a13 + a214) ∨

(2a23 + a224) and

κ(x) = 2x21[a11 − a12x21] + 2x22[a21 − a22x22] + |x|2 + 1.5U(x).

Clearly, κ(x) is bounded above in x ∈ R2, namely k̄ := supx∈R2 κ(x)
< ∞. Consequently LV (ϕ, t) ≤ κ̄ − |ϕ(0)|2 − U(ϕ(0)) +

1
2τ

 0
−τ

U(ϕ(θ))dθ. By Theorem3,we see that the solution of the SFDE (38)
obeys

lim sup
t→∞

E|x(t)|2 ≤ k̄. (39)

To apply Theorem 4, we note that

|x|3 ≤ (|x1| + |x2|)3 ≤ 4(|x1|3 + |x2|3) =
2
ā
U(x), x ∈ R2,

whence we can conclude that the solution also obeys

lim sup
t→∞

1
t

∫ t

0
E|x(t)|3dt ≤

4k̄
ā

. (40)
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Appendix

In this appendix we shall prove Theorem 2. It is known that
the SFDE may only have a local solution without the linear growth
condition, that is an explosion may occur at a finite time. As the
local solutionwill play a key role in this proof,we cite the definition
from Mao (2007, Definition 2.7 on page 154).

Definition 1. Let x(t), −τ ≤ t < σ∞, be a continuous Ft-adapted
Rn-valued local process, where σ∞ is a stopping time and we set
Ft = F0 for t ∈ [−τ , 0). It is called a local solution of Eq. (6) with
initial data (7) if x0 = ξ and for all t ≥ 0

x(t ∧ σk) = ξ(0) +

∫ t∧σk

0
f (xs, s)ds +

∫ t∧σk

0
g(xs, s)dB(s)

holds for any k ≥ 1, where {σk}k≥1 is a non-decreasing sequence
of finite stopping times such that σk ↑ σ∞ a.s. Furthermore, if
lim supk→∞ |x(σk)| = ∞ is satisfied whenever σ∞ < ∞, it is
called amaximal local solution and σ∞ is called the explosion time.
A maximal local solution x(t), − τ ≤ t < σ∞, is said to be unique
if for any other maximal local solution x̂(t), − τ ≤ t < σ̂∞, we
have σ∞ = σ̂∞ a.s. and x(t) = x̂(t) for all −τ ≤ t < σ∞ a.s.

Proof of Theorem 2. By Mao (2007, Theorem 2.8 on page 154),
there is a unique maximal local solution x(t) on t ∈ [−τ , σ∞),
where σ∞ is the explosion time. Let k0 > 0 be sufficiently large for
‖ξ‖ < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, σ∞) : |x(t)| ≥ k}.

Clearly, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk, whence
τ∞ ≤ σ∞ a.s. If we can show that τ∞ = ∞ a.s., then σ∞ = ∞ a.s.
We need to show τ∞ = ∞ a.s. and assertion (10). By the Itô
formula, for any k ≥ k0 and t ≥ 0,

EV (x(t ∧ τk), t ∧ τk) = V (x(0), 0) + E
∫ t∧τk

0
LV (xs, s)ds.
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By condition (9), we therefore have

EV (x(t ∧ τk), t ∧ τk)

≤ V (x(0), 0) + E
∫ t∧τk

0
K

1 + V (x(s), s)

+

∫ 0

−τ

V (x(s + θ), σ + θ)dµ̄(θ)


ds

+ E
∫ t∧τk

0


−U(x(s), s)

+

∫ 0

−τ

U(x(s + θ), s + θ)dµ(θ)


ds. (A.1)

Recalling (30) and (31), we then have

EV (x(t ∧ τk), t ∧ τk) ≤ C + E
∫ t∧τk

0
K(1 + 2V (x(s), s))ds, (A.2)

where C has been defined in the statement of the theorem. It then
follows from (A.2) that

0.5 + EV (x(t ∧ τk), t ∧ τk)

≤ 0.5 + C + E
∫ t∧τk

0
2K(0.5 + V (x(s), s))ds

= 0.5 + C + E
∫ t∧τk

0
2K(0.5 + V (x(s ∧ τk), s ∧ τk))ds

= 0.5 + C +

∫ t

0
2K (0.5 + E(V (x(s ∧ τk), s ∧ τk))) ds.

The Gronwall inequality shows that

0.5 + EV (x(t ∧ τk), t ∧ τk) ≤ (0.5 + C)e2Kt ,

whence

EV (x(t ∧ τk), t ∧ τk) ≤ (0.5 + C)e2Kt − 0.5. (A.3)

Define

vk = inf
|x|≥k,0≤t<∞

V (x, t) for k ≥ k0.

Compute

EV (x(t ∧ τk), t ∧ τk) ≥ E

V (x(τk), τk)I{τk≤T }


≥ vkP(τk ≤ T ),

where throughout this paper IG denotes the indicator function of
set G. It then follows from (A.3) that

vkP(τk ≤ t) ≤ (0.5 + C)eKt − 0.5.

But, by condition (8), limk→∞ vk = ∞. Letting κ → ∞ in the
inequality above, we then see P(τ∞ ≤ t) = 0. Since t > 0 is
arbitrary, we must have that P(τ∞ < ∞) = 0, whence τ∞ = ∞

a.s. Finally, letting k → ∞ in (A.3) yields the required assertion
(10). The proof is therefore complete. �
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