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Abstract

We present a numerical method to plot the root locus of Single-Input-Single-Output (SISO) dead-time systems with respect
to the controller gain or the system delay. We compute the trajectories of characteristic roots of the closed-loop system on a
prescribed complex right half-plane. We calculate the starting, branch and boundary crossing roots of root-locus branches inside
the region. We compute the root locus of each characteristic root based on a predictor-corrector type continuation method. To
avoid the high sensitivity of roots with respect to the locus parameter in the neighborhood of branch points, the continuation
method relies on a natural parameterization of the root-locus trajectory in terms of a distance in the (characteristic root, locus
parameter)-space. The method is numerically stable for high order SISO dead-time systems.
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1 Introduction

The root locus method is an essential tool in modern
control engineering for analysis and synthesis problems
[15]. This method is successfully implemented for finite
dimensional SISO systems and becomes a fundamental
tool in control education [6,10].

The closed-loop of the SISO system with a time de-
lay generically has infinitely many poles in the complex
plane (see, e.g., [13]). Therefore obtaining the root locus
for dead-time systems is a difficult problem. Unlike the
finite dimensional case, the root-locus equation contains
a time delay term and standard polynomial root-finding
algorithms for the root computation are not applicable.

The root locus of SISO dead-time systems with respect
to the controller gain is based on two main approaches:
methods based on sweeping or gridding parameters on
the complex plane and continuation based methods.

The methods in the first group are early methods in the
literature. The root locus is obtained on a set of vertical
lines [9], horizontal lines [18] or on a rectangular grid
[11] in the complex plane by finding points satisfying
the root-locus equation. These methods require a large
number of grid points for an accurate root-locus plot and
may miss the dynamics of some characteristic roots due

to the finite number of grid or sweep parameters.

The methods in the second group are continuation based
methods. These methods follow characteristic roots of
the root locus by a predictor-corrector algorithm inside
the root-locus region and detect the ones entering into
the region due to the asymptotic root chains of time
delay systems. The predicted characteristic root is ob-
tained by computing the slope of the phase equation of
the root-locus equation [2], the solution of nonlinear dif-
ferential equations [17] or by a triangulation method on
the complex plane [14] and the predicted values are cor-
rected by a Newton-Raphson iteration. The characteris-
tic roots entering into the root-locus region are detected
by checking the sign of function values on the constant
grid points of the region’s boundary [2] or computing an-
other root locus problem [14,17]. The approach proposed
in [2] has two main limitations. First, the root locus is
computed on a rectangular region and this is restrictive
to observe the overall dynamics of characteristic roots.
Second, it requires exhaustive search on a grid for char-
acteristic roots entering into the root-locus region, with
a possibility of missing a characteristic root depending
on the number of grid points. The articles [14,17] con-
sider general SISO time delay systems, i.e., SISO systems
with state delays. The predictor step in both methods,
the solution of nonlinear differential equations and the
triangulation method, are numerically expensive com-
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pared to the simple linear predictor. In order to detect
asymptotic roots another root locus problem has to be
solved and the number of required roots for a complex
region is not given.

The root locus of SISO dead-time systems with respect
to the time delay allows us to analyze the effects of time
delay on system stability and performances and it is less
considered in the literature. A computationally expen-
sive brute force approach is to compute the locations of
the characteristic roots inside a desired region for a grid
over the parameter space using, e.g., a spectral method
[4]. A continuation based method in [7] obtains the root
locus on the complex right half-plane by solving a nonlin-
ear differential equation and correcting with Newton’s
method. The predictor step is computationally expen-
sive and the method does not allow to analyze the root
locus of stable closed-loop systems since the boundary
of the root-locus region is the imaginary axis.

All continuation based methods for the root locus of
SISO dead-time systems in the existing literature pa-
rameterize root-locus trajectories with respect to the
controller gain or the time delay. This parameterization
is numerically ill-posed due to the high sensitivity in
the neighborhood of intersection points characterized by
the presence of multiple roots, as reported in [7]. Both
the predictor and corrector steps in all methods require
evaluations of functions with time delays. These eval-
uations are numerically expensive and not numerically
stable due to the oscillation and exponential increase of
time delay terms in the imaginary axis and the positive
real axis directions in the complex plane respectively.

In this article, we compute the root locus of SISO dead-
time systems on a given complex right half-plane up to
a predefined controller gain or a time delay. Our main
contributions are the following:

• We compute the trajectories of all characteristic roots
entering into the prescribed region with respect to the
controller gain or the time delay up to an upper bound
value. By choosing the controller gain or time delay
sufficiently large, the asymptotic behavior of the roots
can be observed.

• Our continuation method estimates the next root on
the complex plane by a simple linear predictor and
corrects this prediction with Newton’s method. We
parameterize the root-locus trajectories in the (root
and gain/delay)-space in terms of the arclength which
is numerically robust, as we shall see.

• We use an adaptive step size in the prediction step de-
pending on the convergence rate of Newton’s method
and the distance of the root from the root-locus trajec-
tory. This makes our algorithm scalable since it uses
different step sizes for different root-locus trajectories
and adapts to the curvature of the trajectories.

• We transform the root-locus equation into phase and
logarithmic magnitude equations and avoid the oscil-

lation and exponential increase problems due to the
time delay term in function evaluations, which are
only needed in the correction step.

The paper is organized as follows. Section 2 formulates
the root-locus problem with respect to the controller
gain and the time delay. The critical points of the root
locus are computed in Section 3. The predictor-corrector
based continuation method is given in Section 4. The
overall algorithm for the root locus is presented in Sec-
tion 5. Section 6 is devoted to numerical examples. In
Section 7, some concluding remarks are presented.

Notation:

C,R,Z : sets of complex, real and integer numbers,
ℜ(u) : real part of a complex number u,
ℑ(u) : imaginary part of a complex number u,
|u|,∠u : magnitude, phase of a complex number u,
⌈u⌉ : the smallest integer larger than or equal to u,
⌊u⌋ : the largest integer smaller than or equal to u,
uT : the transpose of the vector u,
A+ : the pseudoinverse of the matrix A,
sgn(u) : returns +1,−1, 0 given a real number u

for u > 0, u < 0, u = 0 respectively,
Nn2

n1
: the set of integers from n1 to n2.

mod(u, v): returns the remainder on division of the div-
idend u by the divisor v.

2 Problem Formulation

A SISO dead-time system is a rational, proper SISO
plant G with a constant input or output time delay h.
The only required input data to compute the root locus
of these systems with respect to the controller gain or
the time delay are

• the poles of G, pi ∈ C for i ∈ Nn
1 ,

• the zeros of G, zr ∈ C for r ∈ Nm
1 ,

• the gain of G, α ∈ R,
• the time delay h, h ∈ R and h > 0.

Note that the input data can be obtained from state-
space matrices or the transfer function of G.

Let G(s)e−hs be the transfer function representation of
the SISO dead-time system where

G(s) = α
(s− z1)(s− z2) . . . (s− zm)

(s − p1)(s− p2) . . . (s− pn)
, n ≥ m (1)

and the real and imaginary parts of system zeros and
poles are defined as zr = σzr + jωzr for r ∈ N

m
1 and

pi = σpi + jωpi for i ∈ Nn
1 .

2



The root-locus equation of a SISO dead-time systemwith
respect to the controller gain or the time delay is

f(s, λ) = 0 where f(s, λ) =

{

1 + λG(s)e−hs (2)

1 +G(s)e−λs (3)

and λ is the locus parameter for λ ∈ [0, λmax] where
λmax is a given positive number. The root-locus region is
a complex right half-plane

Cσ0
= {s ∈ C : ℜ(s) ≥ σ0} (4)

where σ0 is a negative real number. The correspond-
ing boundary of the root-locus region is a vertical line
through s = σ0 and parallel to the imaginary axis.

We define root-locus problems with respect to the con-
troller gain or the time delay as follows.

Root locus problems: Given λmax > 0, compute the
locations of characteristic roots of root-locus equations
in (2,3) inside the root-locus regionCσ0

for λ ∈ [0, λmax].

The root-locus trajectory of the characteristic root is a
curve on the complex plane on which each point satisfies
the root-locus equation for λ ∈ [0, λmax].The intersec-
tion of two or more root-locus trajectories is a branch
point. The starting points of the root locus are the char-
acteristic roots inside Cσ0

for λ = 0 and the bound-
ary crossing roots are the characteristic roots crossing
ℜ(s) = σ0 for any non-negative λ value smaller then
λmax. The critical points are the starting points, branch
points and boundary crossing roots of the root locus.

For the root locus w.r.t. the controller gain, we can com-
pute branch points inside Cσ0

apriori as we shall see. For
the root locus w.r.t. the time delay, we detect the branch
points while following the root-locus trajectory. The be-
havior of a root-locus trajectory around a branch point
is given in the following Lemma [17].

Lemma 1 If s̃ is a root of the root-locus equation in (2)

or (3) with a locus parameter λ̃ satisfying

∂lf(s,λ̃)
∂s

∣

∣

∣

s=s̃
= 0, l ∈ N

N−1
1 and ∂Nf(s,λ̃)

∂s

∣

∣

∣

s=s̃
6= 0,

then N root-locus trajectories intersect at s = s̃. Inter-
secting trajectories continue straight after the intersec-
tion if N is odd and make an angle of − π

N
angle if N is

even.

When a single root s of the root-locus equation crosses
the boundary ℜ(s) = σ0, we determine whether it enters
into or leaves the region Cσ0

by computing its crossing
direction [13] defined as

CD(s, λ) := sgn

(

ℜ

(

−
∂f

∂λ
∂f
∂s

∣

∣

∣

f(s,λ)=0

))

. (5)

A root on the boundary enters into or leaves the region
Cσ0

depending on whether CD(s, λ) > 0 or CD(s, λ) < 0
respectively.

The computation of root-locus trajectories involves two
main tasks: computing the critical points and following
the root-locus trajectories. The next section focuses on
the computation of the critical points of the root locus
w.r.t. the controller gain and the time delay. We follow
each root trajectory using a continuation method de-
scribed in Section 4.

3 Computation of Critical Points

We compute the critical points of two root-locus prob-
lems in the next two subsections.

3.1 Controller gain as locus parameter

The root-locus equationw.r.t. the controller gain is given
in (2). The starting points of the root locus are the poles
of G inside the root-locus region Cσ0

.

The branch points satisfy the root-locus equation and

∂f(s, λ)

∂s
= λ(G′(s)−G(s)h)e−hs = 0. (6)

Thus the branch points are the zeros of the transfer func-
tion G′(s) − G(s)h inside the region Cσ0

. This transfer
function can be written as

G′(s)

G(s)
− h =

m
∑

r=1

1

s− zr
−

m
∑

i=1

1

s− pi
− h

and realized in a state-space representation as a se-
ries connection of m + n first-order systems using the
poles and zeros of G and the time delay h. Its zeros
can be computed by solving an eigenvalue problem con-
structed from state-space matrices of G. Consequently,
the branch points can be determined accurately.

The computation of boundary crossing roots of the root-
locus equation in (2) is a difficult problem. These roots
and their crossing directions are computed in the follow-
ing section.

3.1.1 Computation of boundary crossing roots

A root s on the boundary of the root-locus regionℜ(s) =
σ0 for the controller gain λ satisfies the magnitude and
phase equations of the root-locus equation in (2). We
first find the intervals on the boundary where the mag-
nitude condition holds for some λ ∈ [0, λmax]. This is
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equivalent to finding the intervals on ℜ(s) = σ0 and
ω ∈ [0,∞) such that

Λ(ω) := hσ0 − ln |G(σ0 + jω)| ≤ ln λmax. (7)

Lemma 2 Assume that G has neither poles nor zeros
on the boundary of the root-locus region. The functions
ω 7→ Λ(ω) and ω 7→ Λ′(ω) are continuous and the non-
negative zeros of Λ′(ω) are the non-negative real roots of
the polynomial

Γz

n
∑

i=1

∆ωpiΓ
i
p − Γp

m
∑

r=1

∆ωzrΓ
r
z (8)

where ∆σzr = (σ0 − σzr), ∆ωzr = (ω − ωzr), γzr(ω) =
∆σ2

zr + ∆ω2
zr, Γ

r
z =

∏m
r1=1
r1 6=r

γzr(ω) for r ∈ Nm
1 , ∆σpi =

(σ0 − σpi), ∆ωpi = (ω − ωpi), γpi(ω) = ∆σ2
pi + ∆ω2

pi,

Γi
p =

∏n
i1=1
i1 6=k

γpi(ω) for i ∈ Nn
1 , Γz =

∏m
r=1 γzr(ω), Γp =

∏n

i=1 γpi(ω).

Proof. Using the transfer function of G in (1), the
function Λ(ω) can be written as

Λ(ω) = hσ0−ln |α|+
1

2

(

n
∑

i=1

ln γpi(ω)−
m
∑

r=1

ln γzr(ω)

)

.

(9)
The first derivative of the function Λ(ω) is

Λ′(ω) =

n
∑

i=1

∆ωpi

γpi(ω)
−

m
∑

r=1

∆ωzr

γzr(ω)
. (10)

The functions Λ(ω) and Λ′(ω) are continuous except the
points where γzr(ω) or γpi(ω) are equal to zero. These
points are the poles or zeros ofG on ℜ(s) = σ0. The con-
tinuity results in Lemma 2 follow from the assumption.
The polynomial given in (8) is the numerator of the func-
tion Λ′(ω) as in equation (10) and the result follows. ✷

Corollary 3 Assume that G has neither poles nor ze-
ros on the boundary of the root-locus region. Then the
function ω 7→ Λ(ω) is monotonic on the intervals whose
boundary points are consecutive non-negative zeros of
Λ′(ω), 0 and ∞.

Proof. By Lemma 2, the function Λ(ω) is continuous
since σ0 is chosen such that there are neither poles nor
zeros ofG onℜ(s) = σ0. Therefore it is monotonic inside
the intervals determined by its extremum points and the
end points of the boundary of the root-locus region, 0
and ∞. ✷

Since Λ(ω) is monotonic on each interval defined in
Corollary 3, we find the subinterval in each interval

where Λ(ω) satisfies the inequality in (7). This is done
as follows. If both values of Λ(ω) at the interval end
points are smaller than lnλmax, then all Λ(ω) values
in this interval are smaller than lnλmax because Λ(ω)
is monotonic. If one of the values of Λ(ω) at the in-
terval end points is larger and the other one is smaller
than lnλmax, we can find the point where Λ(ω) is equal
to lnλmax by root-finding algorithms for a bracketed
root of monotonic continuous function (such as Brent’s
method [5]) and take the subinterval satisfying the in-
equality in (7). If both values of Λ(ω) at the interval end
points are larger than lnλmax, we discard that interval
since all values of Λ(ω) are larger than lnλmax and the
inequality in (7) never holds.

Based on this approach, we can compute the set of in-
tervals I on the boundary of the root-locus region where
the magnitude condition (7) is satisfied for some values
of λ ∈ [0, λmax].

The boundary crossing roots also satisfy the phase equa-
tion of the root-locus equation in (2)

(2l + 1)π = φ(ω) for l ∈ Z (11)

over the intervals I on ℜ(s) = σ0. Here the function
φ(ω) represents the continuous extension of the phase of
the transfer function G(s)e−hs. It satisfies the following
equation,

mod
(

∠ G(s)e−hs
∣

∣

s=σ0+jω
, 2π
)

= mod (φ(ω), 2π)

where ω ∈ [0,∞). The left-hand side of equation (11)
represents constant functions of ω. If we partition the
intervals I into the subintervals such that the function
φ(ω) is monotonic on each subinterval, we can compute
the boundary crossing roots by root-finding algorithms
for a bracketed root of monotonic continuous function
[5]. The following results allow us to compute the inter-
vals on ℜ(s) = σ0 where the function φ(ω) is monotonic.

Lemma 4 Assume thatG has neither poles nor zeros on
the boundary of the root-locus region. Then the functions
ω 7→ φ(ω) and ω 7→ φ′(ω) are continuous and the non-
negative zeros of φ′(ω) are the non-negative real roots of
the polynomial

Γp

m
∑

r=1

∆σzrΓ
r
z − Γz

n
∑

i=1

∆σpiΓ
i
p − hΓzΓp (12)

where the polynomials Γr
z for r ∈ Nm

1 , Γi
p for i ∈ Nn

1 , Γz

and Γp are as defined in Lemma 2.

Proof. Using the transfer function of G in (1), the
function φ(ω) is written as

φ(ω) = φ1(ω) + φ0 (13)
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where

φ1(ω) :=

m
∑

r=1

tan−1 ∆ωzr

∆σzr

−

n
∑

i=1

tan−1 ∆ωpi

∆σpi

−hω. (14)

The offset difference φ0 is defined asφ0 = ∠G(σ0)−φ1(0)
which is equal to 0 or π.

The first derivative of the function φ(ω) is

φ′(ω) =

m
∑

r=1

∆σzr

γzr(ω)
−

n
∑

i=1

∆σpi

γpi(ω)
− h. (15)

Following the same arguments in Lemma 2, the functions
φ(ω) and φ′(ω) are continuous by the assumption. The
polynomial given in (12) is the numerator of the function
φ′(ω) as in equation (15) and the result follows. ✷

Corollary 5 Assume that G has neither poles nor zeros
on the boundary of the root-locus region. Denote by Iφ
the set of intervals whose end points are consecutive non-
negative zeros of φ′(ω), 0 and∞. Then the function ω 7→
φ(ω) is monotonic on each interval in the set Iφ.

Proof. The function φ(ω) is continuous. The mono-
tonicity of φ(ω) changes only at the points where φ′(ω) =
0. The assertion follows. ✷

The non-negative real roots of the polynomials (8) and
(12) are zeros of the rational functions (10) and (15).
These rational functions can be realized in a state-space
representation as a series connection of second-order sys-
tems using the poles and zeros of G and the time delay h
and the corresponding zeros can be computed by solving
a generalized eigenvalue problem.

The intersection of two sets of intervals I and Iφ parti-
tions I into the subintervals as I = ∪nI

i=1Ii where φ(ω) is
monotonic on each interval Ii. Each intersection of the
function φ(ω) and the constant functions in the left-hand
side of equation (11) over the intervals I corresponds to
a boundary crossing root since any such point on I sat-
isfies both the magnitude condition in (7) and the phase
equation in (11) of the root-locus equation onℜ(s) = σ0.
Since the function φ(ω) is monotonic on Ii, we can com-
pute each intersection point by root-finding algorithms
for a bracketed root of φ(ω) over the interval Ii. The
value of the ω at the intersection point is the imaginary
part of the boundary crossing root on the interval Ii and
the corresponding controller gain is the value of eΛ(ω)

for this point. If there is no horizontal line intersecting
φ(ω) on Ii, we discard this interval since there is no root
crossing. Based on the above explanation, the following
algorithm computes the boundary crossing roots of the
root-locus equation in (2).

Algorithm 1
For each interval in Ii = [ωL

i , ω
R
i ] of I = ∪nI

i=1Ii,

(1) Compute the maximum and minimum values of the
function φ over the interval Ii. Since the function is
monotonic over the interval, they are the maximum
andminimum values of the function φ at the interval
ends points, i.e., φmax

i = max{φ(ωL
i ), φ(ω

R
i )} and

φmin
i = min{φ(ωL

i ), φ(ω
R
i )}.

(2) Consider the integers l for which the constant func-
tion y = (2l+1)π has an intersection with the func-
tion y = φ(ω) over the interval Ii. Note that the inte-

gers satisfy l ∈ [lmin
i , lmax

i ] where lmin
i =

⌈

φmin
i

2π − 1
2

⌉

and lmax
i =

⌊

φmax
i

2π − 1
2

⌋

.

(3) If (lmin
i > lmax

i )
discard the interval Ii,
else
for each integer l from lmin

i to lmax
i

• compute the intersection point between the hori-
zontal line (2l + 1)π and the function φ over the
interval Ii. This point can be considered as a the
bracketed root of a monotonic continuous function
φ over Ii and accurately computed by root-finding
algorithms such as Brent’s method [5]. Denote this
point by ωcr which is equal to the imaginary part
of the boundary crossing root.

• compute the corresponding controller gain for the
boundary crossing root, i.e., λcr = eΛ(ωcr).

By Algorithm 1, we compute all boundary crossing roots
of the root-locus equation in (2) and their corresponding
controller gain values for λ ∈ [0, λmax]. Their crossing
directions are determined by the following theorem.

Theorem 6 The crossing direction of a boundary cross-
ing root scr = σ0 + jωcr only depends on the imaginary
part ωcr on the boundary and is equal to

CD(scr, λcr) = −sgn (φ′(ωcr)) . (16)

Proof. Using the transfer functionG in (1) and (10,15),
we obtain

G′(scr)G
−1(scr)− h = φ′(ωcr) + jΛ′(ωcr). (17)

By the crossing direction formula in (5) and the equation
in (17), the crossing direction of scr at λ = λcr is equal
to

CD(scr, λcr) = sgn

(

ℜ

(

(

λcr

(

h−
G′(scr)

G(scr)

))−1
))

= −sgn(φ′(ωcr)). ✷

ByTheorem 6, the crossing directions of the roots are the
same when their imaginary parts are inside the same in-
terval of Iφ (see Corollary 5). We determine the crossing
directions of boundary crossing roots from their imag-
inary parts. We group them according to their cross-
ing directions and define the sets W in = { sIν , λI

ν }ni

ν=1

5



and W out = { sOν , λO
ν }no

ν=1 where sIν = σ0 + jωI
ν , λI

ν

for ν ∈ N
ni

1 and sOν = σ0 + jωO
ν , λO

ν for ν ∈ N
no

1 are
the boundary crossing roots entering into or leaving the
root-locus region and their controller gains respectively.

Remark 1: The crossing direction formula in (5) is
well-posed (either +1 or −1) if there are neither poles
nor zeros of G or branch points on the boundary of the
root-locus region.
Remark 2: The closed-loop system is of neutral type
(see, e.g., [13]) when G is biproper (i.e., d := G(∞) 6=
0). Its asymptotic root chains lie outside the root-locus

region Cσ0
for λmax < ehσ0

|d| , while the region always has

infinitely many roots for larger controller gains. Since
it is not numerically possible to follow infinitely many

roots, λmax is assumed to be smaller than ehσ0

|d| .

3.2 Time delay as locus parameter

The root-locus equation w.r.t. the time delay is given in
(3). The starting points of the root locus are the zeros
of the transfer function 1 + G(s) inside the root-locus
region Cσ0

.

The branch points satisfy the root-locus equation (3)
and

∂f(s, λ)

∂s
= (G′(s)−G(s)λ)e−λs = 0. (18)

Since the locus parameter λ = h in equation (18) is
unknown, the direct computation of branch points is
difficult compared to the previous case. Therefore we
detect the branch points of the root locus while following
the root-locus trajectory as described in Section 4.5.

The relative stability analysis of the closed-loop of SISO
dead-time systems w.r.t. the stability boundary ℜ(s) =
σ0 is given in [8]. This analysis is based on the computa-
tion of boundary crossing roots of the root-locus equa-
tion in (3) which is similar to the computation for the
controller gain case in Section 3.1. Further information
can be found in [8]. Note that when the plant is biproper,

λmax is assumed to be smaller than max
(

0, ln |d|
|σ0|

)

to

have finitely many characteristic roots inside the root-
locus region Cσ0

(see Remarks 2 and 3 in [8]).

4 Computing a Root-Locus Trajectory

We compute the root-locus trajectory of a characteristic
root between two critical points. The trajectory satisfies
the root-locus equation w.r.t the controller gain in (2) or
the time delay in (3), represented by the locus parameter
λ.

The starting points and the characteristic roots entering
into the root-locus region are computed in Section 3. We

follow each root-locus trajectory by a secant-predictor,
Newton-corrector continuation method [1]. In the pre-
diction step, a line passing through the last two com-
puted roots and locus parameters is used to estimate
the next root and the next locus parameter at a cer-
tain distance (step length) in the (characteristic root,
locus parameter)-space. This estimate is corrected using
Newton’s method in the correction step. The next iter-
ation continues in a similar way, though the step length
is adaptive. The branch points for the controller gain
are computed apriori and those for the time delay are
detected while following the trajectory. The new branch
direction is determined by Lemma 1 and the trajectory
is followed until the upper bound of the locus parameter
λmax is reached.

4.1 Parameterization of the root-locus trajectory

Continuation based methods follow the characteristic
root s and the locus parameter λ based on the parame-
terization of the root-locus trajectory. In the literature,
the characteristic root is parameterized w.r.t. the locus
parameter as s = s(λ) for computational purposes [7,17].
In this parameterization, the characteristic roots are
highly sensitive w.r.t. changes of the locus parameter in
the neighborhood of branch points and relevant numeri-
cal problems are reported in [7]. We illustrate this sensi-
tivity on the root locus by means of equation (2), where

h = 4π
3 and G(s) = s2

(s2+1)(s2+1) .

Figure 1 shows the high sensitivity of the characteris-
tic roots w.r.t. changes of λ at λ = 0 where a branch
point occurs. As can be seen in Figure 1, this branch
point appears as a turning point in the root versus locus-
parameter space. When a continuation method tries to
follow the trajectory 1 or 2, the turning point around
λ = 0 causes several numerical problems if λ is used as
a continuation parameter. Take for instance trajectory
1. First the sensitivity or derivative of the root w.r.t. λ
tends to infinity when λ → 0−. Second when the λ
passes zero the same branch cannot be followed anymore
because the original trajectory turns back. In the best
scenario a point on trajectory 2 will be computed but
this is unlikely with a local method because trajectory 2
has another direction than trajectory 1 (see Lemma 1),
hence the estimate of the root obtained from the previ-
ous points will be bad. On the other hand, trajectory 1
and trajectory 2 appear as smooth curves in the com-
plex plane as shown in Figure 1. In the field of numeri-
cal bifurcation analysis (see, e.g., [16]), this was the mo-
tivation to parameterize the trajectories in terms of a
natural notion of an arclength, i.e., a distance measured
along the trajectories.

In our method we parameterize the root-locus trajecto-
ries in terms of the arclength γ measured along the tra-
jectory in the combined (characteristic root s, locus pa-
rameter λ) space, i.e., s = s(γ) and λ = λ(γ) for γ > 0.
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Fig. 1. The rightmost characteristic roots of the root-lo-
cus equation in (2) for the plant with h = 4π

3
and

G(s) = s2

(s2+1)(s2+1)
as a function of the controller gain λ.
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Fig. 2. The root-locus trajectories 1 and 2 in Figure 1 on the
complex plane.

For the example given in (7) the two root-locus trajec-
tories 1 and 2 are shown in Figure 3. The trajectories
are smooth and using equal arclength steps for γ (where
each step is shown as a point on the trajectory) the tra-
jectories are traced without any numerical problem. Fig-
ure 3 also illustrates that a branch point is characterized
by an extremum of the function γ 7→ λ(γ) which can be
used to detect the presence of a branch point along the
trajectory.

4.2 Prediction step

The predicted root and the locus parameter computation
in the prediction step requires the previous root, the
locus parameter, a direction and a step length. For each
root-locus trajectory, the starting point s0 is available.
The direction of the prediction step di is computed as
follows:

• The initial directions d∗0 ∈ C for the poles of G inside
Cσ0

and the boundary crossing roots are computed by
the root-locus equation, i.e., by solving

[

∂f
∂s

∂f
∂λ

]∣

∣

∣

f(s,λ)=0
d∗0 = 0 (19)

where d∗0 = [ds0 dλ0 ]
T is normalized. Set the root-locus

direction as di = [ℜ(ds0) ℑ(ds0) dλ0 ]
T . Note that (19)

is the mathematical characterization of the tangent
vector to the trajectory in the (s, λ) space [16].

• The directions in other iterations are computed using
the real and imaginary parts of last two corrected roots
and locus parameters, yci = [σc

i ωc
i λc

i ]
T and yci−1 =

[σc
i−1 ωc

i−1 λc
i−1]

T by

di =
yci − yci−1

‖yci − yci−1‖
for i ≥ 1. (20)

The real and imaginary parts of the predicted root and
the locus parameter ypi+1 = [σp

i+1 ωp
i+1 λp

i+1)]
T are com-

puted using a line equation with a step length hi

ypi+1 = yci + dihi for i ≥ 0. (21)

The geometric illustration of the prediction step is given
in Figure 4 where the predicted point ypi+1 is shown
as a gray dot. The initial step length h0 is fixed. The
step lengths in other iterations are calculated adaptively
based on previous values as we outline later on.

−0.2
−0.1

0
0.1

0.2

0.8
1

1.2
1.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

ℜ (s)

Root locus trajectories in (root,parameter) space

ℑ (s)

λ

2.
λ=−0.3

λ=−0.3

λ=0.31.
λ=0.3

λ=0

1.

2.

Fig. 3. The root-locus trajectories 1 and 2 in Figure 1 in the
(characteristic root, locus parameter)-space.

4.3 Correction step

We use Newton’smethod to solve a set of nonlinear equa-
tions to find the real and imaginary parts of the corrected
root and the locus parameter yci+1 = [σc

i+1 ωc
i+1 λc

i+1]
T .
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Fig. 4. Computing the root-locus trajectory: Prediction, cor-
rection steps and adaptively chosen step lengths.

These equations are given by

M(σc
i+1, ω

c
i+1, λ

c
i+1) = 0, (22)

P (σc
i+1, ω

c
i+1, λ

c
i+1) = 0, (23)

(yci+1 − ypi+1)di = 0. (24)

The functions M and P are equivalent representations
of the magnitude and phase equations of the root-locus
equation. Equation (24) guarantees that the linearized
distance of the corrected root and the locus parameter
yci+1 from the predicted root and the locus parameter
ypi+1 is equal to the step size hi. Because of the lineariza-
tion the proposed method can be seen as a pseudo ar-
clenghth continuation method [16].

The function M and P are defined using the root-locus
equationw.r.t. the controller gain in (2) or the time delay
in (3) as

M(σ, ω, λ) =







M(σ, ω, λ, h)

M(σ, ω, 1, λ)
, P (σ, ω, λ) =







P(σ, ω, λ, h)

P(σ, ω, 1, λ)

where

M(σ, ω, k, h) = ln |α|+
1

2

m
∑

r=1

(

ln(σ − σzr)
2 + (ω − ωzr)

2)

−
1

2

n
∑

i=1

(

ln(σ − σpi)
2 + (ω − ωpi)

2
)

− hσ + ln k, (25)

P(σ, ω, k, h) = ∠α+

m
∑

r=1

tan−1 ω − ωzr

σ − σzr

−
n
∑

i=1

tan−1 ω − ωpi

σ − σpi

− hω − π. (26)

Note that the controller gain k and the time delay h have
constant values in the root-locus equation w.r.t. the time
delay in (3) and the controller gain in (2) respectively.

The function P (σ, ω, λ) has a range (−π, π] and the arc-
tangent functions in P (σ, ω, λ) have ranges (−π, π] (sim-
ilarly to the two argument function atan2 in MATLAB).

We compute the corrected point yci+1 by Newton’s
method on (22-24), i.e., by iteratively solving

Jk
i+1(ỹ

k+1
i+1 − ỹki+1) = fk

i+1, for k = 0, 1, . . . (27)

where Jk
i+1 and fk

i+1 are the Jacobian and the gradient

vector evaluated at ỹki+1. The iteration is initialized by

the predicted point such that ỹ0i+1 = ypi+1. We stop the
iterationwhen the prescribed accuracy is reached and set
the corrected point yci+1 to the last point of the iteration.
The geometric illustration is given in Figure 4.

Regarding the computational complexity, the above
computation requires evaluating the functions on the
left-hand side of the equations in (22-24) and the cor-
responding Jacobian and gradient of these equations at
each iteration. This computation is numerically cheap
and uses only the poles and zeros of G and the time
delay h.

4.4 Adaptive step length

The step length computation for the next prediction step
depends on two factors [1]

• the contraction rate of the first two consecutive
Newton steps in the corrector step, i.e., κi+1 :=
‖(J0

i+1)
+f1

i+1‖
‖(J0

i+1
)+f0

i+1‖
;

• the distance to the root-locus trajectory

δi+1 =
∥

∥1− eM(σc
i+1,ω

c
i+1,λ

c
i+1)+jP (σc

i+1,ω
c
i+1,λ

c
i+1)
∥

∥ .

The individual deceleration factors are calculated as

κdf =
√

κi+1

κ̃
and δdf =

√

δi+1

δ̃
where κ̃ and δ̃ are the

nominal contraction rate and the distance. The overall
deceleration factor hdf of the step length is the maximum
of individual deceleration factors, κdf and δdf limited to
[ 12 , 2], i.e., hdf := max{min{max{κdf , δdf}, 2},

1
2}.

Note that if hdf = 2, the predictor step is repeated with
a reduced step length. This check is done inside the cor-
rector step to avoid unnecessary Newton iterations (see
[1] for further details). The step length for the next pre-
diction step is hi+1 = hi/hdf .

The adaptive step length selection allows us to follow
the root-locus trajectory in a computationally efficient
waywith a prescribed accuracy.When the trajectory has
sharp (resp. wide) curves, the step lengths are smaller
(resp. larger). This behavior is illustrated in Figure 4.

4.5 Detection of branch points

We directly computed the branch points of the root lo-
cus w.r.t. the controller gain in Section 3.1. The branch
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point detection of the root locus w.r.t. the time delay
requires monitoring the time delay parameter along the
root-locus trajectory. By Lemma 1, the root-locus tra-
jectory passes through the branch point when the mul-
tiplicity of the branch point is odd. In this case, there is
no need to detect the branch point. Note that the locus
parameter is strictly increasing for this case.

When the multiplicity of the branch point is even, the
continuation method follows another root-locus trajec-
tory after passing the branch point. The locus parameter
on this trajectory is strictly decreasing since we follow
the branch in the opposite direction. When we detect
that the current time delay value is smaller than previ-
ous time delay values, we know that we have passed a
branch point. Since we bracketed the branch point by the
current and previous points, we then solve a set of non-
linear equations characterizing the branch point. Based
on the multiplicity of the branch point, we decide the
branch direction by Lemma 1. The branch point and its
direction are added into the list for the next trajectories.

5 Algorithm

The overall algorithm is as follows.

(1) Compute the critical points of the root locus.
(2) For each root-locus trajectory:

(a) Starting with the initial point, find the next
point by computing the predicted point ypi+1,
the corrected point yci+1 and update the step
length for the next step hi+1.

(b) Continue to compute the next point until one
of the following conditions holds:
(i) The trajectory reaches a branch point. Go

to Step 2−a) and compute the next point
using the new direction by Lemma 1.

(ii) The locus parameter exceeds λmax or the
trajectory leaves Cσ0

. Stop the computa-
tion for this trajectory. Update the initial
point with the starting point of a new root-
locus trajectory and Go to Step 2− a).

(3) Stop if there is no remaining root-locus trajectory.

Note that due to the symmetry of the spectrum, on the
real axis it is sufficient to compute the branch points and
continue from the next branch point, i.e., a continuation
method is not needed. In our implementation, we set the
nominal contraction rate, the nominal distance and the
tolerance for the corrector step to κ̃ = 0.5, δ̃ = 10−3 and
10−5.

6 Examples

We consider three examples with unique characteristics
on their root locus. Example 7 has circular trajectories

close to each other. Trajectories of Example 8 require dif-
ferent order of accuracy. Example 9 has a branch point,
a trajectory going out of the region and trajectories with
large complex numbers. We show root-locus plots only
on the complex upper half-plane since the root-locus
plots are symmetric w.r.t. the real axis due to real-valued
coefficients of the plants in Examples.

Example 7 In [12], the stability of equation (3) is con-

sidered for the oscillator system, G(s) = ǫs2

(s2+ω2
1
)(s2+ω2

2
)
.

The behavior of the rightmost characteristic roots is ana-
lyzed as a function of the delay parameter for small values
of a gain parameter. In a particular example, the param-
eters of the system are set to ǫ = 1, ω1 = 2, ω2 = 4 and
the oscillatory nature of the rightmost characteristic root
and the stability of the closed-loop system are shown.

We plot the root locus in equation (3) of this plant inside
ℜ(s) ≥ −1 for λ ∈ [0, 5] in Figure 5. It is well-known
that the characteristic roots of time delay systems can
only cross the imaginary axis at a finite number of points
when the delay is varied. This property can be clearly seen
in Figures 5-8. Note in particular in Figure 8 how char-
acteristic roots are passing through same points on the
imaginary axis. Root-locus plots in Figures 6-8 illustrate
the oscillatory behavior of the characteristic root trajecto-
ries centered around ±2j, ±4j and the asymptotic char-
acteristic roots coming from the left. This phenomenon
is qualitatively explained in [12]. The closed-loop system
is stable for the time delay λ ∈ [0.83, 1.50]∪ [4.11, 4.50].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
0

2

4

6

8

10

12

14
Root locus of Ex.1 inside ℜ (s)≥−1, ℑ (s)≥0

ℜ (s)

ℑ
(s

)

Fig. 5. The root locus of Example 7 for time delay λ ∈ [0, 5]
inside ℜ(s) ≥ −1, ℑ(s) ≥ 0.

Example 8 The following SISO dead-time system is
borrowed from [3], p. 80-81 where h = 12.48 and

G(s) = 10−3 (
s
6 − 6 10−4

s
5 + 1.4081634 s

4

− 5.6326533 10−4
s
3 + 0.43481891 s

2 − 8.6963771 10−5
s

+2.6655565 10−2
)

−1
.

The root-locus plot for equation (2) of this plant is given
in Figure 9. As shown with cross markers inside gray re-
gions in the figure, the plant has 6 unstable poles. They
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Fig. 6. The root locus inside the gray region in Figure 5 for
time delay λ ∈ [0, 2.7].
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Fig. 7. The root locus inside the gray region in Figure 5 for
time delay λ ∈ [0, 3.8].
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Fig. 8. The root locus inside the gray region in Figure 5 for
time delay λ ∈ [0, 5].

have all moved to the complex left half-plane at λ = 1.860
and the closed-loop system becomes stable for the con-

troller gain λ ∈ [1.860, 4.469]. Note that the root-locus
trajectories have lengths in the order of magnitudes, 1,
10−2, 10−3, 10−4 respectively as illustrated in Figures 9-
12. We follow each trajectory without any problem due
to the adaptive step length in the algorithm.
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Root locus of Ex.2 inside ℜ (s)≥−1, ℑ (s)≥0

Fig. 9. The root locus of Example 8 for controller gain
λ ∈ [0, 6] inside ℜ(s) ≥ −1, ℑ(s) ≥ 0.
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Root locus of Ex.2 inside ℜ (s)≥−1, ℑ (s)≥0 (zoomed)

Fig. 10. The root locus inside the middle gray region in
Figure 9 for controller gain λ ∈ [0, 6].

Example 9 Finally, we consider the SISO dead-time

system where h = 1 and G(s) = s2−10s+50
s3+4s2+4.25s+1.25 . We

plot its root-locus trajectories of equation (2) for the con-
troller gain interval λ ∈ [0, 5] inside ℜ(s) ≥ −3.5. Fig-
ure 13 illustrates the general behavior of the root-locus
trajectories. As the controller gain increases, more char-
acteristic roots cross the boundary ℜ(s) = −3.5 and
asymptotic root trajectories get closer to the imaginary
axis. Figure 14-15 show the local behavior around the
starting points, s = −0.5,−1,−2.5. In Figure 14, we see
that the characteristic roots cross the imaginary axis at
λ = 0.07 and the closed-loop system becomes unstable. In
Figure 15, the root locus has a branch point s = −0.6976
at λ = 0.0009 and the trajectory starting with s = −2.5
leaves the region at λ = 0.0023.
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Fig. 11. The root locus inside the bottom gray region in
Figure 9 for controller gain λ ∈ [0, 6].
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Fig. 12. The root locus inside the top gray region in Figure 9
for controller gain λ ∈ [0, 6].

The computation times of root-locus plots for Examples
7-9 are 7.6, 1.4 and 2.5 seconds on a PC with an Intel
Core Duo 2.53 GHz processor with 2 GB RAM respec-
tively.

7 Concluding Remarks

The root locus of SISO dead-time systems with respect
to the controller gain or the time delay is computed in-
side a given complex right half-plane. The method calcu-
lates the starting points of root-locus trajectories includ-
ing the ones crossing the boundary of the root-locus re-
gion. Each trajectory is followed by a predictor-corrector
continuation method. The characteristic roots on each
root-locus trajectory are predicted by a secant method
where the step length is adaptive and the predicted val-
ues are corrected by Newton’s method. This continua-
tion approach, which stems from numerical bifurcation
analysis, is general and not restricted to parameterized
equations of the form in equations (2,3). The implemen-
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Root locus of Ex.3 inside ℜ (s)≥−3.5, ℑ (s)≥0

Fig. 13. The root locus of Example 9 for controller gain
λ ∈ [0, 5] inside ℜ(s) ≥ −3.5, ℑ(s) ≥ 0.
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Fig. 14. The root locus inside the gray region in Figure 13
for controller gain λ ∈ [0, 0.07].
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Fig. 15. The root locus inside the gray region in Figure 13
for controller gain λ ∈ [0, 5].

tation of the method is numerically stable for high order
systems.
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