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Abstract

Modeling and identification for high dimensional (i.e. signals with many components) data sets poses severe challenges to off-the-shelf
techniques for system identification. This is particularly so when relatively small data sets, as compared to the number signal components,
have to be used. It is often the case that each component of the measured signal can be described in terms of few other measured variables
and these dependence can be encoded in a graphical way via so called “Dynamic Bayesian Networks”. Finding the interconnection
structure as well as the dynamic models can be posed as a system identification problem which involves variables selection. While
this variable selection could be performed via standard selection techniques, computational complexity may however be a critical issue,
being combinatorial in the number of inputs and outputs. Parametric estimation techniques which result in sparse models have nowadays
become very popular and include, among others, the well known Lasso, LAR and their “grouped” versions Group Lasso and Group LAR.
In this paper we introduce two new nonparametric techniques which borrow ideas from a recently introduced Kernel estimator called
“stable-spline” as well as from sparsity inducing priors which use `1-type penalties. Numerical experiments regarding estimation of large
scale sparse (ARMAX) models show that this technique provides a definite advantage over a group LAR algorithm and state-of-the-art
parametric identification techniques based on prediction error minimization.

Key words: linear system identification; sparsity inducing priors; kernel-based methods; Bayesian estimation; regularization; Gaussian
processes

1 Introduction

Black-box identification approaches are widely used to
learn dynamic models from a finite set of input/output
data [32,49]. In particular, in this paper we focus on the
identification of large scale linear systems that involve a
wide amount of variables and find important applications
in many different domains such as chemical engineering,
econometrics/finance, computer vision, systems biology,
social networks and so on [7,39,30].

In engineering applications, when data are collected from a
physical plant, it is often the case that there is an underlying
interconnection structure; for instance the overall plant could
be the interconnection via cascade, parallel, feedback and
combinations thereof, of many dynamical systems. In this
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scenario any given variable may be directly related to only
a few other variables.

In the static Gaussian case, the “relation” is expressed in
terms of conditional independence conditions between sub-
sets of variables, see e.g. [14]. Estimation of sparse graphical
models have been the subject of intense research which is
impossible to survey in this paper; we only point the reader
to the early paper [37] which propose using the Lasso to this
purpose, and to the more recent technical report [21] which
suggests new directions introducing symmetric procedures
as well as grouping strategies to reduce the number of nodes,
providing also comparisons between different methods.

In the dynamic case, i.e. when observed data are trajectories
of (possibly stationary) stochastic processes, one may con-
sider several notions of conditional independence which can
be encoded via the so-called time series correlation (TSC)
graphs, Granger causality graphs and “partial correlation”
graphs, see [13] for details.

When the number of measured variables is very large and
possibly larger than the number of data available (i.e. the
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number of “samples” available for statistical inference),
even though there is no “physical” underlying network,
constructing meaningful models which are useful for pre-
diction/monitoring/intepretation requires trading off model
complexity vs. fit. In a parametric setup this complexity
depends on the number of parameters which is related to
both the complexity of each “subsystem” (e.g. measured
via its order) as well as to their number (i.e. the number of
dynamical systems which are “non zero”).

Problems of this sort have been recently studied in the liter-
ature, see for instance [52,40,35,36] and references therein.
In the paper [52] coupled nonlinear oscillators (Kuramoto
type) are considered where the coupling strengths are to be
estimated; in [40] nonlinear dynamics are allowed and the
attention is restricted to the linear term 1 in the state update
equation, equivalent to a vector autoregressive (VAR) model
of order one. In both cases it is assumed that the entire state
space is measurable and an `1-penalized regression prob-
lem is solved for estimating the coupling strenghts/linear
approximations. Sparse models under “smoothing” condi-
tional independence relations, encoded by “partial correla-
tion” graphs or equivalently via zeros in the inverse spectrum
[8], have been recently studied in the literature. For instance,
in [50] considers VAR models and `1-type penalized regres-
sion while in [35,36] a methodology based on smoothing a
la Wiener is proposed, where interconnections are found by
putting a threshold on the estimated transfer functions.

In this work we shall focus on stationary stochastic pro-
cesses described via Granger causality graphs, where condi-
tional independence conditions encode the fact that the pre-
diction of (the future of) one variable (which we shall call
“output variable”) may require only the past history of few
other variables (which we shall call “inputs”) plus possibly
its own past. This can be represented with a graph where
nodes are variables and (directed) edges are (non zero) trans-
fer functions, self-loops encoding dependence on the “out-
put” own past 2 . In general both the dynamical systems and
the interconnection structure is unknown and have to be in-
ferred from data. Without loss of generality we shall address
the problem of modeling the relation between one node in
this graph (the “output” variable) and all the other measured
variables (the “inputs” ) in a “prediction error” framework.
Beyond linearity, we shall not make any assumption on each
subsystem (e.g. no knowledge of system orders). Our fo-
cus is both on finding the underlying connection structure
(if any) as well as obtaining reliable and easily interpretable
models which can be used, e.g. for prediction/monitoring
etc. Of course, the problem of modeling an “output” y as a
function of certain inputs u is meaningful per se, and one
may not be interested at all in building a complete “network
of dependences” for the joint process (u,y) but just to per-

1 Thinking of a first order Taylor expansion around the trajectory
2 In the language of classical System Identification, dependence
of the predictor on the past outputs will result in ARMAX models,
lack of dependence in Output Error (OE) models.

form variable selection in linear system identification when
many “exogenous” variables are present.

In this scenario a key point is that the identification proce-
dure should be sparsity-favoring, i.e. able to extract from the
large number of subsystems entering the system description
just that subset which influences significantly the system
output. Such sparsity principle permeates many well known
techniques in machine learning and signal processing such
as feature selection, selective shrinkage and compressed
sensing [27,16].
In the classical identification scenario, Prediction Error
Methods (PEM) represent the most used approaches to opti-
mal prediction of discrete-time systems [32]. The statistical
properties of PEM (and Maximum Likelihood) methods are
well understood when the model structure is assumed to be
known. However, in real applications, first a set of compet-
itive parametric models has to be postulated. Then, a key
point is the selection of the most adequate model structure,
usually performed by AIC and BIC criteria [1,47]. Not sur-
prisingly, the resulting prediction performance, when tested
on experimental data, may be distant from that predicted by
“standard” (i.e. without model selection) statistical theory,
which suggests that PEM should be asymptotically efficient
for Gaussian innovations. If this drawback may affect stan-
dard identification problems, a fortiori it renders difficult
the study of large scale systems where the elevated number
of parameters, as compared to the number of data available,
may undermine the applicability of the theory underlying
e.g. AIC and BIC.
Some novel estimation techniques inducing sparse models
have been recently proposed. They include the well known
Lasso [51] and Least Angle Regression (LAR) [17] where
variable selection is performed exploiting the `1 norm. This
type of penalty term encodes the so called bi-separation
feature, i.e. it favors solutions with many zero entries at the
expense of few large components. Consistency properties
of this method are discussed e.g. in [63,64]. Extensions of
this procedure for group selection include Group Lasso and
Group LAR (GLAR) [61] where the sum of the Euclidean
norms of each group (in place of the absolute value of the
single components) is used. Theoretical analysis of these
approaches such and connections with the multiple kernel
learning problem can be found in [5,38] while a discussion
on the advantages of Group Lasso over Lasso is discussed in
[29]. We warn the reader that one should not take “sparse”
estimators as panacea; it is for instance shown in [31] that
sparse estimators which possess some sort of “Oracle prop-
erty” [19] have unbounded (normalized) maximal risk as
the sample size increases.

Most of the work available in the literature addresses the
“static” scenario while very little, with some exception
[57,28], can be found regarding the identification of dy-
namic systems.
In this paper we adopt a Bayesian point of view to pre-
diction and identification of sparse linear systems. Our
starting point is the new identification paradigm developed
in [45] that relies on nonparametric estimation of impulse
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responses (see also [44] for extensions to predictor estima-
tion). Rather than postulating finite-dimensional structures
for the system transfer function, e.g. ARX, ARMAX or
Laguerre [32], the system impulse response is searched for
within an infinite-dimensional space. The intrinsical ill-
posed nature of the problem is circumvented using Bayesian
regularization methods. In particular, working under the
framework of Gaussian regression [46], in [45] the system
impulse response is modeled as a Gaussian process whose
autocovariance is the so called stable spline kernel that in-
cludes the BIBO stability constraint.
In this paper, expanding on our recent works [12,11], we
extend this nonparametric paradigm to the design of optimal
linear predictors for sparse systems. Without loss of gen-
erality, analysis is restricted to MISO systems, where the
variable to be predicted is called “output variable” and all
the other (say m−1) available variables are called “inputs”.
In this way we interpret the predictor as a system with m
inputs (given by the past outputs and inputs) and one out-
put (output predictions). Thus, predictor design amounts to
estimating m impulse responses modeled as realizations of
Gaussian processes. We set their autocovariances to stable
spline kernels with unknown scale factors.

We consider two approaches: the first, which we shall call
Stable-Spline GLAR (SSGLAR), is based in the GLAR al-
gorithm in [61] and can be seen as a variation of the so-
called “elastic net” [65]; the second, which we shall call
Stable-Spline Exponential Hyperprior (SSEH) uses a hierar-
chical prior which assigns exponential hyperpriors having a
common hypervariance to the scale factors. This second ap-
proach has connections with the so-called Relevance Vector
Machine in [53]; see also the discussion on scale-mixture
distributions in [24]. In this way, while SSGLAR uses the
sum of the `1 norms of the single impulse responses, the hy-
erarchical hyperprior favors sparsity through an `1 penalty
on kernel hyperparameters. Inducing sparsity by hyperpri-
ors is an important feature of our second approach. In fact,
this permits to obtain the marginal posterior of the hyper-
parameters in closed form and hence also their estimates in
a robust way. Once the kernels are selected, the impulse re-
sponses are obtained by a convex Tikhonov-type variational
problem.

As we shall see, however, SSEH requires solving a non-
linear optimization problem which may benefit from a
“good” initialization. We shall argue that a forward-selection
type of procedure which is in some sense related to SS-
GLAR provides a robust and computationally attractive
way of initializing SSEH.

Numerical experiments involving sparse ARMAX systems
show that this approach provides a definite advantage over
both the standard GLAR (applied to ARX models) and
PEM (equipped with AIC or BIC) in terms of predictive
capability on new output data while also effectively captur-
ing the “structural” properties of the dynamic network, i.e.
being able to identify correctly, with high probability, the
absence of dynamic links between certain variables.

The paper is organized as follows: Section 2 contains the
problem formulation while Section 3 contains some back-
ground material including the nonparametric approach to
system identification introduced in [45] as well as standard
approaches to sparsification. Section 4 formulates the input
selection as a “group-sparsity” problem also formulating the
predictor estimation problem in our Bayesian framework.
Sections 5 and 6 describe the two algorithms we introduce
while Section 7 reports some simulation results. Conclusions
end the paper.

Notation

The symbols E[·] denotes expectation while Ê[·|·] denotes
the best linear estimator (conditional expectation in the
Gaussian case). In addition for A ∈ Rn×m, A[i j] will denote
the element of A in position (i, j). If A is a vector the
notation A[i] will be used in place of A[i1] or A[1i]; in addi-
tion A[−i] denotes the vector A with the i− th component
suppressed. The symbol I denotes the identity matrix of
suitable dimensions, A> is the transpose of the matrix A and
‖x‖p is the p−norm of the vector x. The symbol `1(Z+)
will denote the space of real infinite sequences (indexed by
Z+) having finite `1 norm, i.e. the infinite column vector
g := [g1,g2, ..,gk, ..]

> ∈ `1(Z+) iff ∑
∞
i=1 |gi|< ∞.

2 Statement of the problem and notation

Let {zt}t∈Z, zt ∈ Rm be a stationary stochastic processes
which models the joint time evolution of some variables of
interests. With some abuse of notation the symbol zt will both
denote a random variable (from the random process {zt}t∈Z)
and its sample value. We can think of each component of
the vector process {zt} as being attached to the node of a
network. Our purpose is to build linear dynamical models
which describe dynamically each of the components of {zt}
as a function of the others. To this purpose we define yt := z[i]t
(the i− th component of zt ) as “output” and all the others
ut := z[−i]

t ∈ Rm−1 as “inputs”. Of course the argument can
be repeated for i = 1, ..,m thus obtaining a description of all
the variables in zt as a function of the others. Throughout the
paper we shall make a specific choice of i which, w.l.o.g.,
can be taken equal to 1 so that

zt :=

[
yt

ut

]
(1)

This sort of notation is standard in modeling feedback inter-
connections (see e.g. [22,20,10]) where one concentrates on
one variable viewing the others as “inputs”, with the assump-
tion that the overall interconnection is such that the joint
process is stationary. Also the absence of direct feedthrough
terms (i.e. f0 = 0 in (2)) makes life a bit easier (see e.g.
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[54]) in that under mild excitation conditions it guarantees
identifiability.

From stationarity of {zt}t∈Z it follows that {yt}t∈Z and
{ut}t∈Z are jointly stationary stochastic processes which can
be thought of, respectively, as the output and input of an
unknown time-invariant dynamical system 3 :

yt =
∞

∑
k=1

fkut−k +
∞

∑
k=0

gket−k (2)

were fk ∈ R1×m and gk ∈ R are (matrix) coefficients of the
unknown impulse responses and et is the innovation se-
quence, i.e. the one step ahead linear prediction error

et := yt − ŷt|t−1

:= yt − Ê[yt |yt−1,yt−2, . . . ,ut−1,ut−2, . . .]
(3)

where

Ê[yt |yt−1,yt−2, . . . ,ut−1,ut−2, . . .]

:= ∑
m−1
j=1

[
∑

∞
k=1 h[ j]k u[ j]t−k

]
+∑

∞
k=1 h[m]

k yt−k.

The sequences hk := [h[1]k , ..,h[m−1]
k ,h[m]

k ]∈R1×m, k ∈Z+ are
the predictor impulse response coefficients and are required
to describe (BIBO) stable systems, i.e. h[m] ∈ `1(Z+).

In the prediction error minimization (PEM) framework iden-
tification of the dynamical system in (2) can be framed as
estimation of the predictor impulse responses hk in (3) from
a finite set of input-output data. We specifically address sit-
uations in which m is large as compared to the number of
available data and only few variables are in fact needed to
predict yt . Mathematically this means that h[i]k = 0, ∀k ∈Z+.
In a graphical representation there will be a directed link
from the node representing u[i]k to that representing yk if and

only if ∃k ∈Z+ : h[i]k 6= 0, i = 1, ..,m−1; in addition there is

a self loop if and only if ∃k ∈Z+ : h[m]
k 6= 0. For instance for

the network represented in Figure 1, h[5]k = h[1]k = 0, ∀k ∈Z+

while h[2]k ,h[3]k ,h[4]k and h[6]k are not identically zero, mean-
ing that for prediction of yt one needs (only) the past of
u[2],u[3],u[4] and of y itself.

In practice one does not know whether a measured signal
is significant for prediction of yt . Standard PEM methods
[32,49] do not attempt to perform input selection and esti-
mate a “full” model which uses all inputs. As we shall see

3 In order to streamline notation we shall assume one delay from
ut to yt . If this is true for all possible decompositions yt = z[i]t ,
ut = z[−i]

t , i = 1, ..,m, it can be shown that the interconnection is
well posed. Of course to achieve stationarity further restrictions
have to be imposed.

Fig. 1. A dynamical network representing the interaction between
m = 6 variables. The solid edges represent the links related to the
dynamical model for node yt := z[1]t given all the others. With ref-
erence to equation (3), absence of links from u[i]t = z[i+1]

t , i = 1,5
to yt := z[1]t means that h[1]k = h[5]k = 0, ∀k ∈Z+. The node contain-
ing yt has an “entering” arrow which represents the influence of et
(the one step ahead prediction error of yt ). The dotted edges refer
to other decompositions of the form (1) where yt = z[ j]t , ut = z[− j]

t
for j 6= 1.

this may yield poor results when the number of inputs be-
comes large as compared to the data available. Variable se-
lection methods has been subject of intense research; clas-
sical methods can be found in the books [58,26] while we
refer to the survey [25] for a more recent overview.

In this paper we shall be specifically concerned with method-
ologies which, favoring sparsity, will be able to capture the
structure of a dynamical network, like the one Figure 1,
and at the same time estimate all the (non-zero) impulse re-
sponses h[i]k in (3).

3 Preliminaries: kernels for system identification and
sparsity inducing priors

3.1 Bayesian estimation and Kernel-based regularization

Consider the problem of reconstructing a single unknown
function h from indirect noisy measurements. In the frame-
work of Gaussian regression, the key point is to interpret h
as (a realization of) a zero-mean Gaussian process whose
covariance (also called kernel) encodes the available prior
knowledge.

Just for a while, it is now useful to think of h as a continuous-
time signal. Often, the only available prior knowledge is
the fact that h, and possibly some of its derivatives, are
continuous with bounded energy. Hence, one often models
h as the p-fold integral of white noise. If the white noise
has unit intensity, the autocorrelation of the process h, with
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domain restricted to the unit interval, is Wp where

Wp(s, t) =
∫ 1

0
Gp(s,u)Gp(t,u)du, s, t ∈ [0,1] (4)

Gp(r,u) =
(r−u)p−1

+

(p−1)!
, (u)+ =

{
u if u≥ 0

0 if u < 0
(5)

The autocovariance Wp is associated with the Bayesian in-
terpretation of the p-th order smoothing splines [55]. In par-
ticular, when p = 2, one obtains the cubic spline kernel.

Now, it is useful to recall that, when data become available,
the Bayes estimate of h belongs to a reproducing kernel
Hilbert space (RKHS) H defined by the covariance of h [4],
Such space is equipped with a norm that, as also illustrated
in the sequel, controls the complexity of the function to re-
construct, regularizing the estimation process. For instance,
as described in [55], the cubic spline kernel is associated
with a particular Sobolev space equipped with the norm

‖h‖2
H =

∫ 1

0
(h(2)(s))2ds (6)

Thus, the Gaussian prior associated with W2 introduces in-
formation on the smoothness of h via a regularization term
given by the energy of the second-order derivative of h.

3.2 Stable spline kernels

In the system identification scenario, the main drawback of
the covariances (4) is that they do not account for impulse
response stability, as illustrated in Fig. 2 (left) which displays
100 realizations using an autocovariance proportional to W2.
In fact, if the autocovariance of h is Wp, the variance of h(t)
is zero at t = 0 and tends to ∞ as t increases. However, if f
represents a stable impulse response, one should let it have
a finite variance at t = 0 which goes exponentially to zero
as t tends to ∞. Following [45], this property can be ensured
by modeling h via stable spline kernels defined by

Kp(s, t) =Wp(e−β s,e−β t), s, t ∈ R+ (7)

where β is a positive scalar governing the decay rate of the
variance [45,43]. In real applications, β will be unknown so
that, in what follows, it is treated as a hyperparameter to be
estimated from data.
When p = 2 the autocovariance becomes the Stable Spline
kernel introduced in [45]:

K2(t,τ) =
e−β (t+τ)e−β max(t,τ)

2
− e−3β max(t,τ)

6
(8)

and the following result holds.

Proposition 1 [45] Let h be zero-mean Gaussian with au-
tocovariance K2. Then, with probability one, the realizations

Fig. 2. Realizations of a stochastic process h with autocovariance
proportional to the standard Cubic Spline kernel (left), the new
Stable Spline kernel (middle) and its sampled version enriched
by a parametric component defined by the poles −0.5±0.6

√
−1

(right).

of h are continuous impulse responses of BIBO stable dy-
namic systems.

The effect of the stability constraint is now illustrated in
Fig. 2 (middle) which displays 100 realizations drawn from
a zero-mean Gaussian process whose autocovariance is pro-
portional to K2 with β = 0.4.

A full characterization of the RKHS induced by the stable
spline kernels can be found in [43]. Here, we just recall that
the kernel K2 induces the following norm

‖h‖2
H =

∫
∞

0
(h(2)(s)+βh(1)(s))2 e3β s

β 3 ds (9)

In this way, the Gaussian prior defined by K2 defines a
penalty term on h that not only forces the energy of the
derivatives to be bounded, but also requires them to decay
to zero at least exponentially. Hence, information on both
smoothness and exponential stability of h are introduced in
the stochastic model.

3.3 Prior for predictor impulse responses

Coming back to our original problem, instead of one un-
known function, our aim is to estimate the set {h[i]} of
discrete-time impulse responses. Then, we model them as
sampled versions of continuous-time and independent zero-
mean Gaussian processes. As in [44], their autocovariances
are defined by an “enriched” version of K2 and share the
same hyperparameters, apart from the scale factors {λ 2

i }.
More specifically, each discrete-time impulse response h[i]
is the convolution of a zero-mean Gaussian process, with
autocovariance given by the sampled version of λ 2

i K2,
with a parametric impulse response r used to capture dy-
namics hardly represented by a smooth process such as

5



high-frequency oscillations. The zeta-transform R(z) of r is
parametrized as follows

R(z) =
z2

Pθ (z)
, Pθ (z) = z2 +θ1z+θ2, θ ∈Θ⊂ R2

(10)
where the feasible region Θ constraints the two roots of
Pθ (z) to belong to the open left unit semicircle in the com-
plex plane. The role of the finite-dimensional component
of the model is illustrated in Fig. 2 (right panel). Here,
we display some realizations (with samples linearly inter-
polated) drawn from a discrete-time zero-mean normal pro-
cess with autocovariance given by K2 and enriched using
Pθ (z) = z2 + z+0.61 in (10). This corresponds to introduc-
ing high-frequency dynamics in the realizations by enrich-
ing the Stable Spline kernel with the poles −0.5±0.6

√
−1.

The autocovariance of each predictor impulse response h[i],
defined by (8) and (10), is denoted by K : N×N 7→ R so
that one has

E[h[i]` h[i]k ] = λ
2
i K(`,k;θ ,β ), i = 1, . . . ,m, `,k ∈ N (11)

3.4 Sparsity inducing priors

Differently from the previous subsections, we now discuss
a finite-dimensional estimation problem where the goal is to
reconstruct the parameter φ ∈ Rm in the linear model

yi = X>i φ + ei, i = 1, . . . ,T (12)

In (12), {Xi ∈Rm} are the T “regression vectors” while {ei}
is zero-mean Gaussian noise of variance σ2.
When the number m of regressors is very large, e.g. as com-
pared to the number T of data available, obtaining accurate
and stable predictors and easily interpretable models be-
comes a challenging issue which has been quite extensively
addressed in the statistical literature in the last decade, see
e.g. [51,6,53,26,17,19,9] and references therein.
A pioneering work in this direction has been the so called
Lasso (Least Absolute Shrinkage and Selection Operator)
[51] that performs regressor selection solving a problem of
the form

φ̂ := arg min
φ

T

∑
i=1

(yi−X>i φ)2 + γ‖φ‖1. (13)

where the positive scalar γ is the so called regularization
parameter. Notice that the problem is finite-dimensional and
the penalty term involves the `1 norm in place of the squared
norm in a RKHS. In a Bayesian framework, this difference
stems from the fact that φ is no longer modeled as a Gaussian
process as in the previous section. In particular, φ̂ can be
seen as the Maximum a Posteriori (MAP) estimator once the
random vector φ is independent of the measurement noise
and is assigned a double exponential-type prior

p(φ) ∝ e−ξ‖φ‖1 , (14)

yielding

φ̂ := arg max
φ

p({yi}|φ)p(φ)

= arg max
φ

e−
1

2σ2 ∑
T
i=1(yi−X>i φ)2

e−ξ‖φ‖1
(15)

that is equivalent to problem (13) once γ is set to 2ξ σ2. De-
spite its nice properties, it has been argued that Lasso had
not had a significant impact in statistical practice due to its
relative computational inefficiency, see [34]. The Least An-
gle Regression (LAR) algorithm [17] has provided a new
approach to regressor selection and, with minor modifica-
tions (the “Lasso modification”, [17]), also an efficient im-
plementation of the Lasso.
Recently the Lasso has been proposed for estimation of re-
gression models with autoregressive noise [57] and for Vec-
tor Autoregressive with eXogenous inputs (VARX) models
[28]. This is a rather straightforward application once the re-
gressor vectors {Xi} in (13) are formed with past inputs and
outputs and φ contains the parameters of the finite memory
predictors (ARX models).
Another avenue which has been put forward in the statistics
literature adopts a Bayesian point of view by modeling the
components of φ as independent Gaussian random variables
p(φ [i]|λi) =N(φ [i];0,λ 2

i ) where

N(φ ;m,λ 2) =
1√

2πλ 2
e−

1
2
(φ−m)2

λ2 .

A second layer is then added to the model by assuming that
also the λi’s are random variables with a certain density
p(λi). It follows that

p(φ) = ∏
i

∫
p(φ [i]|λi)p(λi)dλi (16)

which is a so-called “scale-mixture” distribution [3,59,41,24].
It is well known [3,59,41] that, if λ 2

i has an exponential
distribution itself, then p(φ) in (16) has the “double ex-
ponential” form (14). This is also related to the so called
“Relevance Vector Machine” introduced in [53] which,
however, uses a Gamma-type of prior on λ

−2
i .

3.5 Concluding remarks of the section

We have introduced two different signal priors that lead to
two different regularization terms. The first one derives from
Gaussian assumptions and corresponds to a penalty on the
signal given by the squared norm associated with the ker-
nel K in (11), hereby denoted by ‖ ·‖2

HK
. This penalty term

is suited for identification of infinite-dimensional discrete-
time impulse responses. The other one has been introduced
in a finite-dimensional context and derives from a double
exponential-type prior which leads to the `1 norm underly-
ing the LASSO.
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In the rest of the paper we shall be concerned with a ver-
sion of the problem (12) where these two types of norms
may interact. In particular, each of the components φ [i] of
φ will become an unknown impulse response h[i] modeled
as a zero-mean Gaussian Process with covariance K. Hence,
the Bayes estimate of each h[i] will belong to an infinite-
dimensional RKHS denoted by HK . The regressor vectors
{Xi} will become linear operators whose representation has
infinitely many columns and will contain the past histories
of u and y. Details are found in the next section.

4 Variable selection as group sparsity and the sparse
identification problem

4.1 The sparse identification problem

In this section we shall see how variable selection can be
posed as the problem of obtaining sparse solutions of a linear
problem similar to (12) discussed in Section 3.4. There are,
however, a few notable differences which makes this, in
our opinion, a non-trivial extension of previous results. In
particular:

(a) Since we are interested in performing variable selec-
tion, we would like that certain impulse responses to
be identically zero. This is a sort of “group” problem,
similar to those discussed in [61]; however our “groups”
are the impulse responses h[i]. In a parametric scenario
(i.e. when the impulse response are modeled in finite
dimensional model classes, see e.g. [32,49]) each group
of parameters would describe one impulse response. If
we restrict our interest to ARX/FIR models this natu-
rally yields to an algorithm for variable selection which
we shall call “ARX-GLAR” since we shall exploit the
“group LAR” algorithm (as an alternative, one could
also use the “group Lasso” [61]). In general however,
the parametrization is non-linear and, in addition, a fur-
ther model selection problem would have to be faced
related to the complexity (order) of the parametric class
describing each impulse response. We prefer to work in
the nonparametric scenario described in Section 3 so that
the “groups” live in an infinite dimensional space.

(b) The unknown “parameters” are the (infinite dimensional)
impulse responses modeled as Gaussian Processes. This
follows the framework developed in the first subsections
of Section 3 and yields to a problem formulation similar
to multiple kernel learning [5].

For our purposes, it is useful to set up some notation. Let
us define

y−t := [yt−1,yt−2,yt−3....], u−t := [ut−1,ut−2,ut−3....]

y+t :=


yt
...

yt+T−1

 , e+t :=


et
...

et+T−1

 , h :=


h[1]

...

h[m]

 ;

(17)
where h[i], i = 1, ..,m, are impulse responses of stable sys-
tems. We also define Ati ∈ RT×∞, i = 1, ..,m, where

A[ jk]
ti := u[i]t− j−k, i = 1, ..,m−1

A[ jk]
tm := yt− j−k, j,k ∈ Z+

(18)

In practice, the operators {Ati} above are never completely
known since we assume that the measurements yt ,ut are
only taken in an interval of the form t ∈ [1,N]. However,
we will think of each Ati as known setting to zero the un-
observed entries. We also let the positive integer t0 denote
a positive instant sufficiently large to capture the dynamics
of the predictor and define

y+ := y+t0 , e+t0 := e+, Ai := At0i (19)

In this way, the predictor in (3) can be rewritten 4 as:

y+ =
[

A1 . . . Am

]
︸ ︷︷ ︸

:=A

h+ e+ (20)

Now, our identification problem corresponds to estimating
h in (20), subject to the stability constraints h[i] ∈ `1(Z+),
i = 1, ..,m. Recall that we are interested in estimators which
automatically select, among u[1], ..,u[m−1],y, the variables
which are useful for predicting y and which are not. In other
words, certain impulse responses ĥ[i] are expected to be ex-
actly zero. As said, solving this problem entails estimation
in “grouped” variables [61,60] but a peculiarity here is that
each “group” lives in an infinite dimensional space.

4.2 A (non sparse) predictor estimator using Gaussian Re-
gression

Under the framework developed in Section 3.3, we assume
that the impulse responses h[i] are zero-mean Gaussian pro-
cesses with covariance function K in (11) 5 . Hence, the prob-

4 The product of semi-infinite matrices should be intended as the
limit of finite sequences. However, given the assumption h[i] ∈
`1(Z+) the limit operation is well posed and, as such, we can
formally work with the limiting expressions (see [44]).
5 When not needed, in order to simplify notations we shall omit
the explicit dependence on θ and β .
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lem of estimating the impulse responses h[i] from measured
data {yt ,ut} can be formulated as the minimum variance es-
timator

ĥ[i] = E[h[i]|{yt ,ut}], i = 1, ..,m;

Equivalently, one can assume that h[i] are functions in HK ,
the reproducing Kernel Hilbert space associated to the sam-
pled Kernel K. Under suitable hypotheses discussed in [44]
and also later on in Section 6, one has

{ĥ[i]}m
i=1 = arg min

{h[i]∈HK}mi=1

‖y+−
m

∑
i=1

Aih[i]‖2 +σ
2

m

∑
i=1

‖h[i]‖2
HK

λ 2
i

(21)

where ‖ · ‖ is the Euclidean norm. Notice that in (21), each
σ2/λ 2

i represents a regularization parameter that trades fit
yt − ŷt|t−1 vs. regularity of h[i].
In [44], the estimator (21) has been shown to be very com-
petitive with respect to established identification methods
such as PEM and subspace methods. However, in the con-
text of the present paper, a limitation of this estimator is that
it does not induce sparse solutions since it exploits quadratic
criteria to define both the loss and the penalty terms.

4.3 Sparsifying the predictor estimator

Motivated from the above discussion, the aim now is to
introduce two different approaches to sparsify the estimator
(21). They are:

(i) SS-GLAR: a “group version” [61] of (13) extended to a
non-parametric setup where the “groups” h[i] are modeled
as Gaussian Processes with autocovariance equal to the
stable spline kernel (8); including a “Laplace-type” prior
which enforces sparsity (see Section 3.4) leads us to a
mixed `1− `2 regularization problem which can be seen
as a “group” version of the so-called “elastic-net” [65]. It
is well known that the `2 penalty in the elastic net helps
in selecting groups of correlated variables [65]. Details
will be given in Section 5.

(ii) SSEH: a hierarchical model where h[i] is a Gaussian Pro-
cess with covariance λ 2

i K(s, t) and the hyperparameters
{λi} have an exponential distribution. Differently from
the previous approach, notice that this will favor sparsity
on the space of scale factors. As mentioned in [11], this
is also related to multiple kernel learning, see also [15].
This second technique will actually allow us to introduce
more flexibility in the Kernels. In fact, we will model each
h[i] using K in (11) that corresponds to the stable spline
kernel (8) enriched with the parametric component (10);
as argued in [44] this may be advantageous in situations
where the impulse responses contain “fast” dynamics pe-
nalized by the regularization term, see also [43]. Details
will be given in Section 6.

5 Stable Splines Group LAR (SSGLAR) algorithm

5.1 Enforcing sparsity using the GLAR algorithm

In this section we shall discuss how to modify (21) to enforce
sparsity on the groups h[i] using the GLAR algorithm [61].
In order to do so we shall have to assume the parameter θ in
(10) has been fixed (without any prior information it will be
fixed equal to zero) and that all the kernel scale factors are
equal each other, i.e. λ = λi for i = 1, . . . ,m. In addition, it
is worth recalling that the norm ‖h[i]‖2

HK
admits a “matrix”

representation of the form

‖h[i]‖2
HK

=
[
h[i]
]>

Λh[i] (22)

where Λ ∈ R∞×∞ can be thought of as the “inverse” of the
matrix representation of the Kernel K ∈ R∞×∞. The matrix
Λ is symmetric an positive definite, thus admitting a square
root Λ1/2 such that Λ = Λ1/2Λ1/2. 6

Now, in place of (20), our measurements model is modified
as follows

ȳ+ =
m

∑
i=1

Āih[i]+ e+ (23)

where

ȳ+ :=

[
y+

01×(∞·m)

]
Āi :=

[
Ai χi⊗

√
γΛ1/2

]
, γ = σ2

λ 2

χi := [ 0 . . . 0︸ ︷︷ ︸ 1 0 . . . 0︸ ︷︷ ︸ ]>

i−1 m− i

(24)

Note that the measurement model (23) is designed so as to
include the `2-type regularization term in (21), which can
be written as in equation (22).

Performing input selection can be tackled, as discussed in
Section 3.4, via the Group Least Angle Regression algorithm
in [17] applied to the regression problem (23). We shall call
SS-GLAR (Stable Spline Group Least Angle Regression)
the resulting algorithm which we now summarize:

Algorithm: Stable Spline Group Least Angle Regression
(SS-GLAR)

(1) fix the parameter β in (11);
(2) fix the parameter γ in (24); form the regressor Āi in

(23) as described in formulas (18), (19), (24) ;
(3) estimate h[i] applying the GLAR algorithm to problem

(23);

6 Given a nondegenerate Borel measure ν on N, such operator
Λ1/2 is always well defined and corresponds to the matrix form
of the square root of the operator LK mapping h ∈HK into the
function

∫
N K(s, t)h(t)dν(t), see Section 1 in [48] for details.
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5.2 Estimation of the hyper-parameters

Note that, in order to run the previous algorithm, the follow-
ing parameters have to be chosen:

(a) the scale factor γ of the `2 penalty in (24) (regularity
of h[i] in the space HK)

(b) the parameter β in (11) (decay rate of the Kernel)
(c) the number of non-zero blocks estimated via the GLAR

algorithm.

These can be estimated using a validation based ap-
proach as follows: Let {yt ,ut}t=1,..,N be the available data.
We split the data set in two parts. We call identifica-
tion data set {yt ,ut}t=1,..,b2N/3c and validation data set
{yt ,ut}t=d2N/3e,..,N . We run the identification algorithms on
the identification data set fixing the hyperparameters and
computing the entire “GLARS path” [61] which consists,
for each choice of hyperparameters, of m models differing
by the number of non-zero blocks. We grid the hyperpa-
rameter space (β ∈ R+, γ ∈ R+) so that only a finite (and
possibly small) number of alternatives is tested 7 .

The “best” hyperameters and level of sparsity is then se-
lected testing all these models on the validation data set,
performance being measured by the root-mean-squared er-
ror in one-step-ahead prediction error RMS1, where RMSk,
k = 1,2, ... is defined as:

RMSk :=

√√√√ 3
N

N

∑
t=b 2N

3 c+1

(yt − ŷt|t−k)2 (25)

Then the hyperparameter vector and the level of spar-
sity are fixed and the model is re-estimated with all data
{yt ,ut}t=1,..,N .

6 Stable Splines with Exponential Hyperprior (SSEH)
Algorithm

Recall that the estimator (21) is known up to the following
parameters:

• the noise variance σ2;
• the scale factors λi (in fact recall that h[i] are Gaussian

processes with covariance λ 2
i K(t,s));

• β that enters the kernel K and is related to the dominant
pole of the predictor;
• θ that represents the parametric part of the model, as

defined in (10).

7 We have chosen a logarithmically spaced grid with 11 values
for β and 5 for γ . Experimental evidence shows that the results
are not very sensitive to choice of hyperparameters, and finer grids
did not yield any significant improvement

In this section we will show how the estimator (21) can be
“sparsified” by interpreting all the parameters listed above
as random vectors and assigning suitable hyperpriors.

6.1 Hyperprior for the hyperparameters and the full
Bayesian model

Our Bayesian model for sparse identification is defined as
follows:

• the noise variance σ2 will always be estimated via a pre-
liminary step using a low-bias ARX model, as described
in [23]. Thus, this parameter, even if always determined
from data during our numerical experiments, will be as-
sumed known in the description of our Bayesian model;

• the hyperparameters β , θ and {λi} are described as mu-
tually independent random vectors;

• β is given a non informative probability density on R+;
• θ has a uniform distribution on the feasible region Θ that

constraints the two roots of Pθ (z) to belong to the open
left unit semicircle in the complex plane, see (10);

• each λi is an exponential random variable with inverse of
the mean (and standard deviation) ξ ∈ R+, i.e.

p(λi) = ξ exp(−ξ λi)χ(λi ≥ 0), i = 1, . . . ,m (26)

with χ the indicator function. We also interpret ξ as a
random variable with a non informative prior on R+. No-
tice that, differently from the approach described in the
previous section, the parameters λi are now allowed to be
all different thus increasing the flexibility of our model.

In what follows, ζ indicates the hyperparameter random
vector, i.e. ζ := [λ1, . . . ,λm,θ1,θ2,β ,ξ ].

To simplify the notation, we define y- := [yt0 ,yt0−1,yt0−2, . . .]
T

and u- := [ut0 ,ut0−1,ut0−2, . . .]
T where the unobserved en-

tries are set to zero. In addition, u+ := u+t0 and recall that
y+ := y+t0 . Further, the following approximation is exploited:

p(y+,{h[i]},y-,u|ζ ) =
∝

[
∏

N
t=t0 p(yt |{h[i]},y-

t ,ζ ,u
−
t )
]

p(y-,{h[i]},u−|ζ )

≈
[
∏

N
t=t0 p(yt |{h[i]},y-

t ,ζ ,u
−
t )
]

p({h[i]}|ζ )p(y-,u−)

(27)

The first ∝ stems from the fact that the predictor of ut given
the past u−t and y−t+1 is assumed not to depend on ζ . The
last approximated equality follows from the assumption that
the past y-, u- does not carry information on the predictor
impulse responses and the hyperparameters. Our stochastic
model is described by the Bayesian network in Fig. 3 (left
side).

6.2 Estimation of the hyper-parameters

To simplify the notation, the dependence on y- and u is
omitted in the sequel, so that all the probability densities are
now thought of as implicitly conditional on y- and u.
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…

Full model Reduced model

…

Fig. 3. Bayesian network describing the new nonpara-
metric model for identification of sparse linear systems
where y−l := [yl−1,yl−2, . . .] and, in the reduced model,
λ := λ1 = . . .= λm.

We start reporting a preliminary lemma, whose proof can be
found in [44], which will be needed in propositions 3 and 4.

Lemma 2 Let the roots of Pθ in (10) be stable. Then, if {yt}
and {ut} are zero mean, finite variance stationary stochastic
processes, each operator {Ai} is almost surely (a.s.) contin-
uous in HK .

We estimate the hyperparameter vector ζ by optimizing its
marginal posterior, i.e. the joint density of y+,ζ and {h[i]}
where all the {h[i]} are integrated out. This is described in
the next proposition that derives from simple manipulations
of probability densities whose well-posedness is guaranteed
by lemma 2. Below, IN is the N×N identity matrix while,
with a slight abuse of notation, K is now seen as an element
of R∞×∞, i.e. its i-th column is the sequence K(·, i), i ∈ N.
The proof of this proposition follows the same lines as that
of Proposition 3 in [42] with minor modifications allowing
for the presence of feedback and is therefore omitted.

Proposition 3 Let {yt} and {ut} be zero mean, finite vari-
ance stationary stochastic processes. Then, under the ap-
proximation (27), the maximum a posteriori estimate of ζ

given y+ is

ζ̂ = argminζ J(y+;ζ ) s.t. θ ∈Θ, ξ ,β > 0, λi ≥ 0

(i = 1, . . . ,m)

(28)
where J is almost surely well defined pointwise and, using
also (27), given by

J(y+;ζ ) := log
[∫

p(y+,{h[i]},y-,u|ζ )dh[1]...dh[m]
]

≈ 1
2 log

(
det[2πV [y+]]

)
+ 1

2 (y
+)T (V [y+])−1y++

+ξ ∑
m
i=1 λi− log(ξ )+ const

(29)

with V [y+] = σ2IN +∑
m
i=1 λ 2

i AiKAT
i .

Notice that the first term 1
2 log

(
det[2πV [y+]]

)
in the ob-

jective (29) penalizes the complexity of the model, in
fact it increases as the {λi} get larger. The second term
1
2 (y

+)T (V [y+])−1y+ accounts for adherence of experimen-
tal data and decreases as the {λi} augment. The third term
is a consequence of the hyperprior (26) whose effect is to
include an additional `1 penalty on {λi}. Finally, the last
term log(ξ ) derives from the same hyperprior and controls
the weight of the `1 norm which is estimated jointly with
the other hyperparameters. Overall, our objective can be in-
terpreted as a Bayesian modified version of that connected
with multiple kernel learning, see Section 3 in [15].

An important issue for the practical use of our numerical
scheme is the availability of a good starting point for the
optimizer. Below, we describe a scheme that achieves a sub-
optimal solution just solving an optimization problem in R4

related to the reduced Bayesian model of Fig. 3 (right side).
Our main idea is to optimize the objective under the con-
straint λi = λ , for i = 1, . . . ,m, and removing the `1 penalty
on {λi}. The resulting estimate of λ is used to obtain an es-
timate of ξ which is then exploited to sparsify the solution.
This is described below.

i) Obtain {λ̂i}, θ̂ and β̂ solving the following modified ver-
sion of problem (28)

argminζ

[
J(y+;ζ )−ξ ∑

m
i=1 λi + log(ξ )

]
s.t. θ ∈Θ, β > 0, λ1 = . . .= λm ≥ 0

ii) Set ξ̂ = 1/λ̂1 and ζ̂ = [λ̂1, . . . , λ̂m, θ̂ , β̂ , ξ̂ ].
For i = 1, . . . ,m do:

set ζ̄ = ζ̂ except that the i-th component of ζ̄ is set to 0;
if J(y+; ζ̄ )≤ J(y+; ζ̂ ), set ζ̂ = ζ̄ .

The procedure we have outlined in step ii) may suffer when
the inputs are highly correlated, possibly making it sensitive
to the order in which the components of ζ̂ are set to zero.
In order to circumvent this difficulty, an alternative consists
of using the following “Bayesian forward-selection” type
of algorithm where, at every step, the next variable to be
included in the model is that leading to the largest objective’s
improvement. This is obtained substituting item ii) above
with:

ii’) Let us denote with I the index set of “selected” variables,
define ζ̄I = [λ̃1, . . . , λ̃m, θ̂ , β̂ , ξ̂ ] where λ̃i = λ̂i if i ∈ I and
λ̃i = 0 otherwise. Initialize I := /0 and repeat the following
procedure:

(a) for j ∈ {1, ..,m} \ I, define I
′
j := I ∪ j and compute

J(y+; ζ̄I′j
).
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(b) select

j̄ := arg max
j∈{1,..,m}\I

J(y+; ζ̄I′j
)− J(y+; ζ̄I)

(c) if J(y+; ζ̄I′j̄
)− J(y+; ζ̄I)> 0

set I := I
′
j̄ and go back to (a)

else
finish.

The set I contains the indexes of selected variables and ζ̄I is
used as a starting point for the optimization problem (29).

Remark 1 Note that more elaborated procedures for vari-
able selection have been proposed which combine forward
and backward (addition and elimination) steps such as those
introduced and analyzed in [2,62]. Our main focus here is
not however on this specific step and further comparative
analysis with the literature is postponed to future work. Let
us also stress that the results in [56] provide support for the
use of forward selection procedures for screening purposes.

6.3 Estimation of the predictor impulse responses for
known ζ

Once all the unknown parameters are learnt from data fol-
lowing the procedure outlined in the previous subsection,
the estimator (21) becomes completely known. Hence, the
following result, that comes from the representer theorem
whose applicability is guaranteed by lemma 2 (see [44] for
details), can be utilized to achieve the unknown predictor
impulse responses.

Proposition 4 Under the same assumptions of Proposi-
tion 3, almost surely we have

{ĥ[i]}m
i=1 = arg min

{h[i]∈HK}mi=1

‖y+−
m

∑
i=1

Aih[i]‖2 +σ
2

m

∑
i=1

‖h[i]‖2
HK

λ 2
i

where ‖ · ‖ is the Euclidean norm. Moreover, almost surely
we also have for k = 1, . . . ,m

ĥ[i] = λ
2
i KAT

i c, c =

(
σ

2IN +
m

∑
i=1

λ
2
i AiKAT

i

)−1

y+

(30)

After obtaining the estimates of the {h[i]}, simple formulas
can then be used to derive the system impulse responses f
and g in (2) and hence also the k-step ahead predictors, see
[32] for details.

7 Simulation results

We consider three Monte Carlo studies of 300 runs where
at any run an ARMAX linear system with 15 inputs is gen-
erated as follows

• the number of h[i] different from zero is randomly drawn
from the set {1,2, ..,10}.

• Then, the order of the ARMAX model is randomly chosen
in [1,30] and the model is generated by the MATLAB
function drmodel.m. The system and the predictor poles
are restricted to have modulus less than 0.95 with the `2
norm of each h[i] bounded by 10.

For each run in the Monte Carlo experiments an identifi-
cation data set of size 500 and a test set of size 1000 are
generated.

In the first experimental setup a white noise input with un-
correlated components is used. In the second one the input
still has uncorrelated components each being generated via
the MATLAB function idinput.m as a realization from a
random Gaussian signal with band 8 [0,0.8] for the identi-
fication data and [0,0.9] for the validation data; this clearly
makes prediction on new data more challenging. In the third
Monte Carlo experiment the inputs used for identification
are white but are allowed to be correlated, being generated
according to the following model:

u[i+1]
k = u[i]k + v[i]k i = 1, ..,m−2

where {u[1]k } is unit variance white noise sequence

while {v[i]k } is a white noise sequence, independent of

{u[1]k },{v
[ j]
k }, j < i with variance ε2 = 0.04. With this choice,

the correlation coefficient

ρi :=
E
(

u[i]k u[i+1]
k

)
√

E
(

u[i]k u[i]k

)
E
(

u[i+1]
k u[i+1]

k

) =
Var{u[i]k }√

Var{u[i]k }Var{u[i+1]
k }

satisfies
ρi ∈ [0.9806,0.9871] i ∈ [1,14];

Note that correlated inputs renders the input selection prob-
lem more challenging. The test set, instead is generated us-
ing independent zero mean, unit variance white noises as
inputs.

We compare the following estimators:

(1) GLAR: this is the GLAR algorithm described in [61]
applied to ARX models; the order (between 1 and 30)
and the level of sparsity (i.e. the number of null h[i]) is
determined using the first 2/3 of the 500 available data
as training set and the remaining part as validation data
(the use of Cp statistics does not provide better results
in this case).

(2) PEM+Oracle: this is the classical PEM approach, as
implemented in the pem.m function of the MATLAB

8 The boundaries specify the lower and upper limits of the pass-
band, expressed as fractions of the Nyquist frequency.
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Fig. 4. Boxplot of Coefficient of Determination for one-step-ahead prediction (COD1). PEM + Oracle is PEM with an oracle who knows
which impulse responses are zero and has access to validation data in order to select the best performing system order. The notation “Plus
xx” means that there are xx “outliers” which are left out of the plot.

System Identification Toolbox [33], equipped with an
oracle that, at every run, knows which predictor im-
pulse response are zero and, having access to the test
set, selects those model orders that provide the best
prediction performance.

(3) SSGLAR: this is the approach which combines GLAR
and the Stable Spline prior for impulse responses, as
detailed in Section 5. The first 40 available input/output
pairs enter the {Ai} in (20), i.e. t0 = 40 in (19). For
computational reasons the predictor length is set to 40,
a number that does not establish any trade-off between
bias and variance but is just sufficiently large to capture
the predictor dynamics.

(4) SSEH: this is the approach described in Section 6,
which is based on the full Bayesian model of Fig. 3.
As done before, we set both t0 and the predictor length
to 40.

(5) Suboptimal SSEH: the same as above except that we
exploit the reduced Bayesian model of Fig. 3 comple-
mented with the procedure described at the end of sub-

section 6.2, with the refined step ii’ used only in the
third Monte Carlo experiment.

(6) PEM+VAL: this is the classical PEM approach that
uses validation data for model order selection. The or-
der of the polynomials in the ARMAX model are not
allowed to be different each other since this would lead
to a combinatorial explosion of the number of compet-
itive models.

(7) PEM+BIC: this is the classical PEM approach that uses
BIC for model order selection. The order of the poly-
nomials in the ARMAX model are not allowed to be
different each other since this would lead to a combina-
torial explosion of the number of competitive models.

(8) PEM+BIC+or2: this is the same as PEM + BIC
with and additional oracle knowing which impulse
responses are zero.

(9) PEM+VAL+or2: this is the same as PEM + BIC +
or2 besides the fact that the order is estimated using
validation data rather than BIC.
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and PEM +VAL + or2 are equipped with an oracle who knows which impulse responses are zero. The notation “Plus xx” means that there
are xx “outliers” which are left out of the plot.
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Experiment SSEH Suboptimal SSEH SSGLAR GLAR

#1 98.8% 99.1% 45.93% 63.41%

#2 98.64% 98.39% 49.76% 70.09%

#2 95.05% 92.70% 56.58% 67.16%

Table 1
Percentage of the h[i] equal to zero correctly set to zero by the employed estimator.

The following performance indexes are considered:

(1) Percentage of the impulse responses equal to zero cor-
rectly set to zero by the estimator.

(2) k-step-ahead Coefficient of Determination, denoted by
CODk, quantifying how much of the test set variance is
explained by the forecast. It is computed at each run as

CODk := 1− RMS2
k

1
1000 ∑

1000
i=1 (ytest

t −ȳtest
t )2

RMSk :=
√

1
1000 ∑

1000
t=1 (ytest

t − ŷtest
t|t−k)

2

(31)

where ȳtest is the sample mean of the test set data
{ytest

t }1000
t=1 and ŷtest

t|t−k is the k-step ahead prediction com-
puted using the estimated model. The average index
obtained during the Monte Carlo study, as a function
of k, is then denoted by CODk.

Notice that, in both of the cases, the larger the index, the
better is the performance of the estimator.
In every experiment the performance of PEM+VAL and
PEM+BIC has been largely unsatisfactory, providing
strongly negative values for CODk. This is illustrated e.g.
in Fig. 4 showing the boxplots of the 300 values of COD1
obtained by the employed estimators on the three Monte
Carlo studies. We have also assessed that results do not
improve using AIC. In view of this, in what follows other
results from PEM+VAL and PEM+BIC will not be shown;
for sake of comparison we add in Figs. 7 and 5 comparison
with PEM+BIC+or2 and PEM+VAL+or2 which use knowl-
edge of which impulse responses are zero.
Table 1 reports the percentage of the predictor impulse
responses equal to zero correctly estimated as zero by the
estimators. In terms of predictive performance the Stable
Spline estimators (SSEH and SSGLAR) outperform GLAR,
with a slight advantage of SSEH; instead, in terms of spar-
sity of the estimated model, SSEH and Suboptimal SSEH
show a definite advantage over GLAR-based techniques,
achieving the remarkable performance of 99% correct de-
tection of the “zero” impulse responses.

We conjecture that the superior performance of SSEH can
be attributed to the fact that it combines the advantages of
the Stable-Spline regularization (giving good performance in
prediction, [44]) and those of the exponential hyperprior fa-
voring sparsity. On the other hand note that the SSGLAR al-
gorithm, which combines `2 and `1 penalties like the elastic-

net, tends to overestimate the number of nonzero impulse
responses. While a rigorous explanation of this behavior is
the subject of current research, its is worth stressing that the
SSEH procedure combines a “forward selection” initializa-
tion with an optimization based refinement; this can be seen
as an instance of the “screening” procedure analyzed in [56].

Finally, Figs. 6 and 7 display CODk as a function of the
prediction horizon obtained during the Monte Carlo study
#1 (top), #2 (center) and #3 (bottom). The performance of
Stable Spline appears superior than that of GLAR and is
comparable with that of PEM+Oracle also when the reduced
Bayesian model of Fig. 3 is used.

8 Conclusions

Identification of large scale dynamical systems in the frame-
work of dynamical Bayesian networks has been discussed.
It has been argued that estimation of network connectivity
and dynamic interaction can be framed as identification of
a sparse multi-input, single-output dynamical system. Two
new methods have been presented which combine recently
developed non-parametric methods for system identifica-
tion and sparsity-favoring algorithms. The two methods (SS-
GLAR and SSEH) have been compared via extensive sim-
ulation studies with state-of-the art algorithms such as the
Group Least Angle Regression (LARS) algorithm applied to
ARX models and Prediction Error Methods (PEM). Several
simulation setups have been considered including low pass
input excitation as well as highly correlated inputs. The ad-
vantages of the new methods (especially SSEH) is apparent
both in terms of predictive capabilities on new data as well
as regarding the ability of detecting the network connectiv-
ity (i.e. the percentage of correctly detected zeros). Future
work will concentrate on the analysis of the proposed meth-
ods. In particular we envision that properties of the so-called
multivariate Laplace distribution [18] may be relevant. In
addition also dedicated numerical optimization procedures
will be developed.
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