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Convergence Time Analysis of Quantized

Gossip Consensus on Digraphs
Kai Cai and Hideaki Ishii

Abstract

We have recently proposed quantized gossip algorithms which solve the consensus and averaging

problems on directed graphs with the least restrictive connectivity requirements. In this paper we study

the convergence time of these algorithms. To this end, we investigate the shrinking time of the smallest

interval that contains all states for the consensus algorithm, and the decay time of a suitable Lyapunov

function for the averaging algorithm. The investigation leads us to characterizing the convergence time

by the hitting time in certain special Markov chains. We simplify the structures of state transition by

considering the special case of complete graphs, where every edge can be activated with an equal

probability, and derive polynomial upper bounds on convergence time.

I. INTRODUCTION

Inspired by aggregate behavior of animal groups and motion coordination of distributed robotic net-

works, theconsensusproblem has been extensively studied in the recent literature of systems control

(e.g., [1]–[3]). The objective of consensus is to have a population of nodes, each possessing an initial

state, agree eventually onsomecommon value through only local information exchange. Thisproblem is

also intimately related to oscillator synchronization [4], load balancing [5], and leader election [6]. The

averagingproblem is of a special form, with the goal to decentrally compute theaverageof all initial

states at every node.

We have recently proposed in [7], [8] randomized gossip algorithms which solve the consensus and

averaging problems on directed graphs (or digraphs), undera quantization constraint that each node has
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an integer-valued state. In particular, our derived connectivity condition ensuring average consensus is

weaker than those in the literature [2], in the sense that it does not postulate balanced topologies. Here

the main difficulty is that the state sum of nodes cannot be preserved during algorithm iterations. This

scenario was previously considered in [9], [10], where averaging is guaranteed in expectation but there

is in general an error in mean square and with probability one. By contrast, we overcome this difficulty

by augmenting the so-called “surplus” variables for individual nodes so as to maintain local records of

state updates, thereby ensuring average consensus almost surely.

In this paper and its conference precursor [11], we investigate the performance of our proposed

algorithms by providing upper bounds on themean convergence time. The state transition structures

resulting from these algorithms turn out to be rather complicated. Hence in our analysis on convergence

time, we focus on the special case of complete graphs. The analysis is still challenging, but we will

also discuss that the general approach can be useful for other graph topologies. First, for the consensus

algorithm, we find that the mean convergence time isO(n2). To derive this bound, we view reaching

consensus as the smallest interval containing all states shrinking its length to zero. This perspective leads

us to characterizing convergence time by thehitting time in a certain Markov chain, which yields the

polynomial bound. Second, we obtain that the mean convergence time of the averaging algorithm is

O(n3). As the original algorithm in [7], [8] is found to induce complex state transition structures, we

have suitably revised it to manage the complexity. For the modified algorithm, a Lyapunov function is

proposed which measures the distance from average consensus. We then bound convergence time by

way of bounding the number of iterations required to decrease the Lyapunov function; the latter is again

characterized by the hitting time in a special Markov chain.

Our work is related to [12]–[15], which deal also with the convergence time of gossip averaging

algorithms with quantized states. In [12], a Lyapunov approach is adopted and polynomial bounds on

convergence time are obtained for fully connected and linear networks. The work [13] generalizes these

bounds to arbitrarily connected networks (fixed or switching), utilizing the results on the meeting time of

two random walks on graphs. Also, bounds for arbitrarily connected networks are provided in [14], [15];

these bounds are, however, in terms of graph topology ratherthan the number of nodes. In these cited

references, a common feature is that the graphs are undirected. By contrast, our algorithm in [7], [8] is

designed forarbitrary strongly connecteddigraphs, and we are interested in studying the corresponding

convergence time.

To bound the convergence time, a frequently employed approach is to bound the decay time of

some suitable Lyapunov functions [12], [16]. In particular, [16] derives tight polynomial bounds on the
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convergence time of synchronized averaging algorithms, with either real or quantized states. In addition,

[17] investigates a variety of quantization effects on averaging algorithms, and demonstrate favorable

convergence properties by simulations. Our work adopts theLyapunov method, as in [12], [16]; the

common function used in these papers turns out, however, notto be a valid Lyapunov function for our

averaging algorithm. This is due again to that the state sum does not remain invariant, and the augmented

surplus evolution must also be taken into account. According to these features, we establish an appropriate

Lyapunov function, and prove that bounding its decay time can be reduced to finding the hitting time in

a certain Markov chain.

A. Setup and Organization

Consider a digraphG = (V, E), whereV = {1, ..., n} is the node set, andE ⊆ V×V the edge set. Each

directed edge(j, i) in E , pointing from j to i, denotes that agentj communicates to agenti (namely,

the information flow is fromj to i). Selfloop edges are not allowed, i.e.,(i, i) /∈ E . Communication

among the nodes is by means ofgossip: At each time instant, exactly one edge(j, i) ∈ E is activated

independently from all earlier instants and with a time-invariant positive probabilitypji ∈ (0, 1) such

that
∑

(j,i)∈E pji = 1.

To model the quantization effect in information flow, we assume that at timek ∈ Z+ (nonnegative

integers), each node has an integer-valued statexi(k) ∈ Z, i ∈ V; the aggregate state is denoted by

x(k) = [x1(k) · · · xn(k)]T ∈ Z
n. Let

X := {x : m ≤ xi ≤ M, i ∈ V}, (1)

for some (finite) constantsm,M . Suppose throughout the paper that the initial state satisfiesx(0) ∈ X .

Also, let 1 = [1 · · · 1]T be the vector of all ones.

For the convergence time analysis, we will impose the following two assumptions on the graph topology

and the probability distribution of activating edges. Let| · | denote the cardinality of a set.

Assumption1. The digraphG is complete(i.e., every node is connected to every other node by a directed

edge). It follows that there are|E| = n(n − 1) edges.

Assumption2. The probability distribution on edge activation isuniform; namely, each edge can be

activated with the same probabilityp := 1/|E|.

The rest of this paper is organized as follows. In Section II,we formulate and solve the problem

of convergence time analysis for the consensus algorithm. Then in Sections III and IV, we derive an



4

upper bound for the convergence time of the averaging algorithm. Further, we compare convergence rates

through a numerical example in Section V, and finally we stateour conclusions in Section VI.

II. CONVERGENCETIME OF QUANTIZED CONSENSUSALGORITHM

A. Problem Formulation

First we recall the quantized consensus (QC) algorithm from [7]. Suppose that the edge(j, i) ∈ E is

randomly activated at timek. Along the edge nodej sends toi its state information,xj(k), but does

not perform any update, i.e.,xj(k + 1) = xj(k). On the other hand, nodei receivesj’s statexj(k) and

updates its own as follows:

(R1) If xi(k) = xj(k), thenxi(k + 1) = xi(k);

(R2) if xi(k) < xj(k), thenxi(k + 1) ∈ (xi(k), xj(k)];

(R3) if xi(k) > xj(k), thenxi(k + 1) ∈ [xj(k), xi(k)).

Let the subsetC of Z
n be the set of general consensus states:

C := {x : x1 = · · · = xn}. (2)

We say that the nodes achieve general consensus almost surely if for every initial statex(0), there exist

T < ∞ andx∗ ∈ C such thatx(k) = x∗ for all k ≥ T with probability one. UnderQC algorithm, a

necessary and sufficient graphical condition that ensures almost sure general consensus is that the digraph

G contains aglobally reachable node(i.e., a node that is connected to every other node via a directed

path) [7]. Clearly ifG is complete, then every node is globally reachable.

The convergence time ofQC algorithm is the random variableTqc defined byTqc := inf{k ≥ 0 :

x(k) ∈ C }. The mean convergence time (with respect to the probability distribution on edge activation),

starting from a statex0 ∈ X , is then given by

Eqc(x0) := E [Tqc|x(0) = x0] . (3)

Problem1. Let Assumptions 1 and 2 hold. Find an upper bound of the mean convergence timeEqc(x0)

of QC algorithm with respect to all possible initial statesx0 ∈ X .

We now present the main result of this section: an upper boundof the mean convergence timeEqc(x0)

for all possible initial statesx0 ∈ X .

Theorem1. Let Assumptions 1 and 2 hold. Then

max
x0∈X

Eqc(x0) < n(n − 1)(M − m) = O(n2).

To derive this bound, we first provide preliminaries on the hitting time in finite Markov chains.
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B. Preliminaries on Hitting Time

Let {Xk}k≥0 be a Markov chain with a finite state spaceS and a transition probability matrixP = (Pij)

(e.g., [18]). The entryPij denotes the one-step transition probability from statei to statej. In particular,

the diagonal entryPii denotes theselflooptransition probability. A statei ∈ S is said to beabsorbingif

Pii = 1. For a given{Xk}k≥0, thehitting timeof a subsetT of S is the random variableHT ({Xk}k≥0)

defined by

HT ({Xk}k≥0) := inf{l ≥ 0 : Xl ∈ T }.

The mean time (with respect to the probability distributionspecified byP ) taken for the chain, starting

from a statei ∈ S, to hit T is given by

Ei := E [HT ({Xk}k≥0) |X0 = i] =
∞∑

l=0

l · P [HT ({Xk}k≥0) = l|X0 = i] , (4)

whereE[·|·] and P[·|·] denote the conditional expectation and conditional probability operators, respec-

tively. Here is an important fact on mean hitting times [18, Theorem 1.3.5].

Lemma1. The vector of mean hitting times(Ei)i∈S of a subsetT satisfies the system of linear equations






Ei = 0 for i ∈ T ,

Ei =
∑

j /∈T PijEj + 1 for i /∈ T .

Using Lemma 1, we derive a closed-form expression of the meanhitting time for a specific Markov

chain; this chain will be shown to characterize the state transition structure underQC algorithm. For the

proof of this result, see Appendix.

Lemma2. Consider the Markov chain in Fig. 1 with transition probabilities

pz + rz + qz = 1, pz = qz (z = 1, ..., n − 1), r0 = 1, rn = 1.

Then the mean hitting time of the state0 or n starting from statez is

Ez = (1 −
z

n
)

z−1∑

i=1

i

pi
+

z

n

n−1∑

j=z

n − j

pj
(z = 1, ..., n − 1).

C. Analysis of Convergence Time

We now proceed as follows. For an arbitraryx(k) define the minimum and maximum states by

m(k) := min
i∈V

xi(k), M(k) := max
i∈V

xi(k). (5)
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Fig. 1. Markov chain I: states0 andn are absorbing. Herer0, . . . , rn are selfloop transition probabilities.

We view the statex(k) converging toC as the interval[m(k),M(k)] shrinking to length0. Let the

random variableT 1
qc be the time when one interval shrinkage occurs; then the corresponding mean time,

starting from a statex, is E1
qc(x) := E

[
T 1

qc|x ∈ X
]
. Since one shrinkage decreases the interval length

by at least1, there can be at mostM − m shrinkages forx0 ∈ X . It then follows that

max
x0∈X

Eqc(x0) ≤ max
x∈X

E1
qc(x) · (M − m). (6)

Consider a subsetX1 of X defined by

X1 := {x : x1 = · · · = xz = 1 & xz+1 = · · · = xn = 0, z ∈ [1, n − 1]}. (7)

Thus the interval has length1 for all x ∈ X1. It is not difficult to see thatmaxx0∈X1
Eqc(x0) =

maxx∈X E1
qc(x). The following lemma states an upper bound ofEqc(x0) for x0 ∈ X1.

Lemma3. Let Assumptions 1 and 2 hold. Thenmaxx0∈X1
Eqc(x0) < n(n − 1) = O(n2).

Proof.By Assumptions 1 and 2, every directed edge inG can be activated with the uniform probability

p = 1/(n(n − 1)). Starting from an arbitrary state in the setX1, the transition structure underQC

algorithm is the Markov chain displayed in Fig. 1; in the diagram,






state0 : the vector0 = [0 · · · 0]T of all zeros,

staten : the vector1 = [1 · · · 1]T of all ones,

statez : the vector[

z
︷ ︸︸ ︷

1 · · · 1 0 · · · 0]T in X1,

(8)

and the transition probabilities arepz = qz = z(n−z)p, z ∈ [1, n−1]. To see this, consider the transition

from statez to statez + 1; this occurs when an edge(j, i) is activated, withxj = 1 and xi = 0,

so that(R2) of QC algorithm applies. Since there arez(n − z) such edges, the transition probability

pz = z(n−z)p. Likewise, one may derive that the transition from statez to statez−1 is with probability

qz = z(n− z)p, which occurs when(R3) of QC algorithm applies. Now observe in Fig. 1 that the states

0, n ∈ C and1, ..., n − 1 ∈ X1; hencemaxz∈[1,n−1] Ez = maxx0∈X1
Eqc(x0), whereEz is from (4).
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It is left to invoke the formula ofEz in Lemma 2 for the obtained transition probabilities, whichyields

Ez = (1 −
z

n
)

z−1∑

i=1

1

(n − i)p
+

z

n

n−1∑

j=z

1

jp

≤ (1 −
z

n
)

z − 1

(n − z + 1)p
+

z

n

n − z

zp

=
n − z

n − z + 1
·
1

p
<

1

p
= n(n − 1).

ThusEz < n(n − 1) for all z ∈ [1, n − 1]. Thereforemaxx0∈X1
Eqc(x0) < n(n − 1) = O(n2). �

Finally, our main result (Theorem 1) on upper boundingEqc(x0) for x0 ∈ X follows immediately

from Lemma 3 and (6).

Remark1. We discuss the idea of how this result for complete graphs might be extended to handle more

general topologies. We still view reaching consensus as theinterval [m(k),M(k)] shrinking to length

0; thereby the inequality (6) holds. We then again consider the subsetX1 given in (7), and as long as

the digraph is strongly connected (i.e., every node is connected to every other node) one can verify

that the state transition structure underQC algorithm is still the one in Fig. 1. The associated transition

probabilities, however, depend crucially on topologies. In order to apply again Lemma 2 to derive bounds,

it would be important to establish the relation between transition probabilities and graph topologies; this

will be targeted in our future work.

III. QUANTIZED AVERAGING ALGORITHM AND ITS LYAPUNOV FUNCTION

In this and next sections, we address the convergence time analysis for the quantized averaging (QA)

algorithm, which is a modification of the one in [7], [8]. We start by presenting the modified algorithm,

and formulate the corresponding time analysis problem. We then propose a Lyapunov function, which

turns out to be a suitable measure for the average consensus error. In Section IV, we will derive an upper

bound on the mean convergence time by means of bounding the decay time of the proposed Lyapunov

function.

A. Problem Formulation

First we presentQA algorithm. As in [7], [8], since the state sum cannot be preserved at each time

instant, we associate each nodei ∈ V with an additionalsurplusvariable,si(k) ∈ Z, to locally record

the changes ofxi(k). The aggregate surplus is denoted bys(k) = [s1(k) · · · sn(k)]T ∈ Z
n, whose initial

value is set to bes(0) = [0 · · · 0]T . Now suppose that the edge(j, i) ∈ E is activated at timek. There

are two stages: (I) Along the edge, nodej sends toi its statexj(k) and surplussj(k). Nodej does not
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node i node j(xi(k), si(k)) (xj(k), 0)
xj(k)

sj(k)

Fig. 2. Stage (I): Nodej sends toi its state and surplus through the edge(j, i).

node i node j
sj(k)

node i node j

(ii) (xi(k), si(k)) (xj(k), sj(k))

(xj(k), 0)(x′

i(k), s′i(k))(i)

Fig. 3. Stage (II): Either (i) nodei updates its state and surplus, or (ii) it sendssj(k) back to nodej through edge(i, j).

update its state, but sets its surplus to be0 after transmission (see Fig. 2). (II) Based on the information

received, nodei determines either to update its state and surplus, or to sendback toj the surplussj(k) by

activating the opposite edge(i, j) (see Fig. 3). Notice that the latter operation in (II) requires bidirectional

communication between two nodes at a single time instant; this is possible in complete digraphs (our

assumption), but not in general strongly connected digraphs.

Formally, QA algorithm is described as follows.

(R1) If xi(k) = xj(k), then there are two cases:

(i) If si(k) > 0 & sj(k) > 0, then

xi(k + 1) = xi(k), si(k + 1) = si(k);

xj(k + 1) = xj(k), sj(k + 1) = sj(k).

(ii) Otherwise (i.e., either surplus equals zero),

xi(k + 1) = xi(k), si(k + 1) = si(k) + sj(k) ∈ {0, 1};

xj(k + 1) = xj(k), sj(k + 1) = 0.

(R2) If xi(k) < xj(k), then there are two cases:

(i) If si(k) + sj(k) > 0, then

xi(k + 1) = xi(k) + 1, si(k + 1) = si(k) + sj(k) − 1 ∈ {0, 1};

xj(k + 1) = xj(k), sj(k + 1) = 0.
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(ii) Otherwise (i.e.,si(k) + sj(k) = 0),

xi(k + 1) = xi(k), si(k + 1) = si(k) + sj(k) = 0;

xj(k + 1) = xj(k), sj(k + 1) = 0.

(R3) If xi(k) > xj(k), then there are two cases:

(i) If si(k) + sj(k) = 0, then

xi(k + 1) = xi(k) − 1, si(k + 1) = si(k) + sj(k) + 1 = 1;

xj(k + 1) = xj(k), sj(k + 1) = 0.

(ii) Otherwise (i.e.,si(k) + sj(k) > 0),

xi(k + 1) = xi(k), si(k + 1) = si(k);

xj(k + 1) = xj(k), sj(k + 1) = sj(k).

In the algorithm, observe that (1)(R1)(i) and (R3)(ii) are where nodei sendssj(k) back to nodej

in stage (II), which requires bidirectional communication; (2) only (R3)(i) ‘generates’ one surplus, and

only (R2)(i) ‘consumes’ one surplus; (3) the quantity(x + s)T 1 stays invariant, i.e., for everyk ≥ 0,

(x(k + 1) + s(k + 1))T 1 = (x(k) + s(k))T 1 = x(0)T 1. (9)

Distinct from the algorithm in [7], [8], thisQA algorithm does not involve the threshold constant and

the local extrema variables, thus reducing individual computation effort. Also each surplus variable is

indeed binary-valued, and therefore requires merely one bit for both storage and transmission. A further

difference between the two algorithms lies in the use of surplus variables: The algorithm in [7], [8]

allows surpluses to pile up, which is indeed required to achieve average consensus for arbitrary strongly

connected digraphs. By contrast, ourQA algorithm here prevents surpluses from piling up, and meanwhile

simplifies the transition structure. In addition, unlike the algorithm in [12] which assumes bidirectional

communication for all time, the design of surplus updates here marks a feature of ourQA algorithm.

Now let the subsetA of Z
n × Z

n be the set of average consensus states:

A := {(x, s) : xi = ⌊x(0)T 1/n⌋ or ⌈x(0)T 1/n⌉, i ∈ V}. (10)

We say that the nodes achieve average consensus almost surely if for every initial condition(x(0), 0),

there existT < ∞ and (x∗, s∗) ∈ A such that(x(k), s(k)) = (x∗, s∗) for all k ≥ T with probability

one. Here is the convergence result ofQA algorithm for complete digraphs.
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Proposition1. Let Assumption 1 hold. Then, underQA algorithm, the nodes achieve average consensus

almost surely.

This convergence result may be justified by a similar argument as given in [7], [8]; some care, however,

has to be taken for the operations on surplus variables, as pointed out above. For completeness, the proof

is provided in the Appendix. In addition, we note that the convergence can also be implied by the time

analysis using Lyapunov approach in Section IV below.

The convergence time ofQA algorithm is the random variableTqa defined byTqa := inf{k ≥

0 : (x(k), s(k)) ∈ A }. The mean time taken for this convergence (according again tothe probability

distribution on edge activation), starting from(x0, 0) with x0 ∈ X , is then given by

Eqa(x0) := E [Tqa|(x(0), 0) = (x0, 0)] . (11)

Problem2. Let Assumptions 1 and 2 hold. Find an upper bound of the mean convergence timeEqa(x0)

of QA algorithm with respect to all possible initial statesx0 ∈ X .

Our main result is the following upper bound ofEqa(x0) with respect to all possible initial states

x0 ∈ X .

Theorem2. Let Assumptions 1 and 2 hold. Then

max
x0∈X

Eqa(x0) < n2(n − 1)
3(M − m)

2
+ n(n − 1)

R(R − 1)

n − (R/2)
= O(n3),

whereR ∈ [0, n − 1] is an integer, as in (12) below.

We note that the order of this polynomial bound is the same as that in [12] for undirected, complete

graphs. To derive this bound, we will first propose a valid Lyapunov function forQA algorithm. Then

we will upper bound the mean convergence time by way of upper bounding the mean decay time of the

Lyapunov function.

B. Lyapunov Function

We start by introducing two variables, called positive surplus S+ and negative surplusS−; they are

global variables, but are needed only for the convergence time analysis. Write the initial state sum

x(0)T 1 = nL + R, (12)

whereL := ⌊x(0)T 1/n⌋ is one of the possible values for average consensus, and0 ≤ R < n. Observe

that when a surplus is generated/consumed, the corresponding state moves one-step either closer to or

farther from the valueL. Positive and negative surplus variables are used to identify these two directions.
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Concretely, when a surplus is generated, we increaseS+ (resp.S−) if the corresponding state moves

towards (resp. away from)L. On the other hand, when a surplus is consumed, we distinguish the following

two situations: In one case where the state moves closer toL, we decreaseS− if it is nonzero, andS+

otherwise; in the other case where the state moves away fromL, we decrease onlyS+.

We now formalize the updating rules ofS+ and S−. Let D(k) :=
∑n

i=1 |xi(k) − L| be the sum of

average consensus errors, and suppose that the edge(j, i) ∈ E is activated at timek.

(S1) If (R3)(i) generates one surplus, then there are two cases:

(i) If D(k + 1) = D(k) − 1 (i.e., xi(k) > L), then

S+(k + 1) = S+(k) + 1.

(ii) If D(k + 1) = D(k) + 1 (i.e., xi(k) ≤ L), then

S−(k + 1) = S−(k) + 1.

(S2) If (R2)(i) consumes one surplus, then there are also two cases:

(i) If D(k + 1) = D(k) + 1 (i.e., xi(k) ≥ L), then

S+(k + 1) = S+(k) − 1.

(ii) If D(k + 1) = D(k) − 1 (i.e., xi(k) < L), then

S−(k) = 0 ⇒ S+(k + 1) = S+(k) − 1;

S−(k) > 0 ⇒ S−(k + 1) = S−(k) − 1.

(S3) Otherwise

S+(k + 1) = S+(k);

S−(k + 1) = S−(k).

The case(S3) above includes(R1), (R2)(ii), and (R3)(ii) of QA algorithm; note that, in these cases,

there is no state update. Since initially there is no surplusin the system (i.e.,s(0) = 0), we setS+(0) =

S−(0) = 0. Also, one may readily see thatS+(k) + S−(k) = s(k)T 1, which relates the global surpluses

to the local ones.

We are ready to define the Lyapunov functionV (k), k ≥ 0, which is given by

V (k) := D(k) + S+(k) − S−(k). (13)



12

It is not difficult to see from(S1)-(S3) thatV (k) is non-increasing. Indeed,V (k) stays put except for only

one case –(S2)(ii) and negative surplusS−(k) = 0 – where it decreases by2, i.e.,V (k +1) = V (k)−2.

Notice that after this decrement,S+(k + 1) ≥ 0 andS−(k + 1) = 0.

Remark2. We emphasize that the validity ofV (k) as a Lyapunov function is not restricted only to

undirected graphs, since the updating rules(S2) and (S3) do not involve (R1)(i) and (R3)(ii) where

bidirectional communication is required. Indeed,V (k) is a suitable Lyapunov function for the original

QA algorithm in [7], [8], which can achieve average consensus on arbitrary strongly connected digraphs.

This is one contribution of our work, which might also provide a preliminary to attack convergence time

on more general topologies.

In the following lemma, we collect several useful implications from the definition of functionV (k).

Lemma4.

(1) A lower bound ofV (k) is R, i.e., V (k) ≥ R for all k.

(2) If V (k) = R, thenS−(k) = 0, S+(k) ≥ 0, and(∀i ∈ [1, n]) xi(k) ≥ L.

(3) If D(k) = 0, thenS−(k) = 0 andV (k) = S+(k) = R.

(4) SupposeR = 0. ThenD(k) = 0 if and only if V (k) = 0, and in both casesS−(k) = S+(k) = 0.

Proof. We prove these statements in this order: (2), (1), (3), and (4).

(2) Let V (k) = R. Then there must existk0 ≤ k such thatV (k0 − 1) = R + 2 and V (k0) =

R. Also we haveS+(k0) ≥ 0 and S−(k0) = 0. Now assumex1(k0) < L. It follows from (9) that

x1(k0)+
∑n

i=2 xi(k0)+ s(k0)
T 1 = nL+ R. Rearranging the terms and bys(k0)

T 1 = S+(k0)+ S−(k0),

we obtain
∑n

i=2 xi(k0) − (n − 1)L = (L − x1(k0)) + R − S+(k0). Thus

V (k0) = (L − x1(k0)) +

n∑

i=2

xi(k0) + S+(k0) − S−(k0)

= 2(L − x1(k0)) + R > R.

This contradictsV (k0) = R, and hencexi(k0) ≥ L for all i. The latter holds also for timek because

the minimum states are non-decreasing byQA algorithm. Finally, according to the updating rules ofS+

andS−, one may easily see thatS−(k) = 0 andS+(k) ≥ 0.

(1) When V (k) = R, every statexi(k) ≥ L and consequently(S3)(ii) cannot occur. AsV (k) is

non-increasing, it is lower bounded byR.

(3) Let D(k) = 0. Then x(k)T 1 = nL, and thusS+(k) + S−(k) = s(k)T 1 = R. It follows that

V (k) = S+(k) − S−(k) ≤ R. But V (k) ≥ R, so that necessarilyV (k) = S+(k) − S−(k) = R, which

also implies thatS−(k) = 0 andS+(k) = R.
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(4) AssumeR = 0. (Only if) The conclusion follows immediately from (3). (If) Let V (k) = 0. Then

there must existk0 ≤ k such thatV (k0 − 1) = 2 and V (k0) = 0. Also we haveS+(k0) ≥ 0 and

S−(k0) = 0. HenceD(k0) + S+(k0) = 0, which results inD(k0) = S+(k0) = 0. As average consensus

is achieved atk0, no further state or surplus update occurs. So the conclusion for time k follows. �

Next, we find an upper bound for the functionV (k).

Proposition2. Let x(0) ∈ X in (1). Then for everyk ≥ 0,

V (k) ≤
(M − m)n

2
+ R.

Proof. Since the functionV (k) is non-increasing, it suffices to find an upper bound forV (0) =
∑n

i=1 |xi(0) − L|. Consider the functionV (0) − R; it is convex inx(0), andX is a convex set. Hence,

one of the extreme points ofX is a maximizer. Fixr ∈ [1, n], and letx(0) ∈ X be such thatx1(0) =

· · · = xr(0) = m andxr+1(0) = · · · = xn(0) = M . ThenV (0)−R = r(L−m)+ (n− r)(M −L)−R.

Also we haveL = (1T x(0)−R)/n = (rm+(n−r)M −R)/n. Substituting this into the above equation

and rearranging the terms, we derive

V (0) − R = −
2(M − m)

n
r2 +

(

2(M − m) − 2
R

n

)

r

=
2(M − m)

n

[

−

(

r −
1

2
(n −

R

M − m
)

)2

+
1

4
(n −

R

M − m
)2

]

≤
2(M − m)

n
·
1

4
(n −

R

M − m
)2 ( equality holds iffr = 1

2(n − R
M−m) )

=
1

2

(n(M − m) − R)2

n(M − m)

≤
1

2

(n(M − m))2

n(M − m)
=

(M − m)n

2
( equality holds iffR = 0 ).

ThusV (k)−R is upper bounded by(M−m)n/2, which is achievable if and only ifR = 0 andr = n/2.

�

IV. CONVERGENCETIME ANALYSIS OF QA ALGORITHM

We turn now to analyzing the mean convergence time ofQA algorithm, by way of upper bounding

the mean decay time of the Lyapunov functionV (·) in (13). This Lyapunov approach is also adopted

in [12], [16]; the common function used isV ′(k) =
∑n

i=1(xi(k) − x(0)T 1/n)2. It can be verified that

V ′(k) is, however, not a valid Lyapunov function with respect to our QA algorithm. This is due to that

the state sum is not preserved in each iteration and the surplus evolution must also be taken into account,

as in our functionV (k).
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1 2 3

p1 p2 p3

q2 q3 q4

r1 r2 r3

n− 2 n− 1 n

pn−2
pn−1

qn−1

rn−2 rn−1

pn−3

qn−2

rn

Fig. 4. Markov chain II: staten is absorbing.

1̄ 2̄ 3̄

p1 p2 p3

q2 q3 q4

r1 r2 r3

n− 2 n− 1 n

pn−2 pn−1

qn−1

rn−2 rn−1

pn−3

qn−2

1
¯

2
¯

3
¯

p1 p2 p3

q2 q3 q4

n− 2 n− 1

pn−2

qn−1

pn−3

qn−2

d1 d2 d3 dn−2 dn−1

r1 r2 r3 rn−2 rn−1

rn

Fig. 5. Markov chain III: staten is absorbing.

A. Preliminaries on Hitting Time

As in Subsection II-B, we provide preliminaries on the hitting time in finite Markov chains, specific

to the analysis ofQA algorithm. For the proofs see Appendix.

Lemma5. Consider the Markov chain in Fig. 4 with transition probabilities

p1 + r1 = 1, pz + rz + qz = 1 (z = 2, ..., n − 1), rn = 1.

Then the mean hitting times of the staten starting from state1 andz are respectively

E1 =
n−1∑

l=2





(
l∏

i=2

qi

pi

)

·
1

p1
+

l∑

j=2





l∏

i=j+1

qi

pi



 ·
1

pj



+
1

p1
,

Ez =
n−1∑

l=z





(
l∏

i=2

qi

pi

)

·
1

p1
+

l∑

j=2





l∏

i=j+1

qi

pi



 ·
1

pj



 (z = 2, ..., n − 1).

Lemma6. Consider the Markov chain in Fig. 5 with transition probabilities

p1 + r1 + d1 = 1, pz + rz + qz + dz = 1 (z = 2, ..., n − 2),

rn−1 + qn−1 + dn−1 = 1, pn−1 + rn−1 + qn−1 + dn−1 = 1, rn = 1.

Here· and· denote the states of the lower and upper rows, respectively.Then for statesn − 1 andn − 1,
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V (k)

k

V (0)− 2

V (0)− 4

V (0)

0

2

Fig. 6. Decay of functionV (k) in caseR = 0

their mean hitting times of the absorbing staten are

En−1 =

(
n−1∏

i=2

qi

pi

)

·
2

p1
+

n−1∑

j=2





n−1∏

i=j+1

qi

pi



 ·
2

pj
,

En−1 <

(

1 +
pn−1

dn−1

)

En−1.

In the rest of this section, the proof of Theorem 2 is given. Wewill need the following notation. Define

the random variableTV := inf{k ≥ 0 : V (k) = R}; thusTV is the time whenV (·) decreases toR. The

mean decay time, starting from(x0, 0), is then given by

EV (x0) := E [TV |(x(0), 0) = (x0, 0)] . (14)

Now recall R from equation (12); we proceed with two cases in this order:R = 0 andR > 0. When

R = 0 the mean convergence timeEqa(x0) is found to satisfyEqa(x0) = EV (x0), whereas whenR > 0

we haveEqa(x0) ≥ EV (x0) in general and the corresponding analysis turns out to be based on the

former case.

B. Proof for the caseR = 0

In this case, the mean convergence timeEqa(x0) is characterized by the mean time that the function

V (k) decays to0; that is,Eqa(x0) = EV (x0) in (14). This is because by Lemma 4 (4),V (k) = 0 if and

only if D(k) = 0, and the latter implies(x(k), s(k)) ∈ A . As each decrement reducesV (k) by 2, the

initial value V (0) is necessarily even, and there need in totalV (0)/2 decrements.

To upper boundEV (x0), we view the decay ofV (k) as the descent oflevel setsin the (n + 2)-

dimensional space of the triplesu := (x, S+, S−) (see Fig. 7). In this space, the average consensus state
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(n + 2)-dimension (x, S+, S−)

(L1,0,0)

UV (0)/2

U1

U2

U
0
1

U
0
2

U
0
V (0)/2

Fig. 7. Decay ofV (k) viewed as level set descent in the(n + 2) dimensions of(x,S+, S
−

). Descending is possible only

from the shaded area and through the dotted curves.

is simply the point(L1, 0, 0). Define the level sets

Ul := {u : V =
n∑

i=1

|xi − L| + S+ − S− = 2 · l}, l = 1, ..., V (0)/2.

Thus whenu(k) ∈ Ul, we interpret that(x(k), s(k)) is l-step away fromA (i.e., V (k) requires l

decrements to reach0). Also, it is important to note that on every level setUl, the triple evolution may

start, and may descend to the next level, only from a strict subsetU0
l defined by

U0
l := {u ∈ Ul : S− = 0 & S+ ≥ 0}.

To see this, first recall that the decrement ofV (·) (i.e., level set descent) requiresS− = 0 andS+ > 0.

Moreover, for the outmost levelUV (0)/2, the initial triple is of the form(x0, 0, 0); and for each subsequent

level, the triple evolution starts right after descending from the preceding level, where we haveS− = 0

andS+ ≥ 0.

Now let the random variableT1 be the time ofone decrementof V (·). The corresponding mean time,

starting from a tripleu ∈ U0
l , is then given byEl

1(u) := E
[
T1|u ∈ U0

l

]
, l ∈ [1, V (0)/2]. Since the

initial value V (0) is upper bounded by(M −m)n/2 (Proposition 2), the functionV (·) requires at most

(M − m)n/4 decrements to reach0. Hence, an upper bound of its mean decay time is the following:

max
x0∈X

EV (x0) ≤ max
l∈[1,V (0)/2],u∈U0

l

El
1(u) ·

(M − m)n

4
. (15)

Here is a key result.
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1̄ 2̄ 3̄

p1 p2 p3

q2 q3 q4

r1 r2 r3

n − 2 n − 1 n

pn−2 pn−1

qn−1

rn−2 rn−1

pn−3

qn−2

1
¯

2
¯

3
¯

p1 p2 p3

q2 q3 q4

n − 2 n − 1

pn−2

qn−1

pn−3

qn−2

d1 d2 d3 dn−2 dn−1

r1 r2 r3 rn−2 rn−1

rn

U
0

1
U1 − U

0

1
(1, 0, 0)

Fig. 8. One step away: fromU1 to (1, 0, 0).

Proposition3. Let Assumptions 1 and 2 hold. Then

max
l∈[1,V (0)/2],u∈U0

l

El
1(u) < 6n(n − 1) = O(n2).

To prove Proposition 3, it suffices to establish

max
u∈U0

l

El
1(u) < 6n(n − 1) = O(n2), (16)

for every l ∈ [1, V (0)/2]. In the sequel we will provide the proof for the casel = 1 (i.e., one step away

from average consensus), which contains the essential ideaof our argument. Specifically, we first exhaust

the possible triple evolution underQA algorithm, second derive the evolution structure and transition

probabilities, and third calculate the corresponding meanhitting time. The analysis of the casel ≥ 2

follows in a similar fashion but is more involved; we refer toAppendix for the proof.

Proof for the casel = 1: Without loss of generality letL = 1. We investigate the triple evolution from

the level setU1, starting inU0
1 , to the average consensus state(1, 0, 0). By Assumptions 1 and 2, every

directed edge inG can be activated with the uniform probabilityp = 1/(n(n − 1)). Consider the triple

([2

n−2
︷ ︸︸ ︷

1 · · · 1 0]T , 0, 0) ∈ U0
1 ; we show that eitherS− or S+ can be generated. Case 1: an edge(j, i)

is activated, withxj = 0 and xi = 1. In this case,(R3)(i) of QA algorithm applies, and the resulting

triple is ([2

n−3
︷ ︸︸ ︷

1 · · · 1 0 0]T , 0, 1) ∈ U1 − U0
1 . There aren − 2 such edges; so the probability of this

transition is(n − 2)p. In fact, such transitions can continue until all the ones become zeros, generating

in total S− = n − 2. Case 2: an edge(j, i) is activated, withxj = 0 or 1 and xi = 2. Again (R3)(i)

of QA algorithm applies, the resulting triple being([

n−1
︷ ︸︸ ︷

1 1 · · · 1 0]T , 1, 0) ∈ U0
1 . This transition is with

probability (n − 1)p, since there aren − 1 such edges.
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Now starting from the triple([

n−1
︷ ︸︸ ︷

1 1 · · · 1 0]T , 1, 0), on one hand, we can have a similar process, as from

([2

n−2
︷ ︸︸ ︷

1 · · · 1 0]T , 0, 0) described above, generating in totalS− = n− 2. On the other hand, observe that

there is only one edge(j, i) such thatxj = 1, sj = 1, andxi = 0, si = 0. If this edge is activated (with

probability p), then (R2)(i) of QA algorithm applies, and the resulting triple is the average consensus

state(1, 0, 0).

Based on the above descriptions, we derive that the transition structure fromU1 to (1, 0, 0) underQA

algorithm is the one displayed in Fig. 8.1 In this diagram, the staten is the average consensus state

(1, 0, 0), and the other states belong toU1, listed below:

n − 1 : ([2 1 1 · · · 1 1 0]T , 0, 0) n − 1 : ([1 1 1 · · · 1 1 0]T , 1, 0)

n − 2 : ([2 1 1 · · · 1 0 0]T , 0, 1) n − 2 : ([1 1 1 · · · 1 0 0]T , 1, 1)

...
...

2 : ([2 1 0 · · · 0 0 0]T , 0, n − 3) 2 : ([1 1 0 · · · 0 0 0]T , 1, n − 3)

1 : ([2 0 0 · · · 0 0 0]T , 0, n − 2) 1 : ([1 0 0 · · · 0 0 0]T , 1, n − 2)

Note that negative surplus is zero (S− = 0) only in the statesn − 1 andn − 1; hence these two triples

are inU0
1 . Also, one may verify that the transition probabilities areas follows:

p1 = (n − 2)p, d1 = p; pn−1 = p, qn−1 = (n − 2)p, dn−1 = (n − 1)p;

pz = (n − 1 − z)zp, qz = (z − 1)p, dz = zp (z = 2, ..., n − 2).

To upper boundE1
1(u) for u ∈ U0

1 , in Fig. 8 we add transitions from the statez to z with the probabilitydz,

z ∈ [1, n−1], thereby increasing the probabilities of moving away from the average consensus staten. This

modification leads us to the same structure displayed in Fig.5; thus, we havemaxu∈U0
1
E1

1(u) ≤ En−1,

whereEn−1 is given in (4).

It is left to calculateEn−1 with respect to the obtained transition probabilities. Forthis we invoke the

formulas in Lemma 6. First,
n−1∏

i=2

qi

pi
=

n − 2

1
·
n − 3

n − 2
·

n − 4

2(n − 3)
· · ·

2

(n − 4)3
·

1

(n − 3)2
=

1

(n − 3)!
.

1The transition structure in Fig. 8 is obtained with a minor modification from the original. For those triples inU1 − U
0
1 , we

treat the following transitions from left to right as selfloops: For some nodei such thatxi = 0 andsi = 0, its statexi increases

by consuming one negative surplus (underR2(i) of QA algorithm). By treating such transitions as selfloops, onlythe probability

of moving towards the average consensus state is reduced; soit can be verified that the mean hitting time derived from this

structure is an upper bound of that from the original. We makesuch modifications in our analysis henceforth.
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Similarly,

n−1∏

i=3

qi

pi
=

2

(n − 4)!
,

n−1∏

i=4

qi

pi
=

3

(n − 5)!
, · · · ,

qn−2qn−1

pn−2pn−1
= n − 3,

qn−1

pn−1
= n − 2.

We then have

En−1 =

(
n−1∏

i=2

qi

pi

)

·
2

p1
+

n−1∑

j=2





n−1∏

i=j+1

qi

pi



 ·
2

pj

=
1

(n − 3)!
·

2

(n − 2)p
+

2

(n − 4)!
·

2

(n − 3)2p
+ · · · + (n − 2) ·

2

(n − 2)p
+

2

p

=
2

p
·

[
1

(n − 2)!
+

1

(n − 3)!
+ · · · + 1 + 1

]

<
2

p
· 3 = 6n(n − 1) = O(n2).

Finally, En−1 < (1 + (pn−1/dn−1))En−1 = (1 + (p/((n − 1)p))) · 6n(n − 1) < 6n(n − 1) = O(n2). �

Therefore, it follows from Proposition 3 and equation (15) that the upper bound ofEqa(x0) in

Theorem 2 holds for the caseR = 0.

C. Proof for the caseR ∈ [1, n − 1]

WhenR 6= 0, we haveEqa(x0) ≥ EV (x0) in general. This is becauseV (k) = R does not generally

imply (x(k), s(k)) ∈ A , and even afterV (k) reaches its lower boundR (Lemma 4 (1) and (2)), the

pair (x(k), s(k)) may require extra time to reachA . Define the level setUR := {u : V =
∑n

i=1 |xi −

L| + S+ − S− = R}; then the mean convergence time starting from a tripleu ∈ UR is given by

Eqa(u) := E [Tqa|u ∈ UR]. Also recall from (14) thatEV (x0), with x0 ∈ X in (1), denotes the mean

decay time ofV (k) to the lower boundR. From these we obtain the mean convergence time ofQA

algorithm

max
x0∈X

Eqa(x0) ≤ max
x0∈X

EV (x0) + max
u∈UR

Eqa(u). (17)

In the sequel, we find upper bounds forEV (x0) andEqa(uR), respectively. First, as in the caseR = 0,

we have

max
x0∈X

EV (x0) < n2(n − 1)
3(M − m)

2
= O(n3). (18)

This is due to the following reason. The functionV (k) decays from its initial valueV (0) to R, and

each decrement reducesV (k) by 2. It follows thatV (0) −R is necessarily even and there need in total

(V (0) − R)/2 decrements. Forl ∈ [1, (V (0) − R)/2] recall thatEl
1(u) denotes the mean time spent for

one decrement ofV (k), starting from a tripleu ∈ U0
l . Following Proposition 3, one may similarly derive
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M(k)

k

L + R− 1

L + R

L

L + 1

L + 2

Fig. 9. Decrement of maximum state whenu ∈ UR

thatmaxl∈[1,(V (0)−R)/2],u∈U0
l
El

1(u) < 6n(n−1). Moreover,V (0)−R ≤ (M −m)n/2 by Proposition 2;

thus V (k) requires at most(M − m)n/4 decrements to reachR. Therefore,maxx0∈X EV (x0) ≤

maxl∈[1,(V (0)−R)/2],u∈U0
l
El

1(u) · (M − m)n/4 < n2(n − 1)3(M − m)/2 = O(n3).

Next, we find an upper bound formaxu∈UR
Eqa(u). By Lemma 4 (2) we have(∀i ∈ V) xi ≥ L; so

the maximum stateM(k) in (5) satisfiesM(k) ∈ [L,L + R]. If R = 1, then in fact(x(k), s(k)) ∈ A ;

thus in this caseEqa(uR) = 0, and we have from (17) and (18) thatmaxx0∈X Eqa(x0) = O(n3). It is left

to considerR ∈ [2, n − 1]. SinceM(k) = L or L + 1 implies (x(k), s(k)) ∈ A , the mean convergence

time Eqa(u) can be characterized by the mean time thatM(k) decays toL + 1. The decay ofM(k) is

displayed in Fig. 9; observe thatM(k) requires at mostR − 1 decrements to reachL + 1. Let EM (u)

denote the mean time taken for one decrement ofM(k), starting from a tripleu ∈ UR. Then an upper

bound forEqa(u) is as follows:

max
u∈UR

Eqa(u) ≤ max
u∈UR

EM (u) · (R − 1). (19)

Proposition4. Let Assumptions 1 and 2 hold. Then

max
u∈UR

EM (u) < n(n − 1)
R

n − (R/2)
= O(n2).

To prove Proposition 4, we first find the subset in which one decay of M(k) takes the longest time,

second derive the transition structure and probabilities underQA algorithm, and third compute the mean

hitting time.

Proof of Proposition 4.We consider the following two cases whenR is even and odd, respectively.

1) R is even. LetUe be a subset ofUR given byUe := {u = (x, S+, S−) : x ∈ Xe, S+ = S− = 0},

where

Xe := {x : x1 = · · · = xR

2

= L + 2, xR

2
+1 = · · · = xn = L}.
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For a state inXe, one decrement of its maximum valueL + 2 occurs only when all theR/2 state

components having that value decrease; thus it is not hard toseemaxu∈UR
EM (u) = maxu∈Ue

EM (u).

Now pick an arbitrary tripleu in Ue; we investigate its evolution underQA algorithm. If an edge

(j, i) is activated, withxj = L andxi = L + 2, then(R3)(i) of QA algorithm applies, and the resulting

triple is ([

(R/2)−1
︷ ︸︸ ︷

L + 2 · · ·L + 2 L+1 L · · ·L]T , 1, 0). Namely, one maximum state decreases. Also observe

that there are(R/2) (n − (R/2)) such edges; so the probability of this transition is(R/2) (n − (R/2)) p,

wherep = 1/(n(n − 1)) by Assumptions 1 and 2. Indeed, this process can continue until all the R/2

maximum states decrease to the valueL + 1, and we derive that the corresponding transition structure

underQA algorithm is the one displayed in Fig. 4 with the lengthn = (R/2) + 1. In the diagram,






state1 : ([

R/2
︷ ︸︸ ︷

L + 2 L + 2 · · · L + 2 L + 2 L · · · L]T , 0, 0)

state2 : ([L + 2 L + 2 · · · L + 2 L + 1 L · · · L]T , 1, 0)
...

stateR/2 : ([L + 2 L + 1 L + 1 · · · L + 1 L · · · L]T , (R/2) − 1, 0)

state(R/2) + 1 : ([L + 1 L + 1 L + 1 · · · L + 1 L · · · L]T , R/2, 0)

and the transition probabilities arep1 = (R/2) (n − (R/2)) p, pz = ((R/2) − z + 1)(n − (R/2))p,

qz = (z − 1)((R/2)− z + 1)p, z ∈ [2, R/2]. Observe that the state1 ∈ ŨR and the state(R/2) + 1 ∈ A;

so maxu∈Ue
EM (u) = E1, whereE1 is from (4).

It remains to invoke the formulas in Lemma 5 to calculateE1. First,

R/2
∏

i=2

qi

pi
=

(R/2) − 1

n − (R/2)
·
((R/2) − 2)2

2(n − (R/2))
· · ·

2((R/2) − 2)

((R/2) − 2)(n − (R/2))
·

(R/2) − 1

((R/2) − 1)(n − (R/2))

=
((R/2) − 1)!

(n − (R/2))(R/2)−1
≤

(
(R/2) − 1

n − (R/2)

)(R/2)−1

< 1;

the last inequality is due toR < n. Similarly
∏R/2

i qi/pi < 1 for i = 3, ..., R/2. Then we obtain
(

l∏

i=2

qi

pi

)

·
1

p1
+

l∑

j=2





l∏

i=j+1

qi

pi



 ·
1

pj
<

1

(n − (R/2))p

(
1

(R/2)
+

1

(R/2) − 1
+ · · · +

1

(R/2) − l + 1

)

.
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Hence,

E1 =

R/2
∑

l=2





(
l∏

i=2

qi

pi

)

·
1

p1
+

l∑

j=2





l∏

i=j+1

qi

pi



 ·
1

pj



+
1

p1

<
1

(n − (R/2))p

(
1

R/2
+

1

(R/2) − 1
+ · · · +

1

2
+ 1

)

+
1

(n − (R/2))p

(
1

R/2
+

1

(R/2) − 1
+ · · · +

1

2

)

+ · · · +
1

(n − (R/2))p

(
1

R/2
+

1

(R/2) − 1

)

+
1

(n − (R/2))p
·

1

R/2

=
R

(n − (R/2))p
=

R

(n − (R/2))
· n(n − 1).

Therefore,maxu∈UR
EM (u) = E1 < n(n − 1)R/(n − (R/2)) = O(n2).

2) R is odd. LetUo be a subset ofUR given byUo := {u = (x, S+, S−) : x ∈ Xo, S+ = S− = 0},

where

Xo := {x : x1 = · · · = xR−1

2

= L + 2, xR+1

2

= L + 1, xR+1

2
+1 = · · · = xn = L}.

For the same reason in the preceding case, one can verify thatmaxu∈UR
EM (u) = maxu∈Uo

EM (u).

Also it turns out that the transition structure, together with the associated transition probabilities, starting

from Uo is analogous to that starting fromUe. Thus by a similar derivation given above, we can conclude

again thatmaxu∈UR
EM (u) < n(n − 1)R/(n − (R/2)) = O(n2). �

Finally, it follows from equations (17)-(19) and Proposition 4 that an upper bound of the mean

convergence timeEqa(x0) of QA algorithm is Eqa(x0) < n2(n − 1)3(M − m)/2 + n(n − 1)R(R −

1)/(n − (R/2)) = O(n3) for the caseR > 0. This completes the proof of Theorem 2.

Remark3. We have derived an upper bound for the convergence time ofQA algorithm on complete

graphs, by proposing a suitable Lyapunov function for the algorithm and characterizing a Markov chain

for the state-surplus transition structure. To extend thisresult to more general topologies, the Lyapunov

function is still valid (see Remark 2) which in turn validates inequalities (15) and (17). Thus it is crucial to

establish the relation between graph topologies and the transition structure with associated probabilities,

as done in the proofs of Propositions 3 and 4 for complete graphs. Establishing such a relation for general

topologies currently appears to be difficult, but will be explored in our future work.

V. NUMERICAL EXAMPLE

We have proved polynomial upper bounds on the convergence time of QC and QA algorithms for

complete digraphs. Now we compare these theoretic bounds with numerical simulations, so as to illustrate

the tightness of our derived results. For this purpose, we consider the following initial statesx(0) which
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Fig. 10. Convergence time ofQC and QA
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Fig. 11. Convergence time comparison amongQC, QA, andQA in [7]

correspond to the worst case convergence time: ForQC algorithm, we choosex(0) = [

⌊n/2⌋
︷ ︸︸ ︷

1 · · · 1 0 · · · 0]T

(cf. proof of Lemma 3); forQA algorithm, we choosex(0) = [2

n−2
︷ ︸︸ ︷

1 · · · 1 0]T (cf. proof of Proposition 3).

The simulation results are displayed in Fig. 10, each plotted value being the mean convergence time of

100 runs of the corresponding algorithms.

It is observed that the convergence rate ofQC algorithm is approximately quadratic, which demonstrates

that the derived theoretic bound is relatively tight. On theother hand, the convergence rate ofQA algorithm

appears to be at most quadratic, if not linear. This indicates that the cubic theoretic bound may not be



24

tight, though it is in the same order as the one in [12] also forcomplete graphs. Thus, deriving tighter

bounds for the convergence time ofQA algorithm awaits future effort.

Furthermore, we compare the convergence rates ofQC, QA, and the originalQA algorithm in [7].

The results are shown in Fig. 11, each plotted value being themean convergence time of100 runs of the

corresponding algorithms, with the initial states chosen uniformly at random from the interval[−5, 5].

First it is observed that the convergence rates ofQC and QA algorithms (dotted and dashed curves)

are indeed analogous under the same initial conditions. Also we see that theQA algorithm in this paper

is considerably faster than that in [7]. This improvement demonstrates that by occasionally requiring

bidirectional communication, the modifications we have made for QA algorithm effectively accelerate

convergence. This observation, on the other hand, indicates that there needs extra effort to bound the

convergence time of the originalQA algorithm in [7], which is for average consensus on general digraphs.

This will be targeted in our future work.

VI. CONCLUSIONS

In this paper, we have studied convergence time of the quantized gossip algorithms in [7], [8] which

solve the consensus and averaging problems on digraphs. Specifically, we have derived upper bounds

– polynomials in the numbern of nodes – on the mean convergence time of these algorithms for the

special case of complete digraphs where the problem becomestractable. For the consensus algorithm, the

mean convergence time isO(n2); this is obtained by bounding the shrinking time of the smallest interval

containing all states, which results in the special transition structure in Fig. 1. For the averaging algorithm,

a valid Lyapunov function is proposed and its decay time investigated; this leads us to characterizing

the convergence time by the hitting time in the Markov chainsin Figs. 4 and 5, from which we derive

O(n3) time complexity.

For future work, it would be of ample interest to analyze convergence time of our gossip algorithms

on more general graph topologies, similar to the work of [13], [16]. A primary difficulty could lie in the

potentially greater complexity of the state and surplus transition structure, resulting from the topological

constraints. An alternative might be to explore the relation between the bounds for convergence time and

the spectral properties of the Laplacian matrix associatedto a given topology, as was done in [15].
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APPENDIX

Proof of Lemma 2.The proof is a direct calculation. By Lemma 1 the mean hittingtimes of state0

or n satisfy the following linear equations

E0 = 0, (20)

Ez = pzEz+1 + rzEz + qzEz−1 + 1, z = 1, ..., n − 1, (21)

En = 0. (22)

Sincepz = qz, it follows from (21) thatpz(Ez+1−Ez)−pz(Ez−Ez−1)+1 = 0. Let Fz+1 := Ez+1−Ez.

Then

Fz+1 = Fz −
1

pz
.

This is a non-homogeneous first-order linear difference equation, whose solution is of the general form

Fz+1 = F1 −

z∑

i=1

1

pi
.

To obtain the initial conditionF1, consider

Fn + Fn−1 + · · · + F1 = (En − En−1) + (En−1 − En−2) + · · · + (E1 − E0) = 0,

Fn + Fn−1 + · · · + F1 = nF1 −

n−1∑

j=1

j
∑

i=1

1

pi
.

From the above we haveF1 = (1/n)
∑n−1

j=1

∑j
i=1 1/pi. Finally,

Ez = Ez − E0 = Fz + Fz−1 + · · · + F2 + F1

= zF1 −

z−1∑

j=1

j
∑

i=1

1

pi

=
z

n

n−1∑

j=1

j
∑

i=1

1

pi
−

z−1∑

j=1

j
∑

i=1

1

pi

= (1 −
z

n
)

z−1∑

i=1

i

pi
+

z

n

n−1∑

j=z

n − j

pj
.

�

Proof of Lemma 5.By Lemma 1 the mean hitting times of staten satisfy the following linear equations

En = 0, (23)

E1 = p1E2 + r1E1 + 1, (24)

Ez = pzEz+1 + rzEz + qzEz−1 + 1, z = 2, ..., n − 1. (25)
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Rearrange the terms in (25) to obtainpz(Ez+1 −Ez)− qz(Ez −Ez−1)+1 = 0. Let Fz+1 := Ez+1 −Ez.

Then

Fz+1 =
qz

pz
Fz −

1

pz
,

whose initial condition isF2 = E2 −E1 = −1/p1 by (24). This is a non-homogeneous first-order linear

difference equation with variable coefficients, whose solution is of the general form

Fz+1 =

(
z∏

i=2

qi

pi

)

· (−
1

p1
) +

z∑

j=2





z∏

i=j+1

qi

pi



 ·

(

−
1

pj

)

.

Since

Fn + Fn−1 + · · · + Fz+1 = (En − En−1) + (En−1 − En−2) + · · · + (Ez+1 − Ez)

= En − Ez = −Ez,

we derive

Ez = −(Fn + Fn−1 + · · · + Fz+1) =

n−1∑

l=z





(
l∏

i=2

qi

pi

)

·
1

p1
+

l∑

j=2





l∏

i=j+1

qi

pi



 ·
1

pj



 .

Finally,

E1 = E2 +
1

p1
=

n−1∑

l=2





(
l∏

i=2

qi

pi

)

·
1

p1
+

l∑

j=2





l∏

i=j+1

qi

pi



 ·
1

pj



+
1

p1
.

�

Proof of Lemma 6.It follows from Lemma 1 that the mean hitting times of staten satisfy the following

linear equations






E1 = p1E2 + r1E1 + d1E1 + 1,

E1 = p1E2 + r1E1 + d1E1 + 1;
(26)







Ez = pzEz+1 + r1Ez + qzEz−1 + dzEz + 1,

Ez = pzEz+1 + r1Ez + qzEz−1 + dzEz + 1;
(z = 2, ..., n − 2) (27)







En−1 = pn−1En + rn−1En−1 + qn−1En−2 + dn−1En−1 + 1,

En−1 = rn−1En−1 + qn−1En−2 + dn−1En−1 + 1;
(28)

En = 0. (29)
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Rearrange the terms in (27) as






pz(Ez+1 − Ez) − qz(Ez − Ez−1) − dz((Ez − Ez)) + 1 = 0,

pz(Ez+1 − Ez) − qz(Ez − Ez−1) + dz((Ez − Ez)) + 1 = 0.

Let Fz+1 := Ez+1 − Ez, Fz+1 := Ez+1 − Ez, and add these two equations; we obtain

Fz+1 + Fz+1 =
qz

pz

(
Fz + Fz

)
−

2

pz
,

whose initial condition isF2 + F2 = −2/p1 by (26). This is again a non-homogeneous first-order linear

difference equation with variable coefficients, whose solution is

Fz+1 + Fz+1 =

(
z∏

i=2

qi

pi

)

· (−
2

p1
) +

z∑

j=2





z∏

i=j+1

qi

pi



 ·

(

−
2

pj

)

.

Now rearrange the terms in (28)






pn−1(En − En−1) − qn−1(En−1 − En−2) − dn−1((En−1 − En−1)) + 1 = 0,

−qn−1(En−1 − En−2) + dn−1((En−1 − En−1)) + 1 = 0.

Adding these two equations and applying (29), we derive

En−1 = −
qn−1

pn−1

(
Fn−1 + Fn−1

)
+

2

pn−1
=

(
n−1∏

i=2

qi

pi

)

·
2

p1
+

n−1∑

j=2





n−1∏

i=j+1

qi

pi



 ·
2

pj
.

It is left to obtain the upper bound forEn−1. For this we start by rearranging the terms in (26) as follows:






(p1 + d1)E1 − d1E1 = p1E2 + 1,

(p1 + d1)E1 − d1E1 = p1E2 + 1.

Subtracting the first equation from the second, we have(p1 + 2d1)(E1 − E1) = p1(E2 − E2). Hence

E1 − E1 =
p1

p1 + 2d1
(E2 − E2) < E2 − E2.

Similarly, from (27) we obtain a chain of inequalities

E2 − E2 < E3 − E3 < · · · < En−2 − En−2 < En−1 − En−1.

Finally, rearrange the terms in (28) as






(pn−1 + qn−1 + dn−1)En−1 − dn−1En−1 = pn−1En + qn−1En−2 + 1,

(qn−1 + dn−1)En−1 − dn−1En−1 = qn−1En−2 + 1.

Subtracting the first equation from the second and applying (29), we deduce

(qn−1 + 2dn−1)(En−1 − En−1) − pn−1En−1 = qn−1(En−2 − En−2) < qn−1(En−1 − En−1).

Rearranging these terms we haveEn−1 < (1 + (pn−1/dn−1)) En−1. �



29

m(0) M(0)

xi
Time 0

x1 xr+1

m(K1) M(K1)
xi

Time K1

x1 xr+1

m(K2)
xi

Time K2

x1

M(K2)

xr+1

Fig. 12. Idea of induction step

Proof of Proposition 1.Based on [12, Theorem 2], it suffices to establish the following three conditions:

(C1) The evolution of(x(k), s(k)), k ≥ 0, is a Markov chain with a finite state space;

(C2) the setA defined in (10) is an invariant set underQA algorithm;

(C3) for every(x(0), 0) /∈ A there is a finite timeKa such that Pr
[
(x(Ka), s(Ka)) ∈ A | (x(0), 0)

]
> 0.

For an arbitrary statex(k), observe inQA algorithm that the minimumm(k) is non-decreasing and

the maximumM(k) non-increasing, wherem(k), M(k) are defined in (5). Thus the conditions(C1)

and(C2) easily follow. It remains to establish(C3) when the digraphG is complete (Assumption 1), for

which we proceed by induction on the numbern (> 1) of nodes. LetF (k) := M(k) − m(k). Assume

(x(0), 0) /∈ A ; thenF (0) ≥ 2.

(i) Base case:n = 2. Label the two nodes such thatx1(0) = m(0) andx2(0) = M(0). AsG is complete,

there are two edges,(1, 2) and(2, 1), each of which has a positive probability to be activated. Consider

the sequence of alternate activation:(1, 2), (2, 1), (1, 2), (2, 1) · · · . Then in QA algorithm, (R3)(i) and

(R2)(i) will alternately apply, thereby shrinking the interval[m(k),M(k)]. It is easy to see that there

exist a finite timeKa and a positive probability such thatx1(Ka) = x2(Ka) = ⌊(x1(0)+x2(0))/2⌋ (thus

(x(Ka), s(Ka)) ∈ A ), and at most one node holds a surplus. Also in this process,M(k) decreases by

at least one andm(k) increases by at least one.

(ii) Induction step: letr ∈ [2, n − 1]. Suppose that for a network ofr nodes, there exist a finite time

Ka and a positive probability such thatx1(Ka) = · · · = xr(Ka) = ⌊(1/r)
∑r

i=1 xi(0)⌋, and at most

r − 1 nodes each holds one surplus. Also suppose that in this process,M(k) decreases by at least one

andm(k) increases by at least one.
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Now consider the case withr+1 nodes. Label them such thatm(0) = x1(0) ≤ · · · ≤ xr+1(0) = M(0).

In the sequel, we describe a sequence of activating edges, which causes the interval[m(k),M(k)] to

shrink, the process being displayed in Fig. 12. The existence of the selected edges follows from thatG

is complete; and since each edge has a positive probability to be activated, the sequence of activation

also has a positive probability.

First, consider the nodes2, . . . , r + 1. We distinguish three cases as follows.

Case 1:xr+1(0)− x2(0) ≥ 2. Then applying the hypothesis, we obtain that in a finite timeK1 and with

a positive probability,x2(K1) = · · · = xr+1(K1) = ⌊(1/r)
∑r+1

i=2 xi(0)⌋.

Case 2:xr+1(0) − x2(0) = 1. For each nodei (> 2) such thatxi(0) − x2(0) = 1, activate the edge

(2, i); then (R3)(i) of QA algorithm applies, thereby resulting again inx2(K1) = · · · = xr+1(K1) =

⌊(1/r)
∑r+1

i=2 xi(0)⌋.

In both cases above, the maximum state decreases asM(K1) < M(0); henceF (K1) < F (0). In

addition, there are at mostr − 1 nodes each having one surplus. Activate (one at a time, in an arbitrary

order) the edges connecting those nodes with a surplus to thenode 1. Thus (R2)(i) applies, and the

surpluses are consumed to increasex1(k), which in turn causesF (k) to decrease. At time at most

K ′
1 := K1 + r − 1, all the surpluses in the system can be consumed.

Case 3:xr+1(0) − x2(0) = 0. For this special case, we proceed directly to the next step.

Second, consider the nodes1, . . . , r. When F (K ′
1) ≥ 2 (or Case 3 above), applying the hypothe-

sis we derive that in a finite timeK2 and with a positive probability,x1(K2) = · · · = xr(K2) =

⌊(1/r)
∑r

i=1 xi(K
′
1)⌋. Since the minimum statem(k) increases by at least one, we haveF (K2) < F (K ′

1).

Also, at mostr − 1 nodes each has one surplus. Select (one at a time, in an arbitrary order) the edges

connecting the noder + 1 to those with a surplus; then(R2)(i) applies, and the surpluses are consumed.

Note that, however, hereF (k) stays put. At time at mostK ′
2 := K2 + r − 1, all the surpluses in the

system can be consumed. IfF (K ′
2) ≥ 2, we apply the hypothesis again for the nodes2, ..., r + 1, as is

done in the first step above.

Thus we can repeat these two steps, in an alternate fashion, so thatF (k) decreases untilF (K ′
a) = 1,

for some finite timeK ′
a. There are two possibilities: (1)x1(K

′
a) = m(K ′

a), othersm(K ′
a)+1, and at most

r−1 nodes each has one surplus; and (2)xr+1(K
′
a) = M(K ′

a), othersM(K ′
a)−1, and at mostr−1 nodes

each has one surplus. Analogous to the edge activation done above, one can show in both scenarios that

there exist a finite timeKa > K ′
a and a positive probability such thatF (Ka) = 0, and at mostr nodes

each has one surplus. Therefore necessarily,x1(Ka) = · · · = xr+1(Ka) = ⌊(1/(r + 1))
∑r+1

i=1 xi(0)⌋.

Finally, it is evident that in this averaging process,M(k) decreases by at least one andm(k) increases
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by at least one. This finishes the induction step. �

Proof of Proposition 3.We have given in Section IV-B the proof for the casel = 1, one step away

from average consensus. It remains to establish (16) for every l ∈ [2, V (0)/2]. Before proceeding, we

introduce the following notation for an economical representation of the transition structure in Fig. 8:

([1 1 1 · · · 1 1 0]T , 1, 0)

([2 1 1 · · · 1 1 0]T , 0, 0)

Here([1 1 1 · · · 1 1 0]T , 1, 0) represents the upper row of states1, . . . , n − 1, and([2 1 1 · · · 1 1 0]T , 0, 0)

represents the lower row of states1, . . . , n − 1. It is well to note that the staten (i.e., the average consensus

state(1, 0, 0)) is not involved. Observe that only the triples inU0
1 are used, and only the triple with positive

surplusS+ > 0 has a transition probability to the average consensus state. We will use this notation to

display the transition structures in the subsequent analysis.

(i) Two steps away: fromU2 to U1. The corresponding transition structure is displayed in Fig. 13;

there are four triples, representing four rows similar to the above. These rows can be arranged into three

blocksB1, B2, andB3 as shown. Notice that the displayed triples are all inU0
2 , and only those triples

with positive surplusS+ > 0 have a transition probability toU1. One can readily see that starting from

the triple([3 1 1 · · · 1 1 − 1]T , 0, 0), the mean hitting time ofU1 is the longest; thus we need to analyze

the whole structure.

In the sequel, the structure will be simplified in two steps. First, treat the transition toB3 as a selfloop at

the triple([2 1 1 · · · 1 1 −1]T , 1, 0) in B2. This modification increases the mean hitting time startingfrom

B1. To see this, note that the triple inB3 has more positive surplusS+, which results in higher probabilities

of moving towardsU1. It then follows that selflooping inB2 takes longer time to hitU1 than transiting to

B3. Second, combine([3 1 1 · · · 1 1 −1]T , 0, 0) in B1 and([2 2 1 · · · 1 1 −1]T , 0, 0) in B2. This amounts

to combining the corresponding two rows of triples. It can beverified that the associated transition

probabilities in these two rows are the same, except for those moving to([2 1 1 · · · 1 1 − 1]T , 1, 0).

Since the latter means moving towardsU1, taking the smaller transition probabilities from the two rows

will increases the mean hitting time.

After the above modifications, the transition structure is simplified to the one displayed in Fig. 5, with
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([2 1 1 · · · 1 1 − 1]T , 1, 0)

([3 1 1 · · · 1 1 − 1]T , 0, 0) ([2 2 1 · · · 1 1 − 1]T , 0, 0)

([1 1 1 · · · 1 1 − 1]T , 2, 0)

B1 B2 B3

Fig. 13. Two steps away: fromU2 to U1.

([3 1 1 · · · 1 1 − 2]T , 1, 0)

([4 1 1 · · · 1 1 − 2]T , 0, 0) ([3 2 1 · · · 1 1 − 2]T , 0, 0)

([2 1 1 · · · 1 1 − 2]T , 2, 0)

([2 2 1 · · · 1 1 − 2]T , 1, 0)

([2 2 2 · · · 1 1 − 2]T , 0, 0)

([1 1 1 · · · 1 1 − 2]T , 3, 0)

B2 B3B1 B4

Fig. 14. Three steps away: fromU3 to U2.

the following transition probabilities:

p1 = (n − 2)p, d1 = p; pn−1 = p, qn−1 = (n − 2)p, dn−1 = (n − 2)p;

pz = (n − 1 − z)zp, qz = (z − 1)p, dz = (z − 1)p (z = 2, ..., n − 2).

Hence, we havemaxu∈U0
2
E1

2(u) ≤ En−1, whereEn−1 is given in (4). Invoke the formulas in Lemma 6,

and perform an analogous calculation as before; we then obtain that maxu∈U0
2
E2

1(u) = O(n2).

(ii) Three steps away: fromU3 to U2. The corresponding transition structure is displayed in Fig. 14;

we now have four blocks. Since starting from the triple([4 1 1 · · · 1 1 − 2]T , 0, 0) the mean hitting time

of U2 is the longest, we need to analyze again the whole structure.

We take three steps to simplify the structure. First, treat the transition toB4 as a selfloop at the

triple ([2 1 1 · · · 1 1 − 2]T , 2, 0) in B3. This is the same as that in (ii), and hence increases the mean

hitting time starting fromB1. Second, treat the transitions to blockB3 as selfloops at the corresponding

triples in B2. This modification also increases the mean hitting time. To see this, compare the structure

of B2 and its counterpart inB3 (i.e., the lower two triples alone). One may verify that the former has

longer rows of triples and higher probabilities of moving away from U2. Hence, the mean time taken

to hit U2 in the structure ofB2 is longer than that in its counterpart inB3. Further, the top triple

([2 1 1 · · · 1 1 − 2]T , 2, 0) in B3, with more positive surplusS+, makes the mean hitting time even
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shorter. Therefore, selflooping inB2 increases the mean time to hitU2 compared to transiting toB3.

Lastly, combine([4 1 1 · · · 1 1 − 2]T , 0, 0) in B1 and([3 2 1 · · · 1 1 − 2]T , 0, 0) in B2, as is done in (ii).

The above simplifications lead us again to the structure displayed in Fig. 5, with exactly the same

transition probabilities as (ii). We thus obtainmaxu∈U0
3
E1

3(u) ≤ En−1 = O(n2).

(iii) General l (> 3) steps away: fromUl to Ul−1. The corresponding transition structure consists

of l + 1 blocks. Apply an analogous procedure to simplify this structure; it can be found by a similar

argument that transiting to further blocks will acceleratehitting Ul−1. Consequently, the structure with

l+1 blocks can also be reduced to the one in Fig. 5, the probabilities of which are those in (ii). Therefore,

maxu∈U0
l
E1

l (u) ≤ En−1 = O(n2). �


