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Average Consensus on General Strongly Connected Digraphs

Kai Cai and Hideaki Ishii

Abstract

We study the average consensus problem of multi-agent systems for general network topologies with

unidirectional information flow. We propose two (linear) distributed algorithms, deterministic and gossip,

respectively for the cases where the inter-agent communication is synchronous and asynchronous. Our

contribution is that in both cases, the developed algorithms guarantee state averaging on arbitrary strongly

connected digraphs; in particular, this graphical condition does not require that the network be balanced

or symmetric, thereby extending many previous results in the literature. The key novelty of our approach

is to augment an additional variable for each agent, called “surplus”, whose function is to locally record

individual state updates. For convergence analysis, we employ graph-theoretic and nonnegative matrix

tools, with the eigenvalue perturbation theory playing a crucial role.

I. INTRODUCTION

This paper presents a new approach to the design of distributed algorithms foraverage consensus:

that is, a system of networked agents reaches an agreement onthe average value of their initial states,

through merely local interaction among peers. The approachenables multi-agent systems to achieve

average consensus on arbitrary strongly connected networktopologies with unidirectional information

flow, where the state sum of the agents need not stay put as timeevolves.

There has been an extensive literature addressing multi-agent consensus problems. Many fundamental

distributed algorithms (developed in, e.g., [1]–[5]) are of the synchronoustype: At an arbitrary time, indi-

vidual agents are assumed to sense and/or communicate with all the neighbors, and then simultaneously

execute their local protocols. In particular, Olfati-Saber and Murray [3] studied algorithms of such type

to achieve average consensus on static digraphs, and justified that abalancedand strongly connected
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topology is necessary and sufficient to guarantee convergence. More recently in [6], Boyd et al. proposed

a compelling “gossip” algorithm, which provides an asynchronous approach to treat average consensus.

Specifically, the algorithm assumes that at each time instant, exactly one agent wakes up, contacts only

one of its neighbors selected at random, and then these two agents average out their states. The graph

model that the algorithm bases is undirected (or symmetric), and average consensus is ensured as long as

the topology isconnected. Since then, the gossip approach has been widely adopted [7]–[9] in tackling

average consensus on undirected graphs, with additional constraints on quantized information flow; see

also [10] for related distributed computation problems in search engines.

In this paper, and its conference precursor [11], we study the average consensus problem under both

synchronous and asynchronous setups, as in [3] and [6]. In both cases, we propose a novel type of

(linear) distributed algorithms, which can be seen as extensions of the corresponding algorithms in

[3] and [6]; and we prove that these new algorithms guaranteestate averaging on arbitrary strongly

connected digraphs, therefore generalizing the graphicalconditions derived in [3] and [6]. We note that

digraph models have been studied extensively in the consensus literature [3]–[5], and considered to

be generally more economical for information exchange thantheir undirected counterpart (refer to [3]

for more detailed motivation of using digraphs). Our underlying (theoretic) interest in this paper is to

generalize the connectivity conditions on digraphs for average consensus.

The primary challenge of average consensus on arbitrary strongly connected digraphs lies in that the

state sum of agents need not be preserved, thereby causing shifts in the average. We note that there are a

few efforts in the literature having addressed this issue. In [12], an auxiliary variable is associated to each

agent and a linear broadcast gossip algorithm is proposed; however, the convergence of that algorithm is

not proved, and remarked to be difficult. References [13], [14] also use extra variables, and a nonlinear

(division involved) algorithm is designed and proved to achieve state averaging on non-balanced digraphs.

The idea is based on computing the stationary distribution for the Markov chain characterized by the agent

network, and is thus quite different from consensus-type algorithms [3], [6]. In [1, Section 7.4], the load

balancing problem is tackled in which inter-processor communication is asynchronous and with bounded

delay. The underlying topology is assumed undirected; owing to asynchronism and delay, however, the

total amount of loads at processors is not invariant. A switched linear algorithm is proposed to achieve load

balancing in this scenario, the rules of which rely on however bidirectional communication. In addition, a

different and interesting approach is presented in [15]: Given a general strongly connected digraph, find a

corresponding doubly stochastic matrix (which, when used as a distributed updating scheme, guarantees

state averaging [4]). An algorithm is designed to achieve this goal by adding selfloop edges with proper
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weights to balance flow-in and -out information. Finally, time-varying state sum caused by packet loss or

communication failure is considered in [16], [17], and the deviation from the initial average is analyzed.

We develop a new approach to handle the problem that the statesum of agents need not be preserved.

Similar to [12], we also augment an additional variable for each agent, which we call “surplus”; different

from [13], [14], the function of surplus variables is to record every state change of the associated agent.

Thus, in effect, these variables collectively maintain theinformation of the average shift amount.1 Using

this novel idea, our main contribution is the design of linear algorithms (without switching) to achieve

average consensus on general strongly connected digraphs,in contrast with the types of algorithms

designed in [13], [14] and [1, Section 7.4]. Also, linearityallows us to employ certain matrix tools

in analysis, which are very different from the proof methodsused in [13], [14] and [1, Section 7.4].

Moreover, our technical contribution in this paper is the demonstration of matrix perturbation tools

(including eigenvalue perturbation, optimal matching distance, and Bauer-Fike Theorem [20]–[22]) in

analyzing convergence properties, which seems unexploredin the consensus literature.

Our idea of adding surpluses is indeed a continuation of our own previous work in [23], where the

original surplus-based approach is proposed to tacklequantizedaverage consensus on general digraphs.

There we developed a quantized (thus nonlinear) averaging algorithm, and the convergence analysis is

based on finite Markov chains. By contrast, the algorithms designed in the present paper are linear, and

hence the convergence can be characterized by the spectral properties of the associated matrices. On the

other hand, our averaging algorithms differ also from thosebasic ones [3], [6] in that the associated

matrices contain negative entries. Consequently for our analysis tools, besides the usual nonnegative

matrix theory and algebraic graph theory, the matrix perturbation theory is found instrumental.

The paper is organized as follows. Section II formulates distributed average consensus problems in

both synchronous and asynchronous setups. Sections III andIV present the respective solution algorithms,

which are rigorously proved to guarantee state averaging ongeneral strongly connected digraphs. Further,

Section V explores certain special topologies that lead us to specialized results, and Section VI provides

a set of numerical examples for demonstration. Finally, Section VII states our conclusions.

Notation.Let 1 := [1 · · · 1]T ∈ Rn be the vector of all ones. For a complex numberλ, denote its real

part by Re(λ), imaginary part by Im(λ), conjugate bȳλ, and modulus by|λ|. For a setS, denote its

1The method of augmenting auxiliary variables is also found in [18] and [19], aspredictorsestimating future states andshift

registersstoring past states respectively, in order to accelerate consensus speed. How the predictors or registers are used in these

references is, however, very different from our usage of surpluses.
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cardinality by card(S). Given a real numberx, ⌊x⌋ is the largest integer smaller than or equal tox, and

⌈x⌉ is the smallest integer larger than or equal tox. Given a matrixM , |M | denotes its determinant; the

spectrumσ(M) is the set of its eigenvalues; the spectral radiusρ(M) is the maximum modulus of its

eigenvalues. In addition,|| · ||2 and || · ||∞ denote the2-norm and infinity norm of a vector/matrix.

II. PROBLEM FORMULATION

Given a network ofn (> 1) agents, we model its interconnection structure by a digraph G = (V, E):
Eachnode in V = {1, ..., n} stands for an agent, and each directededge(j, i) in E ⊆ V × V denotes

that agentj communicates to agenti (namely, the information flow is fromj to i). Selfloop edges are

not allowed, i.e.,(i, i) /∈ E . In G a nodei is reachablefrom a nodej if there exists a path fromj to

i which respects the direction of the edges. We sayG is strongly connectedif every node is reachable

from every other node. Aclosed strong componentof G is a maximal set of nodes whose corresponding

subdigraph is strongly connected and closed (i.e., no node inside the subdigraph is reachable from any

node outside). Also a nodei is calledglobally reachableif every other node is reachable fromi.

At time k ∈ Z+ (nonnegative integers) each nodei ∈ V has a scalar statexi(k) ∈ R; the aggregate

state is denoted byx(k) = [x1(k) · · · xn(k)]T ∈ Rn. The average consensus problemaims at designing

distributed algorithms, where individual nodes update their states using only the local information of

their neighboring nodes in the digraphG such that allxi(k) eventually converge to the initial average

xa := 1Tx(0)/n. To achieve state averaging on general digraphs, the main difficulty is that the state sum

1Tx need not remain invariant, which can result in losing track of the initial averagexa. To deal with

this problem, we propose associating to each nodei an additional variablesi(k) ∈ R, called surplus;

write s(k) = [s1(k) · · · sn(k)]T ∈ Rn and sets(0) = 0. The function of surplus is to locally record the

state changes of individual nodes such that1T (x(k) + s(k)) = 1Tx(0) for all time k; in other words,

surplus keeps the quantity1T (x+ s) constant over time.

In the first part of this paper, we consider synchronous networks as in [3]: At each time, every node

communicates with all of its neighbors simultaneously, andthen makes a corresponding update.

Definition 1. A network of agents is said to achieveaverage consensusif for every initial condition

(x(0), s(0) = 0), it holds that(x(k), s(k)) → (xa1, 0) ask → ∞.

Problem1. Design a distributed algorithm such that agents achieve average consensus on general digraphs.

To solve this problem, we will propose in Section III a surplus-based distributed algorithm, under

which we justify that average consensus is achieved for general strongly connected digraphs.
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In the second part, we consider the setup of asynchronous networks as in [6]. Specifically, commu-

nication among nodes is by means ofgossip: At each time, exactly one edge(j, i) ∈ E is activated

at random, independently from all earlier instants and witha time-invariant, strictly positive probability

pij ∈ (0, 1) such that
∑

(j,i)∈E pij = 1. Along this activated edge, nodej sends its state and surplus to

nodei, while nodei receives the information and makes a corresponding update.

Definition 2. A network of agents is said to achieve

(i) mean-square average consensusif for every initial condition(x(0), s(0) = 0), it holds that

E
[

||x(k)− xa1||22
]

→ 0 andE
[

||s(k)||22
]

→ 0 ask → ∞;

(ii) almost sure average consensusif for every initial condition(x(0), s(0) = 0), it holds that

(x(k), s(k)) → (xa1, 0) ask → ∞ with probability one.

As defined, the mean-square convergence is concerned with the second moments of the state and

surplus processes, whereas the almost sure convergence is with respect to the corresponding sample

paths. It should be noted that in general there is no implication between these two convergence notions

(e.g., [24, Section 7.2]).

Problem 2. Design a distributed algorithm such that agents achieve mean-square and/or almost sure

average consensus on general digraphs.

For this problem, we will propose in Section IV a surplus-based gossip algorithm, under which we

justify that both mean-square and almost sure average consensus can be achieved for general strongly

connected digraphs.

III. AVERAGING IN SYNCHRONOUSNETWORKS

This section solves Problem 1. First we present a (discrete-time) distributed algorithm based on surplus,

which may be seen as an extension of the standard consensus algorithms in the literature [1]–[5]. Then

we prove convergence to average consensus for general strongly connected digraphs.

A. Algorithm Description

Consider a system ofn agents represented by a digraphG = (V, E). For each nodei ∈ V, let

N+
i := {j ∈ V : (j, i) ∈ E} denote the set of its “in-neighbors”, andN−

i := {h ∈ V : (i, h) ∈ E} the set

of its “out-neighbors”. Note thatN+
i 6= N−

i in general; andi /∈ N+
i or N−

i , for selfloop edges do not

exist. There are three operations that every nodei performs at timek ∈ Z+. First, nodei sends its state

informationxi(k) and weighted surplusbihsi(k) to each out-neighborh ∈ N−
i ; here thesending weight
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bih is assumed to satisfy thatbih ∈ (0, 1) if h ∈ N−
i , bih = 0 if h ∈ V − N−

i , and
∑

h∈N−

i

bih < 1.

Second, nodei receives state informationxj(k) and weighted surplusbjisj(k) from each in-neighbor

j ∈ N+
i . Third, nodei updates its own statexi(k) and surplussi(k) as follows:

xi(k + 1) = xi(k) +
∑

j∈N+

i

aij(xj(k)− xi(k)) + ǫsi(k), (1)

si(k + 1) =
(

(1−
∑

h∈N−

i

bih)si(k) +
∑

j∈N+

i

bjisj(k)
)

−
(

xi(k + 1)− xi(k)
)

, (2)

where theupdating weightaij is assumed to satisfy thataij ∈ (0, 1) if j ∈ N+
i , aij = 0 if j ∈ V −N+

i ,

and
∑

j∈N+

i

aij < 1; in addition, the parameterǫ is a positive number which specifies the amount of

surplus used to update the state.

We discuss the implementation of the above protocol in applications like sensor networks. LetG =

(V, E) represent a network sensor nodes. Our protocol deals particularly with scenarios where (i) sensors

have different communication ranges owing possibly to distinct types or power supplies; (ii) communi-

cation is by means of broadcasting (e.g., [12]) which again might have different ranges; and (iii) strategy

of random geographic routing is used for efficient and robustnode value aggregation in one direction

[13], [14]. In these scenarios, information flow among sensors is typically directed. A concrete example

is using sensor networks for monitoring geological areas (e.g., volcanic activities), where sensors are

fixed at certain locations. At the time of setting them up, thesensors may be given different transmission

power for saving energy (such sensors must run for a long time) or owing to geological reasons. Once

the power is fixed, the neighbors (and their IDs) can be known to each sensor. Thus, digraphs can arise in

static sensor networks where the neighbors can be fixed and known. Toimplement states and surpluses,

we see from (1), (2) that they are ordinary variables locallystored, updated, and exchanged; thus they

may be implemented by allocating memories in sensors. For the parameterǫ, we will see that it plays

a crucial role in the convergence of our algorithm; however,ǫ must be chosen sufficiently small, and a

valid bound for its value involves non-local information ofthe digraph. The latter constraint (in bounding

a parameter) is often found in consensus algorithms involving more than one variable [5], [25], [26].

One may overcome this by computing a valid bound offline, and notify that ǫ value to every node.

Now let theadjacency matrixA of the digraphG be given byA := [aij] ∈ Rn×n, where the entries are

the updating weights. Then theLaplacian matrixL is defined asL := D−A, whereD = diag(d1, . . . , dn)

with di =
∑n

j=1 aij . ThusL has nonnegative diagonal entries, nonpositive off-diagonal entries, and zero

row sums. Then the matrixI − L is nonnegative (by
∑

j∈N+

i

aij < 1), and every row sums up to

one; namelyI − L is row stochastic. Also let B := [bih]
T ∈ Rn×n, where the entries are the sending
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2 3

4

N+
2 = {1, 3, 4}

N+
3 = {1, 4}

N+
4 = {2, 3}

N+
1 = {4}

N−
2 = {4}

N−
3 = {2, 4}

N−
4 = {1, 2, 3}

N−
1 = {2, 3}

Fig. 1. Illustrating example of four agents: communicationtopology and neighbor sets.

weights (note that the transpose in the notation is needed becauseh ∈ N−
i for bih). Define the matrix

S := (I − D̃) + B, where D̃ = diag(d̃1, . . . , d̃n) with d̃i =
∑n

h=1 bih. Then S is nonnegative (by
∑

h∈N−

i

bih < 1), and every column sums up to one; i.e.,S is column stochastic. As can be observed

from (2), the matrixS captures the part of update induced by sending and receivingsurplus.

With the above matrices, the iterations (1) and (2) can be written in a matrix form as




x(k + 1)

s(k + 1)



 = M





x(k)

s(k)



 , whereM :=





I − L ǫI

L S − ǫI



 ∈ R
2n×2n. (3)

Notice that (i) the matrixM has negative entries due to the presence of the Laplacian matrix L in the

(2, 1)-block; (ii) the column sums ofM are equal to one, which implies that the quantityx(k) + s(k) is

a constant for allk ≥ 0; and (iii) the state evolution specified by the(1, 1)-block of M , i.e.,

x(k + 1) = (I − L)x(k), (4)

is that of thestandardconsensus algorithm studied in the literature (e.g., [1], [3], [4]). We will henceforth

refer to (3) as the deterministic algorithm, and analyze itsconvergence properties in the next subsection.

Example1. For an illustration of the algorithm (3), consider a networkof four nodes with neighbor

sets shown in Fig. 1. Fixingi ∈ [1, 4], let aij = 1/
(

card(N+
i ) + 1

)

for every j ∈ N+
i and bih =

1/
(

card(N−
i ) + 1

)

for everyh ∈ N−
i . Then the matrixM of this example is given by

M =









































1/2 0 0 1/2 ǫ 0 0 0

1/4 1/4 1/4 1/4 0 ǫ 0 0

1/3 0 1/3 1/3 0 0 ǫ 0

0 1/3 1/3 1/3 0 0 0 ǫ

1/2 0 0 −1/2 1/3− ǫ 0 0 1/4

−1/4 3/4 −1/4 −1/4 1/3 1/2− ǫ 1/3 1/4

−1/3 0 2/3 −1/3 1/3 0 1/3− ǫ 1/4

0 −1/3 −1/3 2/3 0 1/2 1/3 1/4− ǫ









































.

We see thatM has negative entries, and every column sums up to one.
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B. Convergence Result

The following is a graphical characterization for the deterministic algorithm (3) to achieve average

consensus. The proof is deferred to Section III-C.

Theorem1. Using the deterministic algorithm (3) with the parameterǫ > 0 sufficiently small, the agents

achieve average consensus if and only if the digraphG is strongly connected.

Without augmenting surplus variables, it is well known [3] that a necessary and sufficient graphical

condition for state averaging is that the digraphG is both strongly connected andbalanced2. A balanced

structure can be restrictive because when all the weightsaij are identical, it requires the number of

incoming and outgoing edges at each node in the digraph to be the same. By contrast, our algorithm (3)

ensures average consensus for arbitrary strongly connected digraphs (including those non-balanced).

A surplus-based averaging algorithm was initially proposed in [23] for a quantized consensus problem.

It guarantees that the integer-valued states converge to either ⌊xa⌋ or ⌈xa⌉; however, the steady-state

surpluses are nonzero in general. There, the set of states and surpluses is finite, and thus arguments of

finite Markov chain type are employed in the proof. Distinct from [23], with the algorithm (3) the states

converge to the exact averagexa and the steady-state surpluses are zero. Moreover, since the algorithm

(3) is linear, its convergence can be analyzed using tools from matrix theory, as detailed below. This last

linearity point is also in contrast with the division involved algorithm designed in [13], [14].

The choice of the parameterǫ depends on the graph structure and the number of agents. In the following,

we present an upper bound onǫ for general networks.

Proposition1. Suppose that the digraphG is strongly connected. The deterministic algorithm (3) achieves

average consensus if the parameterǫ satisfiesǫ ∈ (0, ǭ(d)), where

ǭ(d) :=
1

(20 + 8n)n
(1− |λ3|)n, with λ3 the third largest eigenvalue ofM by settingǫ = 0. (5)

The proof of Proposition 1 is presented in Section III-D, which employs a fact from matrix pertur-

bation theory (e.g., [21], [22]) relating the size ofǫ to the distance between perturbed and unperturbed

eigenvalues. Also, we will stress that this proof is based onthat of Theorem 1. The above boundǭ(d)

ensures average consensus for arbitrary strongly connected topologies. Due to the powern, however, the

bound is rather conservative. This power is unavoidable forany perturbation bound result with respect

to general matrices, as is well known in matrix perturbationliterature [21], [22]. In Section V, we will

2A digraphG with its adjacency matrixA = [aij ] is balanced if
∑n

j=1 aij =
∑n

j=1 aji for all i. Equivalently, the system

matrix I − L of the standard consensus algorithm (4) is both row and column stochastic [3], [4].
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exploit structures of some special topologies, which yieldless conservative bounds onǫ. Also, we see

that the bound in (5) involvesλ3, the second largest eigenvalue of eitherI−L or S (matrix M is block-

diagonal whenǫ = 0). This infers that, in order to boundǫ, we need to know the structure of the agent

network. Such a requirement when bounding some parameters in consensus algorithms, unfortunately,

seems to be not unusual [5], [25], [26].

C. Proof of Theorem 1

We present the proof of Theorem 1. First, we state a necessaryand sufficient condition for average

consensus in terms of the spectrum of the matrixM .

Proposition2. The deterministic algorithm (3) achieves average consensus if and only if 1 is a simple

eigenvalue ofM , and all other eigenvalues have moduli smaller than one.

Proof. (Sufficiency) Since every column ofM sums up to one,1 is an eigenvalue ofM and [1T 1T ]T

is a corresponding left eigenvector. Note also thatM [1T 0]T = [1T 0]T ; so [1T 0]T ∈ R2n is a right

eigenvector corresponding to the eigenvalue1. Write M in Jordan canonical form as

M = V JV −1 =
[

y1 · · · y2n

]





1 0

0 J ′















zT1
...

zT2n











,

whereyi, zi ∈ C2n, i ∈ [1, 2n], are respectively the (generalized) right and left eigenvectors ofM ; and

J ′ ∈ C(2n−1)×(2n−1) contains the Jordan block matrices corresponding to those eigenvalues with moduli

smaller than one. For the eigenvalue1 choosey1 = [1T 0]T and z1 = (1/n)[1T 1T ]T ; thus zT1 y1 = 1.

Now thekth power ofM is

Mk = V JkV −1 = V





1 0

0 (J ′)k



V −1 → y1z
T
1 =





1
n11T 1

n11T

0 0



 , ask → ∞.

Therefore




x(k)

s(k)



 = Mk





x(0)

s(0)



→





1
n11T 1

n11T

0 0









x(0)

s(0)



 =





1
n11Tx(0)

0



 =





xa1

0



 , ask → ∞.

(Necessity) First we claim that the eigenvalue1 of M is always simple. Suppose on the contrary that

the algebraic multiplicity of1 equals two. The corresponding geometric multiplicity, however, equals

one; this is checked by verifying rank(M−I) = 2n−1. Thus there exists a generalized right eigenvector
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u = [uT1 uT2 ]
T ∈ R2n such that(M − I)2u = 0, and(M − I)u is a right eigenvector with respect to the

eigenvalue1. Since[1T 0]T is also a right eigenvector corresponding to the eigenvalue1, it must hold:

(M − I)u = c[1T 0]T , for some scalarc 6= 0

⇒





−L ǫI

L S − I − ǫI









u1

u2



 = c





1

0





⇒







−Lu1 + ǫu2 = c1

Lu1 + (S − I)u2 − ǫu2 = 0

⇒ (S − I)u2 = c1.

One may verify that rank(S − I) = n− 1 but rank([S − I c1]) = n. Hence there is no solution foru2,

which in turn implies that the generalized right eigenvector u cannot exist. This proves our claim.

Now suppose that there is an eigenvalueλ of M such thatλ 6= 1 and |λ| ≥ 1. But this immediately

implies thatlimk→∞Mk does not exist [4]. Therefore, average consensus cannot be achieved. �

Next, we introduce an important result from matrix perturbation theory (e.g., [20, Chapter 2]), which

is found crucial in analyzing the spectral properties of thematrix M in (3). The proof of this result can

be found in [20, Sections 2.8 and 2.10]. An eigenvalue of a matrix is said semi-simpleif its algebraic

multiplicity is equal to its geometric multiplicity.

Lemma1. Consider ann × n matrix W (ǫ) which depends smoothly on a real parameterǫ ≥ 0. Fix

l ∈ [1, n]; let λ1 = · · · = λl be a semi-simple eigenvalue ofW (0), with (linearly independent) right

eigenvectorsy1, . . . , yl and (linearly independent) left eigenvectorsz1, . . . , zl such that










zT1
...

zTl











[

y1 · · · yl

]

= I.

Consider a smallǫ > 0, and denote byλi(ǫ) the eigenvalues ofW (ǫ) corresponding toλi, i ∈ [1, l].

Then the derivativesdλi(ǫ)/dǫ|ǫ=0 exist, and they are the eigenvalues of the followingl × l matrix:










zT1 Ẇy1 · · · zT1 Ẇyl
...

...

zTl Ẇy1 · · · zTl Ẇyl











, whereẆ := dW (ǫ)/dǫ|ǫ=0. (6)

Now we are ready to prove Theorem 1. The necessity argument follows from the one for [23,

Theorem 2]; indeed, the class of strongly connected digraphs characterizes the existence of a distributed
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algorithm that can solve average consensus. For the sufficiency part, let

M0 :=





I − L 0

L S



 and F :=





0 I

0 −I



 . (7)

ThenM = M0 + ǫF , and we viewM as being obtained by “perturbing”M0 via the termǫF . Also,

it is clear thatM depends smoothly onǫ. Concretely, we will first show that the eigenvaluesλi of the

unperturbed matrixM0 satisfy

1 = λ1 = λ2 > |λ3| ≥ · · · ≥ |λ2n|. (8)

Then using Lemma 1 we will establish that after a small perturbationǫF , the obtained matrixM has only

a simple eigenvalue1 and all other eigenvalues have moduli smaller than one. Thisis the characteristic

part of our proof. Finally, it follows from Proposition 2 that average consensus is achieved. It should

be pointed out that, unlike the standard consensus algorithm (4), the tools in nonnegative matrix theory

cannot be used to analyze the spectrum ofM directly due to the existence of negative entries.

Proof of Theorem 1.(Necessity) Suppose thatG is not strongly connected. Then at least one node ofG
is not globally reachable. LetV∗

g denote the set of non-globally reachable nodes, and write its cardinality

card(V∗
g ) = r, r ∈ [1, n]. If r = n, i.e.G does not have a globally reachable node, thenG has at least two

distinct closed strong components [27, Theorem 2.1]. In this case, if the nodes in different components

have different initial states, then average consensus cannot be achieved. It is left to considerr < n.

Let Vg := V − V∗
g denote the set of all globally reachable nodes; thusVg is the unique closed strong

component inG [27, Theorem 2.1]. Consider an initial condition(x(0), 0) such that all nodes inVg have

the same statec ∈ R, and not all the states of the nodes inV∗
g equalc. Hencexa 6= c. But no state

or surplus update is possible for the nodes inVg because it is closed, and therefore average consensus

cannot be achieved.

(Sufficiency) First, we prove the assertion (8). SinceM0 is block (lower) triangular, its spectrum is

σ(M0) = σ(I−L)∪σ(S). Recall that the matricesI−L andS are row and column stochastic, respectively;

so their spectral radii satisfyρ(I − L) = ρ(S) = 1. Now owing to thatG is strongly connected,I − L

andS are bothirreducible; thus by the Perron-Frobenius Theorem (see, e.g., [28, Chapter 8]) ρ(I − L)

(resp.ρ(S)) is a simple eigenvalue ofI −L (resp.S). This implies (8). Moreover, forλ1 = λ2 = 1, one

derives that the corresponding geometric multiplicity equals two by verifying rank(M0 − I) = 2n − 2.

Hence the eigenvalue1 is semi-simple.

Next, we will qualify the changes of the semi-simple eigenvalue λ1 = λ2 = 1 of M0 under a small

perturbationǫF . We do this by computing the derivativesdλ1(ǫ)/dǫ anddλ2(ǫ)/dǫ using Lemma 1; here
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λ1(ǫ) andλ2(ǫ) are the eigenvalues ofM corresponding respectively toλ1 andλ2. To that end, choose

the right eigenvectorsy1, y2 and left eigenvectorsz1, z2 of the semi-simple eigenvalue1 as follows:

Y :=
[

y1 y2

]

=





0 1

v2 −nv2



 , Z :=





zT1

zT2



 =





1T 1T

vT1 0



 .

Herev1 ∈ Rn is a left eigenvector ofI−L with respect toρ(I−L) such that it is positive and scaled to

satisfyvT1 1 = 1; andv2 ∈ Rn is a right eigenvector ofS corresponding toρ(S) such that it is positive

and scaled to satisfy1T v2 = 1. The fact that positive eigenvectorsv1 andv2 exist follows again from the

Perron-Frobenius Theorem. With this choice, one readily checksZY = I. Now sincedM/dǫ|ǫ=0 = F ,

the matrix (6) in the present case is




zT1 Fy1 zT1 Fy2

zT2 Fy1 zT2 Fy2



 =





0 0

vT1 v2 −nvT1 v2



 .

It follows from Lemma 1 that for smallǫ > 0, the derivativesdλ1(ǫ)/dǫ, dλ2(ǫ)/dǫ exist and are the

eigenvalues of the above matrix. Hencedλ1(ǫ)/dǫ = 0, anddλ2(ǫ)/dǫ = −nvT1 v2 < 0. This implies that

when ǫ is small,λ1(ǫ) stays put whileλ2(ǫ) moves to the left along the real axis. Then by continuity,

there must exist a positiveδ1 such thatλ1(δ1) = 1 andλ2(δ1) < 1. On the other hand, since eigenvalues

are continuous functions of matrix entries (e.g., [21], [22]), there must exist a positiveδ2 such that

|λi(δ2)| < 1 for all i ∈ [3, 2n]. Thus for any sufficiently smallǫ ∈ (0,min{δ1, δ2}), the matrixM

has a simple eigenvalue1 and all other eigenvalues have moduli smaller than one. Therefore, from

Proposition 2, the conclusion that average consensus is achieved follows. �

Remark1. Assuming that the deterministic algorithm (3) converges tothe average, the speed of its

convergence is governed by the second largest (in modulus) eigenvalue of the matrixM . We denote this

particular eigenvalue byλ(d)
2 , and refer to it as theconvergence factorof algorithm (3). Note thatλ(d)

2

depends not only on the graph topology but also on the parameter ǫ, andλ(d)
2 < 1 is equivalent to average

consensus (by Proposition 2).

Remark2. Because of adding surpluses, the matrixM in (3) is double in size and is not nonnegative.

Hence standard nonnegative matrix tools cannot be directlyapplied; this point was also discussed in [12].

In [19] a system matrix containing negative entries was analyzed, which depends however on symmetry

of network structures. By contrast, we deal with general network topologies and have demonstrated that

certain matrix perturbation tools are useful in proving convergence.
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D. Proof of Proposition 1

Some preliminaries will be presented first, based on which Proposition 1 follows immediately. Hence-

forth in this subsection, the digraphG is assumed to be strongly connected. We begin by introducing

a metric for the distance between the spectrums ofM0 and M ; here M = M0 + ǫF , with M0

and F in (7). Let σ(M0) := {λ1, . . . , λ2n} (where the numbering is the same as that in (8)) and

σ(M) := {λ1(ǫ), . . . , λ2n(ǫ)}. Theoptimal matching distanced (σ(M0), σ(M)) [21], [22] is defined by

d (σ(M0), σ(M)) := min
π

max
i∈[1,2n]

|λi − λπ(i)(ǫ)|, (9)

whereπ is taken over all permutations of{1, . . . , 2n}. Thus if we draw2n identical circles centered

respectively atλ1, . . . , λ2n, thend (σ(M0), σ(M)) is the smallest radius such that these circles include

all λ1(ǫ), . . . , λ2n(ǫ). Here is an upper bound on the optimal matching distance [21,Theorem VIII.1.5].

Lemma2. d (σ(M0), σ(M)) ≤ 4 (||M0||∞ + ||M ||∞)1−1/n ||ǫF ||1/n∞ .

Next, we are concerned with the eigenvaluesλ3(ǫ), . . . , λ2n(ǫ) of M , whose corresponding unperturbed

counterpartsλ3, . . . , λ2n of M0 lie strictly inside the unit circle (see the proof of Theorem1).

Lemma3. If the parameterǫ ∈ (0, ǭ(d)) with ǭ(d) in (5), then|λ3(ǫ)|, . . . , |λ2n(ǫ)| < 1.

Proof. SinceL = D − A andS = (I − D̃) + B, one can compute||L||∞ = 2maxi∈[1,n] di < 2 and

||S||∞ < n. Then ||M0||∞ ≤ ||L||∞ + ||S||∞ < 2 + n and ||F ||∞ ≤ 1. By Lemma 2,

d (σ(M0), σ(M)) ≤ 4 (2||M0||∞ + ǫ||F ||∞)1−1/n (ǫ||F ||∞)1/n

< 4 (4 + 2n+ ǫ)1−1/n ǫ1/n < 4 (4 + 2n+ ǫ) ǫ1/n < 1− |λ3|.

The last inequality is due toǫ < ǭ(d) in (5). Now recall from the proof of Theorem 1 that the

unperturbed eigenvaluesλ3, . . . , λ2n of M0 lie strictly inside the unit circle; in particular, (8) holds.

Therefore, perturbing the eigenvaluesλ3, . . . , λ2n by an amount less than̄ǫ, the resulting eigenvalues

λ3(ǫ), . . . , λ2n(ǫ) will remain inside the unit circle. �

It is left to consider the eigenvaluesλ1(ǫ) andλ2(ǫ) of M . Since every column sum ofM equals one

for an arbitraryǫ, we obtain that1 is always an eigenvalue ofM . Henceλ1(ǫ) must be equal to1 for

any ǫ. On the other hand, forλ2(ǫ) the following is true.

Lemma4. If the parameterǫ ∈ (0, ǭ(d)) with ǭ(d) in (5), then|λ2(ǫ)| < 1.

Proof. First recall from the proof of Theorem 1 thatλ2 = 1 anddλ2(ǫ)/dǫ < 0; so for sufficiently small

ǫ > 0, it holds that|λ2(ǫ)| < 1. Now suppose that there existsδ ∈ (0, ǭ(d)) such that|λ2(δ)| ≥ 1. Owing
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to the continuity of eigenvalues, it suffices to consider|λ2(δ)| = 1. There are three such possibilities, for

each of which we derive a contradiction.

Case 1:λ2(δ) is a complex number with nonzero imaginary part and|λ2(δ)| = 1. SinceM is a real

matrix, there must exist another eigenvalueλi(δ), for somei ∈ [3, 2n], such thatλi(δ) is a complex

conjugate ofλ2(δ). Then |λi(δ)| = |λ2(δ)| = 1, which is in contradiction to that all the eigenvalues

λ3(δ), . . . , λ2n(δ) stay inside the unit circle asδ ∈ (0, ǭ(d)) by Lemma 3.

Case 2:λ2(δ) = −1. This implies at leastd (σ(M0), σ(M)) = 2, which contradictsd (σ(M0), σ(M)) <

1− |λ3| < 1 when (5) holds.

Case 3:λ2(δ) = 1. This case is impossible because the eigenvalue1 of M is always simple, as we

have justified in the necessity proof of Proposition 2. �

Summarizing Lemmas 3 and 4, we obtain that if the parameterǫ ∈ (0, ǭ(d)) with ǭ(d) in (5), then

λ1(ǫ) = 1 and |λ2(ǫ)|, |λ3(ǫ)|, . . ., |λ2n(ǫ)| < 1. Therefore, by Proposition 2 the deterministic algorithm

(3) achieves average consensus; this establishes Proposition 1.

IV. AVERAGING IN ASYNCHRONOUSNETWORKS

We move on to solve Problem 2. First, a surplus-based gossip algorithm is designed for digraphs,

which extends those algorithms [6]–[9] only for undirectedgraphs. Then, mean-square and almost sure

convergence to average consensus is justified for arbitrarystrongly connected topologies.

A. Algorithm Description

Consider again a network ofn agents modeled by a digraphG = (V, E). Suppose that at each time,

exactly one edge inE is activated at random, independently from all earlier instants. Say edge(j, i) is

activated at timek ∈ Z+, with a constant probabilitypij ∈ (0, 1). Along the edge, the state information

xj(k) and surplussj(k) are transmitted from nodej to i. The induced update is described as follows:

(i) Let wij ∈ (0, 1) be the updating weight, andǫ > 0 be a parameter. For nodei:

xi(k + 1) = xi(k) + wij(xj(k)− xi(k)) + ǫwijsi(k), (10)

si(k + 1) = si(k) + sj(k)− (xi(k + 1)− xi(k)), (11)

(ii) For nodej: xj(k + 1) = xj(k) andsj(k + 1) = 0.

(iii) For other nodesl ∈ V − {i, j}: xl(k + 1) = xl(k) andsl(k + 1) = sl(k).

We discuss potential applications of this protocol in sensor networks. Our focus is again on the situations

of directed information flow, like asynchronous communication with variable ranges or unidirectional
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geographic routing [13], [14]. First, the states and surpluses can be implemented as ordinary variables in

sensors, since their exchange and updating rules are fairlysimple and purely local. Also, we will see that

the parameterǫ, as in the algorithm (3), affects the convergence of the algorithm, and must be chosen

to be sufficiently small. A valid upper bound forǫ involves again non-local information of the network;

thus computing a bound offline and then notifying that value to every node is one possible way to deal

with this restriction.

Now let Aji be the adjacency matrix of the digraphGji = (V, {(j, i)}) given by Aji = wijfif
T
j ,

wherefi, fj are unit vectors of the standard basis ofRn. Then the Laplacian matrixLji is given by

Lji := Dji − Aji, whereDji = wijfif
T
i . ThusLji has zero row sums, and the matrixI − Lji is row

stochastic. Also defineSji := I − (fj − fi)f
T
j ; it is clear thatSji is column stochastic. With these

matrices, the iteration of states and surpluses when edge(j, i) is activated at timek can be written in

the matrix form as




x(k + 1)

s(k + 1)



 = M(k)





x(k)

s(k)



 , whereM(k) = Mji :=





I − Lji ǫDji

Lji Sji − ǫDji



 . (12)

We have several remarks regarding this algorithm. (i) The matrix M(k) has negative entries due to

the presence of the Laplacian matrixLji in the (2, 1)-block. (ii) The column sums ofM(k) are equal

to one, which implies that the quantityx(k) + s(k) is constant for allk. (iii) By the assumption on

the probability distribution of activating edges, the sequenceM(k), k = 0, 1, . . ., is independent and

identically distributed (i.i.d.). Henceforth we refer to (12) as the gossip algorithm, and establish its mean-

square and almost sure convergence in the sequel.

Example2. Consider again the network of four nodes in Fig. 1. We give oneinstance of the matrix

M(k) when edges(3, 2) is activated, with the updating weightw23 = 1/2.

M32 =









































1 0 0 0 0 0 0 0

0 1/2 1/2 0 0 ǫ/2 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1/2 −1/2 0 0 1− ǫ/2 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1









































,

We see thatM(k) has negative entries, and every column sums up to one.
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B. Convergence Result

We present our main result in this section.

Theorem2. Using the gossip algorithm (12) with the parameterǫ > 0 sufficiently small, the agents

achieve mean-square average consensus if and only if the digraphG is strongly connected.

We remark that Theorem 2 generalizes the convergence resultin [6] from undirected to directed graphs.

The problem of achieving average consensus on gossip digraphs is, however, more difficult in that the

state sum of the nodes need not be invariant at each iteration. The key in our extension is to augment

surplus variables which keep track of individual state updates, thereby ensuring average consensus for

general strongly connected digraphs. This approach was previously exploited in [12] for a broadcast gossip

algorithm, however without a convergence proof. We remark that our technique to prove Theorem 2, based

on matrix perturbation theory, can be applied to [12] and justify the algorithm convergence.

We note that in the literature, many works for agents with non-scalar dynamics deal only with static

networks (e.g., [25], [29]). Some exceptions include [19] which relies heavily on graph symmetry and

[5] which is based on dwell-time switching. By contrast, we study general digraphs that switch at every

discrete time and each resulting update matrix is not nonnegative. The corresponding analysis is difficult,

and we will demonstrate again that matrix perturbation tools are instrumental in proving convergence.

To prove Theorem 2, three preliminary results are to be established in order. The first is a necessary

and sufficient condition for mean-square average consensuscharacterized by the spectrum of the matrix

E [M(k)⊗M(k)], where ⊗ stands for the Kronecker product. This condition will be used in the

sufficiency proof of Theorem 2. Since the matricesM(k) are i.i.d. we denoteE [M(k)⊗M(k)] by

E [M ⊗M ]. This result corresponds to Proposition 2 for the deterministic algorithm in Section III.

Proposition3. The gossip algorithm (12) achieves mean-square average consensus if and only if1 is a

simple eigenvalue ofE [M ⊗M ], and all the other eigenvalues have moduli smaller than one.

Proof. (Sufficiency) Define the consensus errore(k), k ≥ 0, as

e(k) :=





x(k)

s(k)



−





xa1

0



 ∈ R
2n. (13)

We must show thatE
[

e(k)T e(k)
]

→ 0 ask → ∞. Since1T (x(k) + s(k)) = 1Tx(0) for everyk ≥ 0,

e(k) is orthogonal to[1T 1T ]T (i.e., [1T 1T ]e(k) = 0). Also it is easy to checke(k + 1) = M(k)e(k);

thuse(k+1)e(k+1)T = M(k)e(k)e(k)TM(k)T . Collect the entries ofe(k)e(k)T , drawn column wise,

into a vectorẽ(k) ∈ R4n2

. It then suffices to show thatE [ẽ(k)] → 0 ask → ∞.
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Now it follows thatẽ(k+1) = (M(k)⊗M(k)) ẽ(k) (cf. [6]). HenceE [ẽ(k + 1)|ẽ(k)] = E [M ⊗M ] ẽ(k),

and condition repeatedly to obtainE [ẽ(k)] = E [M ⊗M ]k ẽ(0). Note that every column ofE [M ⊗M ]

sums up to one, and

E [M ⊗M ]









1

0



⊗





1

0







 =





1

0



⊗





1

0



 ;

so 1 is an eigenvalue ofE [M ⊗M ], with [1T 1T ]T ⊗ [1T 1T ]T and [1T 0]T ⊗ [1T 0]T as associated left

and right eigenvectors, respectively. WriteE [M ⊗M ] in Jordan canonical form as

E [M ⊗M ] = V JV −1 =
[

y1 · · · y4n2

]





1 0

0 J ′















zT1
...

zT4n2











,

whereJ ′ contains the Jordan block matrices corresponding to those eigenvalues with moduli smaller

than one. For the eigenvalue1 choosey1 = [1T 0]T ⊗ [1T 0]T andz1 = 1/n2[1T 1T ]T ⊗ [1T 1T ]T ; thus

zT1 y1 = 1. Then thekth power ofE [M ⊗M ] is

E [M ⊗M ]k = V JkV −1 = V





1 0

0 (J ′)k



V −1 → y1z
T
1 , ask → ∞.

Therefore we obtain

E [ẽ(k)] → y1z
T
1 ẽ(0) = y1

2n
∑

i=1



ei(0)

2n
∑

j=1

ej(0)



 = y1

2n
∑

i=1

ei(0) · 0 = 0,

where the second equality is due toe(k) ⊥ [1T 1T ]T .

(Necessity) SupposeE
[

e(k)T e(k)
]

→ 0 as k → ∞. ThenE
[

ei(k)
2
]

→ 0 for all i. It thus follows

from the Cauchy-Schwartz inequality (e.g., [24]) thatE [|ei(k)ej(k)|]2 ≤ E
[

ei(k)
2
]

E
[

ej(k)
2
]

→ 0, for

every i, j ∈ [1, 2n]. This impliesE [ẽ(k)] → 0; so limk→∞E [M ⊗M ]k ẽ(0) = 0. Also, it is known [4]

that limk→∞E [M ⊗M ]k exists if and only if there is a nonsingularV such that

E [M ⊗M ] = V JV −1 =
[

y1 · · · y4n2

]





Iκ 0

0 J ′















zT1
...

zT4n2











,

where κ ∈ [1, 2n] and ρ(J ′) < 1. Hencelimk→∞E [M ⊗M ]k ẽ(0) =
(
∑κ

i=1 yiz
T
i

)

ẽ(0) = 0. Now

supposeκ > 1. Choose as beforez1 = 1/n2[1T 1T ]T ⊗ [1T 1T ]T , and recallzT1 e(0) = 0. We know from

the structure ofJ that for everyj ∈ [2, κ], zj is linearly independent ofz1, which indicateszTj e(0) 6= 0

and consequently
(
∑κ

i=1 yiz
T
i

)

ẽ(0) 6= 0. Thereforeκ = 1, i.e., the eigenvalue1 of E [M ⊗M ] is simple

and all the others have moduli smaller than one. �
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The second preliminary is an easy corollary of the Perron-Frobenius Theorem.

Lemma5. (cf. [30, Chapter XIII]) LetW be a nonnegative and irreducible matrix, andλ be an eigenvalue

of W . If there is a positive vectorv such thatWv = λv, thenλ = ρ(W ).

Proof. SinceW is nonnegative and irreducible, the Perron-Frobenius Theorem implies thatρ(W ) is a

simple eigenvalue ofW and there is a positive left eigenvectorw corresponding toρ(W ), i.e.,wTW =

wT ρ(W ). Then

ρ(W )(vTw) = vT (ρ(W )w) = vT (W Tw) = (Wv)Tw = (λv)Tw = λ(vTw),

which yields(λ− ρ(W ))(vTw) = 0. Since bothv andw are positive, we conclude thatλ = ρ(W ). �

The last preliminary is on the spectral properties of the following four matrices:E [(I − L)⊗ (I − L)],

E [(I − L)⊗ S], E [S ⊗ (I − L)], andE [S ⊗ S].

Lemma6. Suppose that the digraphG = (V, E) is strongly connected. Then each of the four matrices

E [(I − L)⊗ (I − L)], E [(I − L)⊗ S], E [S ⊗ (I − L)], andE [S ⊗ S] has a simple eigenvalue1 and

all other eigenvalues with moduli smaller than one.

Proof.First observe that all the four matrices are nonnegative, for I−Lji andSji are for every(j, i) ∈ E .

Then since(I −Lji)1 = 1 and1TSji = 1T for every(j, i) ∈ E , a short calculation yields the following:

E [(I − L)⊗ (I − L)] (1 ⊗ 1) = (1 ⊗ 1); E [(I − L)⊗ S] (1 ⊗ v2) = (1 ⊗ v2);

(1T ⊗ vT1 )E [S ⊗ (I − L)] = (1T ⊗ vT1 ); (1T ⊗ 1T )E [S ⊗ S] = (1T ⊗ 1T ).

Herev1 is positive such thatvT1 E [I − L] = vT1 andvT1 1 = 1, andv2 is positive such thatE [S] v2 = v2

and1T v2 = 1. Thus each matrix has an eigenvalue1, and the corresponding right or left eigenvector is

positive. In what follows, it will be shown that all the four matrices are irreducible. Then the conclusion

will follow from Lemma 5 and the Perron-Frobenius Theorem.

We first prove thatE [(I − L)⊗ (I − L)] is irreducible, which is equivalent to that the digraphĜ =

(V̂ , Ê) corresponding to this matrix is strongly connected, whereV̂ := V × V = {(i, i′) : i, i′ ∈ V}.

Arrange the nodes in̂V so thatV̂ = V1 ∪ · · · ∪ Vn, whereVp = {(p, 1), . . . , (p, n)} for everyp ∈ [1, n].

Now sinceE [(I − L)⊗ (I − L)] =
∑

(j,i)∈E pij(I −Lji)⊗ (I −Lji), the digraphĜ is the union of the

digraphs corresponding topij(I − Lji) ⊗ (I − Lji). Note that eachpij(I − Lji) ⊗ (I − Lji) gives rise

to (i) an edge from(p, j) to (p, i) in Vp for everyp ∈ [1, n], and (ii) edges from some nodes inVj to

some nodes inVi. Owing to thatG is strongly connected, the union of the above edges yields, for every

i, j ∈ [1, n], (i) a directed path from(p, i) to (p, j) in Vp for everyp ∈ [1, n], and (ii) directed paths from
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some nodes inVi to some nodes inVj . This implies that there is a directed path from(p, i) to (q, j) for

everyp, q, i, j ∈ [1, n], i.e., Ĝ is strongly connected, and henceE [(I − L)⊗ (I − L)] is irreducible.

By a similar argument, we derive that the digraphs corresponding toE [(I − L)⊗ S], E [S ⊗ (I − L)],

andE [S ⊗ S] are all strongly connected. Therefore they are also irreducible. �

We are now ready to provide the proof of Theorem 2. The necessity argument is the same as Theorem 1.

Below is the sufficiency part.

Proof of Theorem 2.(Sufficiency) By Proposition 3 it suffices to show that the matrix E [M ⊗M ]

has a simple eigenvalue1, and all other eigenvalues with moduli smaller than one. LetM0(k) :=




I − L(k) 0

L(k) S(k)



 andF (k) :=





0 D(k)

0 −D(k)



; from (12) we haveM(k) = M0(k)+ ǫF (k). Then write

E [M ⊗M ] = E [(M0 + ǫF )⊗ (M0 + ǫF )] = E [M0 ⊗M0] + ǫE [M0 ⊗ F + F ⊗M0 + F ⊗ ǫF ]

= E

{





I − L 0

L S



⊗





I − L 0

L S





}

+ ǫE

{





I − L 0

L S



⊗





0 D

0 −D



+





0 D

0 −D



⊗





I − L 0

L S



+





0 D

0 −D



⊗ ǫ





0 D

0 −D





}

.

Let p ∈ [1, 4n], andpn := {(p− 1)n + 1, . . . , pn}. Consider the following permutation:

{n, 3n, . . . , (2n − 1)n; 2n, 4n, . . . , 2nn;

(2n + 1)n, (2n + 3)n, . . . , (4n − 1)n; (2n + 2)n, (2n + 4)n, . . . , 4nn}.

Denoting byP the corresponding permutation matrix (which is orthogonal), one derives that

P TE [M ⊗M ]P = P TE [M0 ⊗M0]P + ǫP TE [M0 ⊗ F + F ⊗M0 + F ⊗ ǫF ]P =: M̂0 + ǫF̂ , (14)

where

M̂0 := E

















(I − L)⊗ (I − L) 0 0 0

(I − L)⊗ L (I − L)⊗ S 0 0

L⊗ (I − L) 0 S ⊗ (I − L) 0

L⊗ L L⊗ S S ⊗ L S ⊗ S

















,

F̂ := E

















0 (I − L)⊗D D ⊗ (I − L) D ⊗ ǫD

0 −(I − L)⊗D D ⊗ L D ⊗ (S − ǫD)

0 L⊗D −D ⊗ (I − L) (S − ǫD)⊗D

0 −L⊗D −D ⊗ L D ⊗ (ǫD − S)− S ⊗D

















.
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Based on the above similarity transformation, we henceforth analyze the spectral properties of the

matrix M̂0 + ǫF̂ . For this, we resort again to a perturbation argument, whichproceeds similarly to the

one for Theorem 1. First, since the digraphG is strongly connected, it follows from Lemma 6 that the

eigenvalues of the matrix̂M0 satisfy

1 = λ̂1 = λ̂2 = λ̂3 = λ̂4 > |λ̂5| ≥ · · · ≥ |λ̂4n2 |. (15)

For the eigenvalue1, one derives that the corresponding geometric multiplicity equals four by verifying

rank(M̂0 − I) = 4n2 − 4. Thus1 is a semi-simple eigenvalue.

Next, we will qualify the changes of the semi-simple eigenvalue λ̂1 = λ̂2 = λ̂3 = λ̂4 = 1 of M̂0 under

a small perturbationǫF̂ . We do this by computing the derivativesdλ̂i(ǫ)/dǫ, i ∈ [1, 4], using Lemma 1;

here λ̂i(ǫ) are the eigenvalues of̂M0 + ǫF̂ corresponding tôλi. To that end, choose the right and left

eigenvectors of the semi-simple eigenvalue1 as follows:

Y :=
[

y1 y2 y3 y4

]

=

















0 0 0 1 ⊗ 1

0 0 1 ⊗ nv2 −1 ⊗ nv2

0 nv2 ⊗ 1 0 −nv2 ⊗ 1

nv2 ⊗ nv2 −nv2 ⊗ nv2 −nv2 ⊗ nv2 nv2 ⊗ nv2

















,

Z :=

















zT1

zT2

zT3

zT4

















=

















1
n1T ⊗ 1

n1T 1
n1T ⊗ 1

n1T 1
n1T ⊗ 1

n1T 1
n1T ⊗ 1

n1T

1
n1T ⊗ vT1 0 1

n1T ⊗ vT1 0

vT1 ⊗ 1
n1T vT1 ⊗ 1

n1T 0 0

vT1 ⊗ vT1 0 0 0

















.

Herev1 is positive such thatvT1 E [I − L] = vT1 andvT1 1 = 1, andv2 is positive such thatE [S] v2 = v2

and1T v2 = 1. With this choice, it is readily checked thatZY = I. Now the matrixM̂0 + ǫF̂ depends

smoothly onǫ, and the derivatived(M̂0 + ǫF̂ )/dǫ|ǫ=0 is

F̂0 :=
d(M̂0 + ǫF̂ )

dǫ

∣

∣

∣

∣

∣

ǫ=0

=

(

F̂ + ǫ
dF̂

dǫ

) ∣

∣

∣

∣

∣

ǫ=0

= E

















0 (I − L)⊗D D ⊗ (I − L) 0

0 −(I − L)⊗D D ⊗ L D ⊗ S

0 L⊗D −D ⊗ (I − L) S ⊗D

0 −L⊗D −D ⊗ L −D ⊗ S − S ⊗D

















.
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Hence the matrix (6) in the present case is
















zT1 F̂0y1 zT1 F̂0y2 zT1 F̂0y3 zT1 F̂0y4

zT2 F̂0y1 zT2 F̂0y2 zT2 F̂0y3 zT2 F̂0y4

zT3 F̂0y1 zT3 F̂0y2 zT3 F̂0y3 zT3 F̂0y4

zT4 F̂0y1 zT4 F̂0y2 zT4 F̂0y3 zT4 F̂0y4

















=

















0 0 0 0

nvT1 E[D]v2 −nvT1 E[D]v2 0 0

nvT1 E[D]v2 0 −nvT1 E[D]v2 0

0 nvT1 E[D]v2 nvT1 E[D]v2 −2nvT1 E[D]v2

















.

It follows from Lemma 1 that for smallǫ > 0, the derivativesdλ̂i(ǫ)/dǫ, i ∈ [1, 4], exist and are the

eigenvalues of the above matrix. Hencedλ̂1(ǫ)/dǫ = 0, dλ̂2(ǫ)/dǫ = dλ̂3(ǫ)/dǫ = −nvT1 E[D]v2 < 0,

and dλ̂4(ǫ)/dǫ = −2nvT1 E[D]v2 < 0. This implies that whenǫ is small, λ̂1(ǫ) stays put, whilêλ2(ǫ),

λ̂3(ǫ), and λ̂4(ǫ) move to the left along the real axis. So by continuity, there exists a positiveδ1 such

that λ1(δ1) = 1 andλ2(δ1), λ3(δ1), λ4(δ1) < 1. On the other hand, by the eigenvalue continuity there

exists a positiveδ2 such that|λi(δ2)| < 1 for all i ∈ [5, 4n2]. Therefore for any sufficiently small

ǫ ∈ (0,min{δ1, δ2}), the matrix M̂0 + ǫF̂ has a simple eigenvalue1 and all other eigenvalues with

moduli smaller than one. �

Remark3. Assuming that the gossip algorithm (12) converges to the average in mean square, the speed

of its convergence is determined by the second largest (in modulus) eigenvalue of the matrixE [M ⊗M ].

We denote this particular eigenvalue byλ(g)
2 , and refer to it as theconvergence factorof algorithm (12).

Notice thatλ(g)
2 depends not only on the graph topology but also on the parameter ǫ, andλ(g)

2 < 1 is

equivalent to mean-square average consensus (by Proposition 3).

Remark4. We have established that for small enoughǫ, the gossip algorithm (12) achieves mean-square

average consensus. Using the same notion of optimal matching distance and following the procedures

as in Subsection III-D, it may be possible to derive a generalbound for ǫ by solving the inequality

4 (||M̂0||∞ + ||M̂0 + ǫF̂ ||∞)1−1/n ||ǫF̂ ||1/n∞ < 1 − |λ̂5|, whereM̂0, F̂ are from (14) and̂λ5 from (15).

The corresponding computation is however rather long, since the involved matrices are of much larger

sizes. Such a general bound unavoidably again involvesn, the number of agents in the network, andλ̂5,

the second largest eigenvalue of one of the four matrices in Lemma 6. Consequently, the bound forǫ is

conservative and requires the structure of the network.

Finally, we consider almost sure average consensus. Note that the gossip algorithm (12) can be viewed

as a jump linear system, with i.i.d. system matricesM(k), k ∈ Z+. For such systems, it is known

(e.g., [31, Corollary 3.46]) that almost sure convergence can be implied from mean-square convergence.

Therefore the result on almost sure convergence is immediate.
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Corollary 1. Using the gossip algorithm (12) with the parameterǫ > 0 sufficiently small, the agents

achieve almost sure average consensus if and only if the digraphG is strongly connected.

V. SPECIAL TOPOLOGIES

We turn now to a special class of topologies – strongly connected and balanced digraphs – and

investigate the required upper bound on the parameterǫ for the deterministic algorithm (3). Furthermore,

when these digraphs are restricted to symmetric or cyclic respectively, we derive less conservativeǫ

bounds compared to the general one in (5).

Given a digraphG = (V, E), its degreed is defined byd := maxi∈V card(N+
i ). In the deterministic

algorithm (3) choose the updating and sending weights to be respectivelyaij = 1/(2dn) andbij = 1/(dn),

for every(j, i) ∈ E . This choice renders the two matricesI − 2L andS identical, when the digraphG is

balanced. We will see that the equalityI − 2L = S supports a similarity transformation in dealing with

the cyclic case below.

Lemma7. Suppose that the parameterǫ satisfiesǫ ∈ (0, 2), and the zeros of the following polynomial

for everyµ 6= 0 with |µ − 1/(2n)| ≤ 1/(2n) lie strictly inside the unit circle:

p(λ) := λ2 + α1λ+ α0, (16)

whereα0 := 2µ2 − 3µ− ǫ+1, α1 := 3µ+ ǫ− 2. Then the deterministic algorithm (3) achieves average

consensus on strongly connected and balanced digraphs.

Proof. We analyze the spectral properties of the matrixM in terms of those of the Laplacian matrixL.

Let µi, i = 1, . . . , n, be theith eigenvalue ofL. SinceG is balanced and all the updating weights are

aij = 1/(2dn), it follows from the Gershgorin Theorem [28, Chapter 6] that|µi − 1/(2n)| ≤ 1/(2n).

Further, asG is strongly connected, by the Perron-Frobenius Theorem [28, Chapter 8] we get thatµ1 = 0

is simple. Now substituting the equalityS = I − 2L into (3) one obtains

M =





I − L ǫI

L I − 2L− ǫI



 .

Consider the characteristic polynomial ofM :

det(λI −M) = det









(λ− 1)I + L −ǫI

−L (λ− 1 + ǫ)I + 2L









= det (((λ− 1)I + L)((λ − 1 + ǫ)I + 2L)− ǫL)

= det
(

(λ− 1)(λ− 1 + ǫ)I + 3(λ− 1)L+ 2L2
)

.
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Here the second equality is due to that(λ− 1)I + L and−L commute [32]. By spectral mapping one

derives that the2n eigenvalues ofM can be obtained by solving the followingn equations:

(λ− 1)(λ − 1 + ǫ) + 3(λ− 1)µi + 2µ2
i = 0, i = 1, . . . , n. (17)

For µ1 = 0 we have from (17) thatλ1 = 1 andλ2 = 1 − ǫ. Sinceǫ ∈ (0, 2), λ2 ∈ (−1, 1). Now fix

i ∈ [2, n] so thatµi 6= 0 and|µi−1/(2n)| ≤ 1/(2n). Note that the left hand side of (17) can be arranged

into the polynomialp(λ) in (16), whose zeros are inside the unit circle. It follows that 1 is a simple

eigenvalue ofM , and all other eigenvalues have moduli smaller than one. Therefore, by Proposition 2

we conclude that average consensus is achieved. �

Now we investigate the values ofǫ that ensure the zeros of the polynomialp(λ) in (16) inside the

unit circle, which in turn guarantee average consensus on strongly connected and balanced digraphs by

Lemma 7. For this, we view the polynomialp(λ) asinterval polynomials[33] by lettingµ take any value

in the square:0 ≤ Re(µ) ≤ 1/n, −1/(2n) ≤ Im(µ) ≤ 1/(2n). Applying the bilinear transformation

we obtain a new family of interval polynomials:

p̃(γ) := (γ − 1)2p

(

γ + 1

γ − 1

)

= (1 + α0 + α1)γ
2 + (2− 2α0)γ + (1 + α0 − α1). (18)

Then by Kharitonov’s result for the complex-coefficient case, the stability of̃p(γ) (its zeros have negative

real parts) is equivalent to the stability of eight extreme polynomials [33, Section 6.9], which in turn

suffices to guarantee that the zeros ofp(λ) lie strictly inside the unit circle. Checking the stabilityof

eight extreme polynomials results in upper bounds onǫ in terms ofn. This is displayed in Fig. 2 as

the solid curve. We see that the bounds grow linearly, which is in contrast with the general bound̄ǫ

in Proposition 1 that decays exponentially and is known to beconservative. This is due to that, from

the robust control viewpoint, the uncertainty ofµ in the polynomial coefficients becomes smaller asn

increases.

Alternatively, we employ the Jury stability test [34] to derive that the zeros of the polynomialp(λ)

are strictly inside the unit circle if and only if

β0 :=

∣

∣

∣

∣

∣

∣

1 α0

ᾱ0 1

∣

∣

∣

∣

∣

∣

> 0, β1 :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 α0

ᾱ0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 α1

ᾱ0 ᾱ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ᾱ1

α0 α1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ᾱ0

α0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0. (19)

Hereβ0 andβ1 turn out to be polynomials inǫ of second and fourth order, respectively; the corresponding

coefficients are functions ofµ andn. Thus selectingµ such thatµ 6= 0 and |µ− 1/(2n)| ≤ 1/(2n), we
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Fig. 2. Upper bounds on parameterǫ such that deterministic algorithm (3) achieves average consensus on general strongly

connected balanced digraphs (solid and dashed curves) and cyclic digraphs (dotted curve).

can solve the inequalities in (19) forǫ in terms ofn. Thereby we obtain the dashed curve in Fig. 2, each

plotted point being the minimum value ofǫ over1000 random samples such that the inequalities in (19)

hold. This simulation confirms that the true bound onǫ for the zeros ofp(λ) to be inside the unit circle

is between the solid and dashed curves. Since the discrepancy of these two curves is relatively small, it

is suggested that our previous analysis based on Kharitonov’s result may not very conservative.

Here ends our discussion onǫ bounds for arbitrary balanced (and strongly connected) digraphs. In the

sequel, we will further specialize the balanced digraphG to be symmetric or cyclic, respectively, and

provide analyticǫ bounds less conservative than (5) for the general case. In particular, the exponentn is

not involved.

A. Connected Undirected Graphs

A digraphG = (V, E) is symmetricif (j, i) ∈ E implies (i, j) ∈ E . That is,G is undirected.

Proposition4. Consider a general connected undirected graphG. Then the deterministic algorithm (3)

achieves average consensus if the parameterǫ satisfiesǫ ∈ (0, (1 − (1/n))(2 − (1/n)).

Proof. The symmetry of the undirected graphG results in the symmetry of its Laplacian matrixL. So all

the eigenvaluesµi of L are real, and satisfyµ1 = 0 and(∀i ∈ [2, n]) µi ∈ (0, 1/n] (G is connected). For
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µ1 = 0 we know from (17) thatλ1 = 1, andλ2 ∈ (−1, 1) since0 < ǫ < (1 − (1/n))(2 − (1/n)) < 2.

For µi ∈ (0, 1/n], i ∈ [2, n], consider again the polynomialp(λ) in (16). According to the Jury stability

test for real-coefficient case [35], the zeros ofp(λ) are strictly inside the unit circle if and only if

1 + α0 + α1 > 0, 1 + α0 − α1 > 0, |α0| < 1.

Straightforward calculations show that these conditions hold providedǫ ∈ (0, (1 − (1/n))(2 − (1/n)).

Hence, the matrixM has a simple eigenvalueλ1 = 1 and all othersλ2, . . . , λ2n ∈ (0, 1). Therefore, by

Proposition 2 the deterministic algorithm (3) achieves average consensus. �

It is noted that for connected undirected graphs, the upper bound onǫ ensuring average consensus

grows asn increases. This characteristic is in agreement with that ofthe bounds for the more general

class of balanced digraphs as we observed in Fig. 2.

B. Cyclic Digraphs

A digraphG = (V, E) is cyclic if V = {1, . . . , n} andE = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}. So a

cyclic digraph is strongly connected.

Proposition5. Suppose that the digraphG is cyclic. Then the deterministic algorithm (3) achieves average

consensus if the parameterǫ satisfies

ǫ ∈
(

0,

√
2

3 +
√
5
(1− |λ3|)

)

, with λ3 as in (8). (20)

Further, in this case|λ3| =
√

1− (1/n) + (1/(2n2)) + (1/n)(1 − 1/(2n)) cos 2π/n.

Before providing the proof, we state a perturbation result,the Bauer–Fike Theorem, for diagonalizable

matrices (e.g., [28, Section 6.3]). Recall that the matrixM in (3) can be written asM = M0 + ǫF , with

M0 andF in (7). Throughout this subsection, writeλi(ǫ) for the eigenvalues ofM , andλi for those of

M0.

Lemma8. Suppose thatM0 is diagonalizable; i.e., there exist a nonsingular matrixV ∈ C2n×2n and a

diagonal matrixJ = diag(λ1, . . . , λ2n) such thatM0 = V JV −1. If λ(ǫ) is an eigenvalue ofM , then

there is an eigenvalueλi of M0, for somei ∈ [1, 2n], such that|λ(ǫ)− λi| ≤ ||V ||2 ||V −1||2 ||ǫF ||2.

In other words, every eigenvalue of the perturbed matrixM lies in a circle centered at some eigenvalue

of the unperturbed matrixM0 of the radius(||V ||2 ||V −1||2 ||ǫF ||2). We now present the proof of

Proposition 5.

Proof of Proposition 5.Since the digraphG is cyclic, we derive that its Laplacian matrixL is given byL =

circ(1/(2n), 0, . . . , 0,−1/(2n)) – acirculant matrix[36] with the first row[1/(2n) 0 · · · 0 −1/(2n)] ∈
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R1×n. Let ω := e2πι/n with ι :=
√
−1. Then the eigenvaluesµi of L are µi = (1/(2n))(1 − ωi−1),

i = 1, . . . , n. Rewrite the equation (17) as(λ(ǫ)− 1)(λ(ǫ)− 1+ ǫ) + 3(λ(ǫ)− 1)µi +2µ2
i = 0. Then for

µ1 = 0, we haveλ1(ǫ) = 1 andλ2(ǫ) = 1 − ǫ, corresponding respectively to the eigenvaluesλ1, λ2 of

M0. Evidently the upper bound in (20) is strictly smaller than2; so λ2(ǫ) ∈ (−1, 1).

We turn next to investigating the rest of the eigenvaluesλ3(ǫ), . . . , λ2n(ǫ), for which we employ

Lemma 8. LetΩ denote then× n Fourier matrix given by

Ω :=
1√
n























1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)























.

Note thatΩ is unitary, i.e.,Ω−1 = Ω∗ (the conjugate transpose ofΩ). It is a fact that every circulant

matrix can be (unitarily) diagonalized byΩ [36, Theorem 3.2.1]. Now letV :=





Ω 0

Ω Ω



, and consider

V −1M0V =





Ω∗ 0

−Ω∗ Ω∗









I − L 0

L S









Ω 0

Ω Ω



 =





Ω∗(I − L)Ω 0

0 Ω∗SΩ



 .

The last equality is due toS = I − 2L. HenceM0 is diagonalizable viaV , and its spectrum is

σ(M0) = σ(I − L) ∪ σ(S) =

{

1− 1

2n
(1− ωi−1), 1− 1

n
(1− ωi−1) : i = 1, . . . , n

}

.

Also, by a direct calculation we get||V ||2 = ||V −1||2 =
√

(3 +
√
5)/2 and ||F ||2 =

√
2. It then follows

from Lemma 8 that for every eigenvalueλl(ǫ) of M there is an eigenvalueλl′ of M0, l, l′ ∈ [3, 2n],

such that|λl(ǫ) − λl′ | ≤ ||V ||2 ||V −1||2 ||ǫF ||2 =
(

(3 +
√
5)/2

)√
2 ǫ. So the upper bound ofǫ in

(20) guarantees|λl(ǫ) − λl′ | < 1 − |λ3|; namely, the perturbed eigenvalues still lie within the unit

circle. Summarizing the above we haveλ1(ǫ) = 1 and |λ2(ǫ)|, |λ3(ǫ)|, . . . , |λ2n(ǫ)| < 1; therefore, the

deterministic algorithm (3) achieves average consensus byProposition 2. Further, one computes that

|λ3| = max
i∈[2,n]

{

∣

∣

∣
1− 1

2n
(1− ωi−1)

∣

∣

∣
,
∣

∣

∣
1− 1

n
(1− ωi−1)

∣

∣

∣

}

=
∣

∣

∣
1− 1

2n
+

1

2n
ω
∣

∣

∣
=

√

1− 1

n
+

1

2n2
+

1

n

(

1− 1

2n

)

cos
2π

n
.

�

Finally, in Fig. 2 we plot the upper bound onǫ in (20) for the class of cyclic digraphs. We see that

this bound decays as the numbern of nodes increases, which contrasts with the bound characteristic
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Ga Gb Gc

Fig. 3. Three examples of strongly connected but non-balanced digraphs.

TABLE I

CONVERGENCE FACTORSλ
(d)
2 AND λ

(g)
2 WITH RESPECT TO DIFFERENT VALUES OF PARAMETERǫ.

ǫ = 0.2 ǫ = 0.7 ǫ = 2.15

λ
(d)
2 λ

(g)
2 λ

(d)
2 λ

(g)
2 λ

(d)
2 λ

(g)
2

Ga 0.9963 0.9963 0.9993 1.0003 1.0003 1.0020

Gb 0.9951 0.9951 0.9969 0.9969 0.9985 1.0000

Gc 0.9883 0.9883 0.9930 0.9930 0.9966 0.9993

of the more general class of balanced digraphs. This may indicate the conservativeness of our current

approach based on perturbation theory. Nevertheless, since the perturbation result used here is specific

only to diagonalizable matrices, the derived upper bound in(20) is less conservative than the general one

in (5).

VI. N UMERICAL EXAMPLES

A. Convergence Paths

Consider the three digraphs displayed in Fig. 3, with10 nodes and respectively17, 29, and38 edges.

Note that all the digraphs are strongly connected, and in thecase of uniform weights they are non-balanced

(indeed, no single node is balanced). We apply both the deterministic algorithm (3), with uniform weights

a = 1/(2card(E)) andb = 1/card(E), and the gossip algorithm (12), with uniform weightw = 1/2 and

probability p = 1/card(E).
The convergence factorsλ(d)

2 andλ(g)
2 (see Remarks 1 and 3) for three different values of the parameter

ǫ are summarized in Table I. We see that smallǫ ensures convergence of both algorithms (the gossip

algorithm (12) requires smaller values ofǫ for mean-square convergence), whereas largeǫ can lead to

instability. Moreover, in those converging cases the factors λ(d)
2 andλ(g)

2 decrease as the number of edges

increases fromGa to Gc, which indicates faster convergence when there are more communication channels
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Fig. 4. Convergence paths of states and surpluses: Obtainedby applying the deterministic algorithm (3) with parameterǫ = 0.7

on digraphGa.
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Fig. 5. Sample paths of states: Obtained by applying the gossip algorithm (3) with parameterǫ = 0.7 on digraphsGa, Gb, and

Gc.

available for information exchange. We also see that the algorithms are more robust on digraphs with

more edges, in the sense that a larger range of values ofǫ is allowed.

For a random initial statex(0) with the averagexa = 0 and the initial surpluss(0) = 0, we display

in Fig. 4 the trajectories of both states and surpluses when the deterministic algorithm (3) is applied on

digraphGa with parameterǫ = 0.7. Observe that asymptotically, state averaging is achievedand surplus

vanishes. Under the same conditions, the gossip algorithm (12), however, fails to converge, as shown

in Fig. 5. Applying algorithm (12) instead on the digraphsGb andGc which have more edges, average

consensus is again reached, and faster convergence occurs in Gc (see Fig. 5).



29

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.75

0.8

0.85

0.9

0.95

1

1.05

Parameter ǫ

C
o
n
v
er

g
en

ce
fa

ct
o
r

λ
(d

)
2

Fig. 6. Convergence factorλ(d)
2 of the deterministic algorithm (3) with respect to parameter ǫ.
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Fig. 7. Convergence factorλ(g)
2 of the gossip algorithm (12) with respect to parameterǫ.

B. Convergence Speed versus Parameterǫ

We have seen that a sufficiently small parameterǫ ensures convergence of both algorithms (3) and

(12). Now we investigate the influence ofǫ on the speed of convergence, specifically the convergence

factorsλ(d)
2 andλ(g)

2 . To reduce the effect of network topology in this investigation, we employ a type of

random digraphs where an edge between every pair of nodes canexist with probability1/2, independent

across the network and invariant over time; we take only those that are strongly connected.

For the deterministic algorithm (3), consider random digraphs of50 nodes and uniform weightsa =

b = 1/50. Fig. 6 displays the curve of convergence factorλ
(d)
2 with respect to the parameterǫ, each
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plotted point being the mean value ofλ(d)
2 over 100 random digraphs. To account for the trend of this

curve, first recall from the perturbation argument for Theorem 1 that the matrixM in (3) has two

(maximum) eigenvalues1 when ǫ = 0, and smallǫ causes that one of them (denote its modulus by

λin) moves into the unit circle. Meanwhile, some other eigenvalues ofM inside the unit circle move

outward; denote the maximum modulus among these byλout. In our simulations it is observed that when

ǫ is small,λ(d)
2 = λin (> λout) andλin moves further inside as perturbation becomes larger; soλ

(d)
2

decreases (faster convergence) asǫ increases in the beginning. Since the eigenvalues move continuously,

there exists someǫ such thatλin = λout, corresponding to the fastest convergence speed. After that,

λ
(d)
2 = λout (> λin) andλout moves further outside asǫ increases; henceλ(d)

2 increases and convergence

becomes slower, and finally divergence occurs.

An analogous experiment is conducted for the gossip algorithm (12), with random digraphs of30

nodes, uniform probabilityp = 1/card(E), and uniform weightwij = 1/2. We see in Fig. 7 a similar

trend ofλ(g)
2 as the parameterǫ increases, though it should be noted that the changes inλ

(g)
2 are smaller

than those inλ(d)
2 . From these observations, it would be of ample interest to exploit the values ofǫ when

the convergence factors achieve their minima, as well as theupper bounds ofǫ ensuring convergence.

VII. C ONCLUSIONS

We have proposed distributed algorithms which enable networks of agents to achieve average consensus

on arbitrary strongly connected digraphs. Specifically, insynchronous networks a deterministic algorithm

ensures asymptotic state averaging, and in asynchronous networks a gossip algorithm guarantees average

consensus in the mean-square sense and with probability one. To emphasize, our derived graphical

condition is more general than those previously reported inthe literature, in the sense that it does

not require balanced network structure; also, the matrix perturbation theory plays an important role in

the convergence analysis. Moreover, special regular digraphs are investigated to give less conservative

bounds on the parameterǫ; and numerical examples are provided to illustrate the convergence results,

with emphasis on convergence speed.

For future research, one direction of interest would be to extend the deterministic algorithm (3) to

the more realistic scenario ofswitching digraphsG(k) = (V, E(k)); namely, the network topology is

time-varying. If everyG(k), k ≥ 0, is strongly connected, then it is possible to ensure convergence by

introducingslow switching(e.g., dwell time) as in [5], [37]. Under the weaker graphical condition that

digraphsG(k) are jointly strongly connected ([2], [27]), to verify if average consensus can be achieved

seems to be more challenging and requires further investigation.
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On the other hand, in the literature on gossip algorithms [6], [7], [38], a variety of practical com-

munication issues have been discussed such as link failure,message collision, broadcast protocol, and

synchronized node selection (i.e., multiple nodes are selected at the same time). We thus aim at addressing

these issues by making suitable extensions of our gossip algorithm (12).
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