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Average Consensus on General Strongly Connected Digraphs

Kai Cai and Hideaki Ishii

Abstract

We study the average consensus problem of multi-agentrsg<ta general network topologies with
unidirectional information flow. We propose two (linear¥tlibuted algorithms, deterministic and gossip,
respectively for the cases where the inter-agent commitioicégs synchronous and asynchronous. Our
contribution is that in both cases, the developed algostgmarantee state averaging on arbitrary strongly
connected digraphs; in particular, this graphical conditioes not require that the network be balanced
or symmetric, thereby extending many previous results énliterature. The key novelty of our approach
is to augment an additional variable for each agent, cakedpius”, whose function is to locally record
individual state updates. For convergence analysis, welangraph-theoretic and nonnegative matrix

tools, with the eigenvalue perturbation theory playing ac@l role.

. INTRODUCTION

This paper presents a new approach to the design of digdbaigorithms foraverage consensus
that is, a system of networked agents reaches an agreemehé @verage value of their initial states,
through merely local interaction among peers. The appraadbles multi-agent systems to achieve
average consensus on arbitrary strongly connected netiwpd{ogies with unidirectional information
flow, where the state sum of the agents need not stay put asetioiees.

There has been an extensive literature addressing matitagpnsensus problems. Many fundamental
distributed algorithms (developed in, e.@!, [L}-[5]) afeh® synchronousype: At an arbitrary time, indi-
vidual agents are assumed to sense and/or communicate lititte aeighbors, and then simultaneously
execute their local protocols. In particular, Olfati-Sabed Murray [3] studied algorithms of such type

to achieve average consensus on static digraphs, andgdstifat abalancedand strongly connected
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topology is necessary and sufficient to guarantee conveegéore recently in [6], Boyd et al. proposed

a compelling “gossip” algorithm, which provides an asymeious approach to treat average consensus.
Specifically, the algorithm assumes that at each time ihséxactly one agent wakes up, contacts only
one of its neighbors selected at random, and then these temtsagverage out their states. The graph
model that the algorithm bases is undirected (or symmetin) average consensus is ensured as long as
the topology isconnectedSince then, the gossip approach has been widely addptef@]7h tackling
average consensus on undirected graphs, with additiomstraints on quantized information flow; see
also [10] for related distributed computation problems éargh engines.

In this paper, and its conference precursor [11], we studyatirerage consensus problem under both
synchronous and asynchronous setups, aslin [3] l@nd [6]. in tamses, we propose a novel type of
(linear) distributed algorithms, which can be seen as eib@s of the corresponding algorithms in
[3] and [€]; and we prove that these new algorithms guarastate averaging on arbitrary strongly
connected digraphs, therefore generalizing the grapkimaditions derived in[[3] and [6]. We note that
digraph models have been studied extensively in the cooseliterature [[3]+[5], and considered to
be generally more economical for information exchange tiair undirected counterpart (refer ta [3]
for more detailed motivation of using digraphs). Our ungied (theoretic) interest in this paper is to
generalize the connectivity conditions on digraphs forrage consensus.

The primary challenge of average consensus on arbitraoypglir connected digraphs lies in that the
state sum of agents need not be preserved, thereby caudfisgrsithe average. We note that there are a
few efforts in the literature having addressed this issagl?2], an auxiliary variable is associated to each
agent and a linear broadcast gossip algorithm is propossae\rer, the convergence of that algorithm is
not proved, and remarked to be difficult. Referen¢es$ [13]] Hiso use extra variables, and a nonlinear
(division involved) algorithm is designed and proved toiaeé state averaging on non-balanced digraphs.
The idea is based on computing the stationary distributiothfe Markov chain characterized by the agent
network, and is thus quite different from consensus-tygerdhms [3], [6]. In [1, Section 7.4], the load
balancing problem is tackled in which inter-processor camitation is asynchronous and with bounded
delay. The underlying topology is assumed undirected; gwinasynchronism and delay, however, the
total amount of loads at processors is not invariant. A dwitclinear algorithm is proposed to achieve load
balancing in this scenario, the rules of which rely on howdidirectional communication. In addition, a
different and interesting approach is presented in [15yeGia general strongly connected digraph, find a
corresponding doubly stochastic matrix (which, when used distributed updating scheme, guarantees

state averagind [4]). An algorithm is designed to achieve gioal by adding selfloop edges with proper



weights to balance flow-in and -out information. Finallyné-varying state sum caused by packet loss or
communication failure is considered in [16€], [17], and thevidtion from the initial average is analyzed.

We develop a new approach to handle the problem that the siateof agents need not be preserved.
Similar to [12], we also augment an additional variable facte agent, which we call “surplus”; different
from [13], [14], the function of surplus variables is to red@very state change of the associated agent.
Thus, in effect, these variables collectively maintain itifermation of the average shift amOLﬂwUsing
this novel idea, our main contribution is the design of linakyorithms (without switching) to achieve
average consensus on general strongly connected digrapltentrast with the types of algorithms
designed in[[13],[[14] and_[1, Section 7.4]. Also, linearéjlows us to employ certain matrix tools
in analysis, which are very different from the proof methaged in [13], [14] and[[1, Section 7.4].
Moreover, our technical contribution in this paper is thendestration of matrix perturbation tools
(including eigenvalue perturbation, optimal matchingtati€e, and Bauer-Fike Theorem [20]=[22]) in
analyzing convergence properties, which seems unexplaréte consensus literature.

Our idea of adding surpluses is indeed a continuation of eur previous work in[[28], where the
original surplus-based approach is proposed to tagibntizedaverage consensus on general digraphs.
There we developed a quantized (thus nonlinear) averadgayithm, and the convergence analysis is
based on finite Markov chains. By contrast, the algorithnsigieed in the present paper are linear, and
hence the convergence can be characterized by the spacpalriies of the associated matrices. On the
other hand, our averaging algorithms differ also from thbasic ones[[3],[]6] in that the associated
matrices contain negative entries. Consequently for oalyais tools, besides the usual nonnegative
matrix theory and algebraic graph theory, the matrix pedtion theory is found instrumental.

The paper is organized as follows. Sectidn Il formulatedribisted average consensus problems in
both synchronous and asynchronous setups. Se€fidns [IMamesent the respective solution algorithms,
which are rigorously proved to guarantee state averagingeoeral strongly connected digraphs. Further,
Section Y explores certain special topologies that leaduspecialized results, and Sectlod VI provides
a set of numerical examples for demonstration. FinallytiSef/Il] states our conclusions.

Notation.Let 1:= [1---1]7 € R" be the vector of all ones. For a complex numBedenote its real

part by Ré)\), imaginary part by If\), conjugate by\, and modulus by\|. For a setS, denote its

1The method of augmenting auxiliary variables is also foundfiB] and [19], aspredictorsestimating future states arsthift
registersstoring past states respectively, in order to acceleraisassus speed. How the predictors or registers are usedsa th

references is, however, very different from our usage oplsses.



cardinality by cardS). Given a real number, |z| is the largest integer smaller than or equaktand
[x] is the smallest integer larger than or equaktdSiven a matrix)M, |M| denotes its determinant; the
spectrumo (M) is the set of its eigenvalues; the spectral ragitsd/) is the maximum modulus of its

eigenvalues. In addition| - || and|| - ||« denote the2-norm and infinity norm of a vector/matrix.

[I. PROBLEM FORMULATION

Given a network ofn (> 1) agents, we model its interconnection structure by a dig@p= (V, €):
Eachnodein V = {1,...,n} stands for an agent, and each direcgelfje(j,7) in £ C V x V denotes
that agentj communicates to agermt(hamely, the information flow is fromj to ). Selfloop edges are
not allowed, i.e.,(i,i) ¢ £. In G a nodes is reachablefrom a nodej if there exists a path fromj to
1 which respects the direction of the edges. We Gag strongly connectedf every node is reachable
from every other node. &losed strong componenf G is a maximal set of nodes whose corresponding
subdigraph is strongly connected and closed (i.e., no nosideé the subdigraph is reachable from any
node outside). Also a nodeis calledglobally reachablef every other node is reachable froin

At time k& € Z, (nonnegative integers) each node V has a scalar state;(k) € R; the aggregate
state is denoted by(k) = [z1(k)-- -z, (k)] € R™. The average consensus probleaims at designing
distributed algorithms, where individual nodes updaterte&ates using only the local information of
their neighboring nodes in the digraghsuch that allz;(k) eventually converge to the initial average
z, := 172(0) /n. To achieve state averaging on general digraphs, the méicutti is that the state sum
1”7z need not remain invariant, which can result in losing tratkhe initial averager,. To deal with
this problem, we propose associating to each node additional variable;(k) € R, called surplus
write s(k) = [s1(k)--- s,(k)]¥ € R™ and sets(0) = 0. The function of surplus is to locally record the
state changes of individual nodes such thhtz(k) + s(k)) = 172(0) for all time &; in other words,
surplus keeps the quantitf (= + s) constant over time.

In the first part of this paper, we consider synchronous nesvas in [3]: At each time, every node

communicates with all of its neighbors simultaneously, #reh makes a corresponding update.
Definition 1. A network of agents is said to achieaverage consensus for every initial condition
(2(0),s(0) = 0), it holds that(x(k), s(k)) — (2,1,0) ask — co.

Probleml. Design a distributed algorithm such that agents achieemge consensus on general digraphs.
To solve this problem, we will propose in Sectibnl lll a sugphased distributed algorithm, under

which we justify that average consensus is achieved forrgés&ongly connected digraphs.



In the second part, we consider the setup of asynchronowsriet as in [[6]. Specifically, commu-
nication among nodes is by means gdssip At each time, exactly one eddg,i) € £ is activated
at random, independently from all earlier instants and w&ittime-invariant, strictly positive probability
pi; € (0,1) such thatz(meg pi; = 1. Along this activated edge, nodesends its state and surplus to

nodei, while nodei receives the information and makes a corresponding update.

Definition 2. A network of agents is said to achieve

(i) mean-square average consenguf®r every initial condition(z(0), s(0) = 0), it holds that
E [||lz(k) — z,1]|3] — 0 and E [||s(k)[|3] — 0 ask — oo;

(i) almost sure average consenstifor every initial condition(x(0), s(0) = 0), it holds that

(x(k), s(k)) — (z41,0) ask — oo with probability one.

As defined, the mean-square convergence is concerned vétiseébond moments of the state and
surplus processes, whereas the almost sure convergendgéhiseapect to the corresponding sample
paths. It should be noted that in general there is no implinatetween these two convergence notions
(e.g., [24, Section 7.2]).

Problem 2. Design a distributed algorithm such that agents achieganssquare and/or almost sure
average consensus on general digraphs.

For this problem, we will propose in SectionllV a surplusdzhgossip algorithm, under which we
justify that both mean-square and almost sure average gsasean be achieved for general strongly

connected digraphs.

[1l. AVERAGING IN SYNCHRONOUSNETWORKS

This section solves Problem 1. First we present a (disc¢i@ie) distributed algorithm based on surplus,
which may be seen as an extension of the standard consegsuishahs in the literature [1]5[5]. Then

we prove convergence to average consensus for generafjistmonnected digraphs.

A. Algorithm Description

Consider a system of. agents represented by a digragh= (V,£). For each node < V, let
N = {j € V:(j,i) € £} denote the set of its “in-neighbors”, and~ := {h € V: (i, h) € £} the set
of its “out-neighbors”. Note tha\;" # N, in general; and ¢ N;" or N, for selfloop edges do not
exist. There are three operations that every nogerforms at timek € Z . First, nodei sends its state

information z;(k) and weighted surplus;;,s;(k) to each out-neighbat € N;”; here thesending weight



by, is assumed to satisfy thay, € (0,1) if h e N7, by, =0if h e V-N, and}_, - by < 1.
Second, nodé receives state information;(k) and weighted surplus;;s;(k) from each in-neighbor

j € N;©. Third, nodei updates its own state;(k) and surpluss;(k) as follows:

vk + 1) = 2i(k) + Y ag(aj(k) — zi(k)) + esi(k), (1)
JENT
silk+1) = (1= 30 basik) + 3 bsi(k)) = (il +1) — (k) ) )
heN;” JENT

where theupdating weight;; is assumed to satisfy that; € (0,1) if j € N;7, a;; =01if j € V- N1,
and Zje/\ff a;; < 1, in addition, the parameteris a positive number which specifies the amount of
surplus used to update the state.

We discuss the implementation of the above protocol in apptins like sensor networks. Lét =
(V, &) represent a network sensor nodes. Our protocol deals warticwith scenarios where (i) sensors
have different communication ranges owing possibly toimtisttypes or power supplies; (i) communi-
cation is by means of broadcasting (e.g., [12]) which agaghirhave different ranges; and (iii) strategy
of random geographic routing is used for efficient and rolmeste value aggregation in one direction
[13], [14]. In these scenarios, information flow among ses$® typically directed. A concrete example
is using sensor networks for monitoring geological areag.(&olcanic activities), where sensors are
fixed at certain locations. At the time of setting them up,gkasors may be given different transmission
power for saving energy (such sensors must run for a long) ton®wing to geological reasons. Once
the power is fixed, the neighbors (and their IDs) can be knaneeatch sensor. Thus, digraphs can arise in
static sensor networks where the neighbors can be fixed and knowimgiement states and surpluses,
we see from[{l1),[{2) that they are ordinary variables locattyred, updated, and exchanged; thus they
may be implemented by allocating memories in sensors. Fop#rametee, we will see that it plays
a crucial role in the convergence of our algorithm; howevanust be chosen sufficiently small, and a
valid bound for its value involves non-local informationtbe digraph. The latter constraint (in bounding
a parameter) is often found in consensus algorithms ineglvhore than one variablel![5], [25], [26].
One may overcome this by computing a valid bound offline, amtifynthat ¢ value to every node.

Now let theadjacency matrixA of the digraphg be given byA := [a;;] € R™*", where the entries are
the updating weights. Then theplacian matrixL is defined ad. := D— A, whereD = diagdy, ... ,d,)
with d; = Z;‘:l a;;. ThusL has nonnegative diagonal entries, nonpositive off-diagentries, and zero
row sums. Then the matriX — L is nonnegative (byzjejw a;; < 1), and every row sums up to

one; namelyl — L is row stochastic Also let B := [bih]T € R™ " where the entries are the sending



N = {4} N =123}

No"={1,3,4} Ny = {4}

N"={14} Ny ={2,4}
F={23 N ={1,23}

@

Fig. 1. lllustrating example of four agents: communicattopology and neighbor sets.

weights (note that the transpose in the notation is neededulseh € N~ for b;;). Define the matrix
S := (I — D)+ B, where D = diag(dy,...,d,) with d; = >_}_, biy. Then S is nonnegative (by
ZheN; bin < 1), and every column sums up to one; i.8.js column stochasticAs can be observed
from (2), the matrixS captures the part of update induced by sending and recesingus.
With the above matrices, the iteratio$ (1) and (2) can bé&emrin a matrix form as
[w(kJr 1)] =M [w(k)] . whereM := {[ Lo ] € R2nx2n, (3)
s(k+1) s(k) L S—el
Notice that (i) the matrix\/ has negative entries due to the presence of the Laplaciatixniain the
(2, 1)-block; (ii) the column sums oft/ are equal to one, which implies that the quantity) + s(k) is

a constant for alk > 0; and (iii) the state evolution specified by tiig 1)-block of M, i.e.,
w(k+1) = (I - L)x(k), (@)
is that of thestandardconsensus algorithm studied in the literature (€.g., B],[E]). We will henceforth

refer to [3) as the deterministic algorithm, and analyzedisvergence properties in the next subsection.

Examplel. For an illustration of the algorithn{}3), consider a netwarkfour nodes with neighbor
sets shown in Figlll. Fixing € [1,4], let a;; = 1/ (cardN;") +1) for every j € N;" and b, =
1/ (card ;") + 1) for everyh € N; . Then the matrix)/ of this example is given by

12 0 00 12| . 0 0 0o ]
/4 1/4 1/4 14| 0 c 0 0
13 0 13 1/3] o0 0 ; 0
|0 us s s o 0 0 ;
12 0 0 -1/2]1/3-¢ 0 0 1/4
_1/4 3/4 —1/4 —1/4| 1/3 12— 1/3  1/4
130 23 —1/3| 1/3 0 1/3-€¢ 1/4

0 13 13 23| 0 2 13 1fd-c

We see thatV/ has negative entries, and every column sums up to one.



B. Convergence Result

The following is a graphical characterization for the detimistic algorithm [(B) to achieve average

consensus. The proof is deferred to Seclion 11I-C.

Theoreml. Using the deterministic algorithrl(3) with the parameter 0 sufficiently small, the agents

achieve average consensus if and only if the digrdph strongly connected.

Without augmenting surplus variables, it is well known [Bht a necessary and sufficient graphical
condition for state averaging is that the digraplis both strongly connected anmhlanceH. A balanced
structure can be restrictive because when all the weightsare identical, it requires the number of
incoming and outgoing edges at each node in the digraph thebeame. By contrast, our algorithfd (3)
ensures average consensus for arbitrary strongly corthdeaphs (including those non-balanced).

A surplus-based averaging algorithm was initially promgbse[23] for a quantized consensus problem.
It guarantees that the integer-valued states convergethtereir, | or [x,]; however, the steady-state
surpluses are nonzero in general. There, the set of statesumpluses is finite, and thus arguments of
finite Markov chain type are employed in the proof. Distinctni [23], with the algorithm[{3) the states
converge to the exact averagg and the steady-state surpluses are zero. Moreover, siacadbrithm
@) is linear, its convergence can be analyzed using toohs fmatrix theory, as detailed below. This last
linearity point is also in contrast with the division inveld algorithm designed in [13], [14].

The choice of the parametedepends on the graph structure and the number of agent® follkbwing,

we present an upper bound erfor general networks.

Propositionl. Suppose that the digraghis strongly connected. The deterministic algorittith (3)iaehs

average consensus if the parameteatisfiese € (0, &), where

e .= m (1 —|X3])", with A3 the third largest eigenvalue dff by settinge = 0.  (5)
mn

The proof of Proposition]1 is presented in Secfion 1lI-D, ethiemploys a fact from matrix pertur-
bation theory (e.g.[[21]/[22]) relating the size oto the distance between perturbed and unperturbed
eigenvalues. Also, we will stress that this proof is basedhat of Theoreni]l. The above bour®
ensures average consensus for arbitrary strongly corthemgelogies. Due to the power, however, the
bound is rather conservative. This power is unavoidableafor perturbation bound result with respect

to general matrices, as is well known in matrix perturbafiterature [21], [22]. In Sectiof’V, we will

?A digraph G with its adjacency matrixA = [a;;] is balanced ify""_, ai; = >-7_, ay; for all i. Equivalently, the system
matrix I — L of the standard consensus algoritrth (4) is both row and aolsimchastic[3],[[4].



exploit structures of some special topologies, which yileks conservative bounds enAlso, we see
that the bound in[(5) involve&s, the second largest eigenvalue of eitlier L or S (matrix M is block-
diagonal where = 0). This infers that, in order to bound we need to know the structure of the agent
network. Such a requirement when bounding some parametezsnisensus algorithms, unfortunately,
seems to be not unusual [5], ]|25], [26].

C. Proof of Theorem]1

We present the proof of Theorelmh 1. First, we state a necessahsufficient condition for average

consensus in terms of the spectrum of the marix

Proposition2. The deterministic algorithni13) achieves average conseiisand only if 1 is a simple

eigenvalue ofM, and all other eigenvalues have moduli smaller than one.
Proof. (Sufficiency) Since every column df/ sums up to one] is an eigenvalue of/ and [1T 177
is a corresponding left eigenvector. Note also thapl” 0]” = [17 0]7; so [17 0]7 € R?" is a right

eigenvector corresponding to the eigenvalu&Vrite M in Jordan canonical form as

2
M=VvJv!= Lo :
= =y o Yo D
Jl
%

wherey;, z; € C*", i € [1,2n], are respectively the (generalized) right and left eigetors of M; and
J' e Cn=1)x(2n=1) contains the Jordan block matrices corresponding to thigeeealues with moduli
smaller than one. For the eigenvaluiehoosey; = [17 0|7 and z; = (1/n)[17 17)7; thus 2Ty, = 1.

Now the kth power of M is

1 0 1997 1997
MF=vJtvl=v Vgl = | " . ask — oo.
0 (J)k 0 0
Therefore
x(k 2(0 1117 1117 |z(0 L11172(0 241
s(k) s(0) 0 0 s(0) 0 0

(Necessity) First we claim that the eigenvaluef M is always simple. Suppose on the contrary that
the algebraic multiplicity ofl equals two. The corresponding geometric multiplicity, lewer, equals

one; this is checked by verifying rafk/ — I) = 2n — 1. Thus there exists a generalized right eigenvector
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u = [ul ul]T € R?" such that(M — I)?u = 0, and(M — I)u is a right eigenvector with respect to the

eigenvaluel. Since[17 0]” is also a right eigenvector corresponding to the eigenvaliemust hold:

(M — Iu = ¢[1T 0T, for some scalar # 0

—L el Uy 1
= =c
L S—1—ell| |us 0
—Luy 4+ eug =l
=

Lui + (S — Iug — eug =0
= (S —1Dug =cl

One may verify that ranlS — I) = n — 1 but ranK[S — I ¢1]) = n. Hence there is no solution far,,
which in turn implies that the generalized right eigenveetaannot exist. This proves our claim.
Now suppose that there is an eigenvaluef M such that\ # 1 and|A| > 1. But this immediately

implies thatlim;_,., M* does not exist’[4]. Therefore, average consensus cannathievad. |

Next, we introduce an important result from matrix pertdidratheory (e.g.,[[20, Chapter 2]), which
is found crucial in analyzing the spectral properties of inrix M in (3). The proof of this result can
be found in [[20, Sections 2.8 and 2.10]. An eigenvalue of arim& said semi-simpleif its algebraic

multiplicity is equal to its geometric multiplicity.

Lemmal. Consider ann x n matrix W (e) which depends smoothly on a real parameter 0. Fix

[l €l,n]; let \y =--- = X\, be a semi-simple eigenvalue &f (0), with (linearly independent) right
eigenvectorsyy, ...,y and (linearly independent) left eigenvectats. . ., z; such that
2
i - w] =1
4

Consider a smalt > 0, and denote by, (¢) the eigenvalues ofV (¢) corresponding to\;, i € [1,1].

Then the derivativeg\;(¢)/de|.—o exist, and they are the eigenvalues of the following! matrix:

AWy - Wy,

: . whereW := dW (e)/de|—o. (6)
leWyl s leWyl

Now we are ready to prove Theorem 1. The necessity arguméoivéo from the one for[[23,

Theorem 2]; indeed, the class of strongly connected digraplaracterizes the existence of a distributed
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algorithm that can solve average consensus. For the sufficigart, let

I-L 0 0 I
My = and F := . (7

L S 0 —I
Then M = M, + ¢F, and we viewM as being obtained by “perturbingV/, via the termeF'. Also,
it is clear thatM depends smoothly oa Concretely, we will first show that the eigenvalugsof the

unperturbed matrix\/, satisfy
1:/\1:/\2>|>\3|2"'2|/\2n|- (8)

Then using Lemma]1 we will establish that after a small pbetioncF', the obtained matriX/ has only

a simple eigenvalué and all other eigenvalues have moduli smaller than one. iShtise characteristic
part of our proof. Finally, it follows from Propositidn 2 thaverage consensus is achieved. It should
be pointed out that, unlike the standard consensus algof@), the tools in nonnegative matrix theory
cannot be used to analyze the spectrum\bfirectly due to the existence of negative entries.

Proof of Theorerhl1(Necessity) Suppose thétis not strongly connected. Then at least one nodg of
is not globally reachable. Let; denote the set of non-globally reachable nodes, and wsitesitdinality
cardV;) =r, r € [L,n]. If r = n, i.e.G does not have a globally reachable node, tfdras at least two
distinct closed strong components [27, Theorem 2.1]. Ia daise, if the nodes in different components
have different initial states, then average consensusotdr achieved. It is left to consider < n.
Let V, := V — V7 denote the set of all globally reachable nodes; thyss the unique closed strong
component ing [27, Theorem 2.1]. Consider an initial conditi¢n(0), 0) such that all nodes iw, have
the same state € R, and not all the states of the nodesWj equalc. Hencez, # c. But no state
or surplus update is possible for the nodes/jnbecause it is closed, and therefore average consensus
cannot be achieved.

(Sufficiency) First, we prove the assertidd (8). Sinfg is block (lower) triangular, its spectrum is
o(Mp) = o(I-L)Uo(S). Recall that the matrices— L and.S are row and column stochastic, respectively;
so their spectral radii satisfy(I — L) = p(S) = 1. Now owing to thatG is strongly connected] — L
and S are bothirreducible thus by the Perron-Frobenius Theorem (see, €.gl, [28,t€h8) p(I — L)
(resp.p(9)) is a simple eigenvalue of — L (resp.S). This implies [8). Moreover, foh; = A\ = 1, one
derives that the corresponding geometric multiplicity &guwo by verifying rankMy — I) = 2n — 2.
Hence the eigenvaluk is semi-simple.

Next, we will qualify the changes of the semi-simple eigdnga\; = A\, = 1 of M, under a small

perturbatione F'. We do this by computing the derivativé3; (¢)/de andd)z(¢)/de using Lemmall; here
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A1(e) and \o(e) are the eigenvalues dff corresponding respectively ty, and \,. To that end, choose

the right eigenvectorg;, yo and left eigenvectors,, zo of the semi-simple eigenvalueas follows:

0 1 2F 17 17
Vo —NU2 2y vi 0

Herev; € R™ is a left eigenvector of — L with respect tgo(I — L) such that it is positive and scaled to
satisfyv?'1 = 1; andwvy € R” is a right eigenvector of corresponding te(S) such that it is positive
and scaled to satisf{’ v, = 1. The fact that positive eigenvectars andv; exist follows again from the
Perron-Frobenius Theorem. With this choice, one readigckbZY = I. Now sincedM /de|.—¢ = F,

the matrix [6) in the present case is

szyl szyg B 0 0

2 Fy 2l Fyo N vive —nvlvy
It follows from Lemmall that for smakt > 0, the derivativesi\;(e)/de, d\2(€)/de exist and are the
eigenvalues of the above matrix. Hent (¢)/de = 0, andd\s(€)/de = —nvl vy < 0. This implies that
whene is small, A\ (¢) stays put while\y(e) moves to the left along the real axis. Then by continuity,
there must exist a positiv@ such that\;(d;) = 1 and\2(d1) < 1. On the other hand, since eigenvalues
are continuous functions of matrix entries (e.@.,![21].]]22here must exist a positivé; such that
|Xi(62)] < 1 for all ¢ € [3,2n]. Thus for any sufficiently smalt € (0, min{d;,d2}), the matrix M
has a simple eigenvalue and all other eigenvalues have moduli smaller than one. €fbie, from

Propositior 2, the conclusion that average consensus isv&chfollows. |

Remarkl. Assuming that the deterministic algorithrn] (3) convergeshe average, the speed of its
convergence is governed by the second largest (in modulysiealue of the matrixi/. We denote this
particular eigenvalue byxgd), and refer to it as theonvergence factoof algorithm [3). Note thatxgd)
depends not only on the graph topology but also on the pammeand)\gd) < 1is equivalent to average

consensus (by Propositibh 2).

Remark2. Because of adding surpluses, the mattixin (3) is double in size and is not nonnegative.
Hence standard nonnegative matrix tools cannot be diragihjied; this point was also discussed[inl[12].
In [19] a system matrix containing negative entries was ya@al, which depends however on symmetry
of network structures. By contrast, we deal with generalvoét topologies and have demonstrated that

certain matrix perturbation tools are useful in proving\angence.
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D. Proof of Propositiori 1L

Some preliminaries will be presented first, based on whidp®&sition 1 follows immediately. Hence-
forth in this subsection, the digragh is assumed to be strongly connected. We begin by introducing
a metric for the distance between the spectrumsMyf and M; here M = My + eF, with M,
and F' in [@). Let o(Mp) := {)\1,..., 2} (Where the numbering is the same as that[ih (8)) and
o(M) :={Ai(€),...,Aan(e)}. Theoptimal matching distancé (o (M), o (M)) [21], [22] is defined by

A(0(Mo) o(M)) =i max A = Asi)(€)] (©)
™ i€|l,2n

wherer is taken over all permutations dfl,...,2n}. Thus if we draw2n identical circles centered

respectively at\, ..., Aoy, thend (o(My),o(M)) is the smallest radius such that these circles include

all Ay(e),...,Aan(€). Here is an upper bound on the optimal matching distanceTB&prem VIII.1.5].
Lemma2. d (o(Mo),o(M)) < 4 (||Mo]loc + [|M]|oc) =1/ [|eF||2L".

Next, we are concerned with the eigenvaligg&), . . . , A2, (¢) of M, whose corresponding unperturbed

counterparts\s, . .., \g, of Mj lie strictly inside the unit circle (see the proof of Theorén
Lemma3. If the parametet € (0,é@) with é4) in @), then|Az(e)|, ..., |Xan(e)] < 1.
Proof. SinceL = D — A andS = (I — D) + B, one can computélL||o = 2max;e( ) d; < 2 and
[1S]|loo < n. Then||Molloo < ||Ll|oo + [|S]loc < 2+ n and||F||~ < 1. By Lemmal2,

d (0(Mo),a(M)) < 4 (2/[Moloo + €| Flloc) =™ (€| Fl]oc) /"

<4 (@424 ca (A4 mte) /<1 — |2

The last inequality is due te < &% in ). Now recall from the proof of Theorefd 1 that the
unperturbed eigenvaluekss, . .., Ay, of My lie strictly inside the unit circle; in particular{](8) hald

Therefore, perturbing the eigenvalugs, ..., A\, by an amount less tha# the resulting eigenvalues

As(€), ..., Ao (e) will remain inside the unit circle. [

It is left to consider the eigenvalues () and \2(e) of M. Since every column sum dff equals one
for an arbitrarye, we obtain thatl is always an eigenvalue df/. Hence\;(¢) must be equal td for

anye. On the other hand, foks(¢) the following is true.
Lemmad4. If the parametet € (0,&4) with &%) in @), then|\y(e)| < 1.

Proof. First recall from the proof of Theorel 1 thag = 1 andd\;(e)/de < 0; so for sufficiently small
e > 0, it holds that|\;(e)| < 1. Now suppose that there exists= (0, @) such thai Ay ()| > 1. Owing
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to the continuity of eigenvalues, it suffices to consiger(d)| = 1. There are three such possibilities, for
each of which we derive a contradiction.

Case 1:\2(0) is a complex number with nonzero imaginary part akgld)| = 1. SinceM is a real
matrix, there must exist another eigenvalugd), for somei € [3,2n], such that\;(d) is a complex
conjugate of\y(d). Then|\;(6)| = |A2(d)| = 1, which is in contradiction to that all the eigenvalues
A3(9), ..., Xan(6) stay inside the unit circle as < (0,&é%) by LemmaB.

Case 2\y(6) = —1. This implies at least (o(My), o(M)) = 2, which contradictgl (o(My),o(M)) <
1 — |A3] < 1 when [3) holds.

Case 3:\2(0) = 1. This case is impossible because the eigenvalo¢ M is always simple, as we

have justified in the necessity proof of Propositidn 2. |

Summarizing Lemmag] 3 arid 4, we obtain that if the parameter(0,é®) with €4 in (§), then
A1(€) =1 and|Az(e)], [A3(€)], - -, |Aan(€)| < 1. Therefore, by Propositidd 2 the deterministic algorithm

(3) achieves average consensus; this establishes Piop@it

IV. AVERAGING IN ASYNCHRONOUSNETWORKS

We move on to solve Problem 2. First, a surplus-based godgguitam is designed for digraphs,
which extends those algorithmis [6]:-[9] only for undirectg@phs. Then, mean-square and almost sure

convergence to average consensus is justified for arbistaongly connected topologies.

A. Algorithm Description

Consider again a network of agents modeled by a digragh= (V,£). Suppose that at each time,
exactly one edge ig is activated at random, independently from all earlierénst. Say edgéj, i) is
activated at timek € Z,., with a constant probability;; € (0,1). Along the edge, the state information
xj(k) and surpluss;(k) are transmitted from nodgto <. The induced update is described as follows:

(i) Let w;; € (0,1) be the updating weight, and> 0 be a parameter. For node
wl(/c + 1) = xl(kz) + wij(wj(k) — xz(k)) + ewijsi(k), (10)

si(k +1) = si(k) + 5;(k) — (zi(k + 1) — z4(k)), (11)

(i) For nodey: zj(k + 1) = z;(k) ands;(k+1) = 0.
(iii) For other noded € V — {i,j}: o1(k + 1) = y(k) and s;(k + 1) = s;(k).
We discuss potential applications of this protocol in semgdworks. Our focus is again on the situations

of directed information flow, like asynchronous commurimatwith variable ranges or unidirectional
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geographic routing [13]/[14]. First, the states and swsptucan be implemented as ordinary variables in
sensors, since their exchange and updating rules are $inlyle and purely local. Also, we will see that
the parametet, as in the algorithm[(3), affects the convergence of therilgn, and must be chosen
to be sufficiently small. A valid upper bound ferinvolves again non-local information of the network;
thus computing a bound offline and then notifying that valmevery node is one possible way to deal
with this restriction.

Now let A;; be the adjacency matrix of the digragh; = (V,{(j,4)}) given by A;; = wijfiij,
where f;, f; are unit vectors of the standard basis®f. Then the Laplacian matriX;; is given by
Lj; == Dj; — Aj;, whereDj; = wijfifiT. Thus L;; has zero row sums, and the mattlix- L;; iS row
stochastic. Also defing;; == I — (f; — fl-)ij; it is clear thatS;; is column stochastic. With these
matrices, the iteration of states and surpluses when éflggis activated at time: can be written in

the matrix form as

E+1 k I—1L; D
TEEDL i ™M whereh() = a1y = e
s(k+1) s(k) Lji  Sji — €Dj;

(12)

We have several remarks regarding this algorithm. (i) Therima/ (k) has negative entries due to
the presence of the Laplacian mati; in the (2,1)-block. (i) The column sums ol (k) are equal

to one, which implies that the quantity(k) + s(k) is constant for allk. (iii) By the assumption on
the probability distribution of activating edges, the seage M (k), £ = 0,1,..., is independent and
identically distributed (i.i.d.). Henceforth we refer fb2) as the gossip algorithm, and establish its mean-
square and almost sure convergence in the sequel.

Example2. Consider again the network of four nodes in Hig). 1. We give imstance of the matrix
M (k) when edges3,2) is activated, with the updating weight,s = 1/2.

1 0 o olo o o0 0]
0 1/2 1/2 0|0 ¢/2 0 0
0O 0 1 0/0 0 00
M32:00 010000’
0O 0 0 0L 0 00
0 1/2 =1/2 0|0 1-¢/2 1 0
0O 0 0 0/0 0 00
00 0 00 0 0 1]

We see thatV/ (k) has negative entries, and every column sums up to one.
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B. Convergence Result

We present our main result in this section.

Theorem2. Using the gossip algorithni_(I12) with the parameter- 0 sufficiently small, the agents

achieve mean-square average consensus if and only if theptig is strongly connected.

We remark that Theoreld 2 generalizes the convergence mneg@]tfrom undirected to directed graphs.
The problem of achieving average consensus on gossip tigiap however, more difficult in that the
state sum of the nodes need not be invariant at each iterdtlm key in our extension is to augment
surplus variables which keep track of individual state upslathereby ensuring average consensus for
general strongly connected digraphs. This approach wasopiy exploited in[[12] for a broadcast gossip
algorithm, however without a convergence proof. We remiaak our technique to prove Theoréi 2, based
on matrix perturbation theory, can be applied|tol [12] andifyishe algorithm convergence.

We note that in the literature, many works for agents with-soalar dynamics deal only with static
networks (e.g.,[[25],[129]). Some exceptions includel [1%jich relies heavily on graph symmetry and
[5] which is based on dwell-time switching. By contrast, wedy general digraphs that switch at every
discrete time and each resulting update matrix is not naatingg The corresponding analysis is difficult,
and we will demonstrate again that matrix perturbationga@ok instrumental in proving convergence.

To prove Theoreri2, three preliminary results are to be bskedul in order. The first is a necessary
and sufficient condition for mean-square average conseastmracterized by the spectrum of the matrix
E[M(k)® M(k)], where ® stands for the Kronecker product. This condition will be dise the
sufficiency proof of Theorerh]2. Since the matrick&k) are i.i.d. we denote [M (k) @ M(k)] by
E[M ® M]. This result corresponds to Propositidn 2 for the deterstimialgorithm in SectiofTll.

Proposition3. The gossip algorithn(12) achieves mean-square averagegsos if and only ifl is a

simple eigenvalue of [M ® M], and all the other eigenvalues have moduli smaller than one.

Proof. (Sufficiency) Define the consensus eredk), £ > 0, as

e R?", (13)

We must show thaf [e(k)Te(k)] — 0 ask — oco. Sincel” (z(k) + s(k)) = 17 z(0) for everyk > 0,
e(k) is orthogonal to[1” 1777 (i.e., [1T 1T]e(k) = 0). Also it is easy to check(k + 1) = M (k)e(k);
thuse(k + 1)e(k+ 1) = M(k)e(k)e(k)T M (k)T . Collect the entries of(k)e(k)”, drawn column wise,

into a vectoré(k) € R*”. It then suffices to show thdf [¢(k)] — 0 ask — cc.
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Now it follows thaté(k+1) = (M (k) @ M(k)) é(k) (cf. [6]). HenceE [é(k + 1)|e(k)] = E [M & M]e(k),
and condition repeatedly to obtaif[é(k)] = E [M ® M]* &(0). Note that every column of [M @ M]

o[- ) B

so1 is an eigenvalue off [M ® M], with [1T 17)7 @ [1T 17)T and[1T 0]” @ [1T 0]” as associated left

sums up to one, and

and right eigenvectors, respectively. Write[M ® M| in Jordan canonical form as

z
. 1ol
EIM@M]=VJV :[w a ym4 0 7 s
T
Zin2

where J’' contains the Jordan block matrices corresponding to thagnealues with moduli smaller
than one. For the eigenvaluechoosey; = [17 0]7 @ [1T 0]7 andz; = 1/n2[17 17)T @ [1T 177, thus

z{y; = 1. Then thekth power of E [M @ M] is

EMeMF=vJvi=v Vvt sy, ask — .

0 (J/)k
Therefore we obtain
2n

2n 2n
E[e(k)] =121 60) =1 > (e,-(()) > ej(O)) =11y €i(0)-0=0,
j=1 i=1

i=1
where the second equality is duedgk) L [17 1777,

(Necessity) Suppos® [e(k)Te(k)] — 0 ask — oco. ThenE [e;(k)?] — 0 for all i. It thus follows
from the Cauchy-Schwartz inequality (e.4..][24]) tiafle; (k)e; (k)[]* < E [e;(k)?] E [e;(k)?] — 0, for
everyi, j € [1,2n]. This impliesE [¢(k)] — 0; S0 limy_, E [M ® M]*&(0) = 0. Also, it is known [4]
thatlimy oo £ [M ® M]k exists if and only if there is a nonsingul&r such that

21
L. o] |
E[M@M]:VJV_lz Yy o y4n2:| [0 J/] . )

Z4n2
where s € [1,2n] and p(J') < 1. Hencelimy o E [M @ M]*(0) = (35, yi2F) €(0) = 0. Now
supposes > 1. Choose as beforg = 1/n%[17 11]7 @ [1T 1777, and recallz!e(0) = 0. We know from
the structure of/ that for everyj € [2, ], z; is linearly independent of;, which indicate&jTe(O) #0
and consequentlf>"7 | y;z] ) €(0) # 0. Thereforex = 1, i.e., the eigenvalue of E [M ® M] is simple

and all the others have moduli smaller than one. [ |
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The second preliminary is an easy corollary of the Perrab&nius Theorem.

Lemmab. (cf. [30, Chapter XllII]) LetiW be a nonnegative and irreducible matrix, anlde an eigenvalue

of W. If there is a positive vectos such thativ = \v, then\ = p(IW).

Proof. SinceW is nonnegative and irreducible, the Perron-Frobenius f@madmplies thatp(W) is a
simple eigenvalue of¥ and there is a positive left eigenvectorcorresponding te (W), i.e., w! W =

wl p(W). Then
p(W)(w'w) =" (p(W)w) = vT (WTw) = (Wo)'w = (o) w = AMvTw),
which yields (A — p(W))(vTw) = 0. Since bothv andw are positive, we conclude that= p(W). B

The last preliminary is on the spectral properties of theofahg four matricesE [(I — L) ® (I — L)],
E[(I-L)®S], F[S® (I —L)],andE[S® S].

Lemma6. Suppose that the digragh = (V, ) is strongly connected. Then each of the four matrices
El(I-L)y®(I-L)],E[I-L)®S], E[S® (I —L)],andE[S® S| has a simple eigenvalueand

all other eigenvalues with moduli smaller than one.

Proof. First observe that all the four matrices are nonnegative] foL;; andS;; are for every(j,i) € £.

Then since(l — Lj;)1 =1 and1”S;; = 17 for every(j,i) € &, a short calculation yields the following:
E(I-L)e(I-0)](1®1)=(1x1), E[I-L)®S](1®wv) = (1® vy);
AeHESeI-L)])=01"2s); @Te1")E[Ses = 1T o1").

Herew; is positive such that! £ [I — L] = v andv]1 = 1, andw, is positive such thaf? [S] vy = vy
and1Tv, = 1. Thus each matrix has an eigenvalueand the corresponding right or left eigenvector is
positive. In what follows, it will be shown that all the fouratmices are irreducible. Then the conclusion
will follow from Lemmal[8 and the Perron-Frobenius Theorem.

We first prove thatt [(I — L) ® (I — L)] is irreducible, which is equivalent to that the digragh=
(V,€) corresponding to this matrix is strongly connected, whegre= V x V = {(i,7) : i,i’ € V}.
Arrange the nodes i so thaty = V; U--- UV, whereV, = {(p,1),..., (p,n)} for everyp € [1,n].
Now sinceE [(I — L) @ (I — L)] = >_; yyee Pis(I — Lji) ® (I — Lji), the digraphg is the union of the
digraphs corresponding t®;(/ — L;;) ® (I — L;;). Note that eachy;;( — Lj;) ® (I — Lj;) gives rise
to (i) an edge from(p, j) to (p,7) in V, for everyp € [1,n], and (ii) edges from some nodes¥) to
some nodes iV;. Owing to thatg is strongly connected, the union of the above edges yietdss\very

i,j € [1,n], (i) a directed path fronip, ) to (p, 5) in V, for everyp € [1,n], and (ii) directed paths from
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some nodes irV; to some nodes i;. This implies that there is a directed path frgm1) to (¢, j) for
everyp,q,i,j € [1,n], i.e., G is strongly connected, and henég (I — L) ® (I — L)] is irreducible.

By a similar argument, we derive that the digraphs corredpgto £ [(I — L) ® S|, E[S ® (I — L)],
and E [S ® S] are all strongly connected. Therefore they are also irrédric |

We are now ready to provide the proof of Theoifdm 2. The netyesmgjument is the same as Theofdm 1.
Below is the sufficiency part.

Proof of Theoreni]2(Sufficiency) By Propositiof]3 it suffices to show that the mxat [M @ M]|
has a simple eigenvalug, and all other eigenvalues with moduli smaller than one. L&f(k) :=

{1 L) 0 0 D) ,
andF(k) := ; from (12) we haveMl (k) = My(k)+€eF (k). Then write

Lk)  S(k) 0 —D(k)

EM@M]=FE[My+€eF)® (My+€eF)] = FE[My® My +€eE[My®@ F+ F ® My+ F ® el
I-L 0_ I-L 0 I—-L 0 0 D
=F & + ek & +
L S L S L S

0 —D
0 D I-L 0 0 D 0 D
® + Qe .
0 —-D L S 0 —-D

0 —-D
Letp € [1,4n], andpn := {(p — 1)n + 1,...,pn}. Consider the following permutation:

{n,3n,....(2n— 1)n; 2n,4n, ..., 2nn;
2n+1)n,(2n+3)n,...,(4dn —1)n; 2n+2)n,(2n +4)n,...,4nn}.
Denoting by P the corresponding permutation matrix (which is orthoghnahe derives that

PTE[M @ M| P = PTE[My® My| P+ ePTE[My® F + F ® My+ F ® eF| P =: My + €F, (14)

where
(I-Ly®I-L) 0 0 0
R (I-L)®L I-L)®S 0 0
My .= FE ,
L®(I—-1L) 0 S®(I—1L) 0
L®L L®S S®L S®S

0 I-L)®D D®(-1L) D®eD
0 -(I-L)®D D®L D ® (S —eD)
0
0

>
li
o

L&D ~D®(I-L) (S—eD)® D
~L®D ~D®L D&(D-8)-S®D
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Based on the above similarity transformation, we henclefaralyze the spectral properties of the
matrix M, + ¢F'. For this, we resort again to a perturbation argument, wpitciteeds similarly to the
one for Theorenll1. First, since the digraghs strongly connected, it follows from Lemni& 6 that the

eigenvalues of the matrit/, satisfy
1:5\1:5‘2:5‘3:5‘4>’5‘5’2”’2’5\4n2‘- (15)

For the eigenvalué, one derives that the corresponding geometric multigliegjuals four by verifying
rank My — I) = 4n? — 4. Thus1 is a semi-simple eigenvalue.

Next, we will qualify the changes of the semi-simple eigénea\; = \» = A3 = Ay = 1 of M, under
a small perturbatiom”. We do this by computing the derivatives;(e)/de, i € [1,4], using Lemmdll,;
herej\,-(e) are the eigenvalues dfly + e/ corresponding to\;. To that end, choose the right and left

eigenvectors of the semi-simple eigenvaluas follows:

0 0 0 I1®1l
0 0 1® nvy —1® nvy
Y=ty y ys y4]= )
0 nvy ® 1 0 —nuvy ® 1
nuvg @ Ny —Nvs @ Nug —nuvy Q Nuy NUy Q Nug

| [MTel1T L1TgliT LTg LT 14T g 197
g 4| LT @ T 0 1T @ T 0

2d ’u{@%lT vf@%lT 0 0

_z4T_ i vl @of 0 0 0 |

Herew; is positive such that? E[I — L] = v andv{'1 =1, andw, is positive such thaf? [S] vy = vy
and1”v, = 1. With this choice, it is readily checked th&ty = I. Now the matrix)M, + ¢’ depends
smoothly one, and the derivativel(My + eF')/de|.—q is

. d(Mod—Ei—eF) :<F+ECZ_1:>
e=0 e=0
0 I-L)eD De-L) 0 |
|0 —t-pnep Do D® S
0 LoD  -De(-1L) S®D
0 -LsD -DeL -D®S5-S®D)
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Hence the matrix({6) in the present case is

_Z1Tﬁoy1 Ry 2] Foys ZlTFoy4_ i 0 0 0 0 ]
zgﬁoyl zgﬁoyg zgﬁ’oyg ng0y4 B m}fE[D]vg —nvlTE[D]Ug 0 0
APy 2 Foys 2 Foys 23 Foys - nv{ E[D]vy 0 —nv{ E[D]vy 0
U Foy 2 Foys 2f Foys 24 Foya] | 0 nv{ E[Dlvs no{ E[DJva —2nv{ E[D]uv, |

It follows from Lemmall that for smakt > 0, the derivativesi);(e)/de, i € [1,4], exist and are the
eigenvalues of the above matrix. Hené® (¢)/de = 0, da(e)/de = dAs(e)/de = —novT E[D]vy < 0,
and d\4(¢)/de = —2nvT E[D]vy < 0. This implies that wher is small, A, (¢) stays put, whiles(e),
A3(€), and \4(e) move to the left along the real axis. So by continuity, thexists a positived; such
that \1(d1) = 1 and X\2(01), A3(d1), A4(d1) < 1. On the other hand, by the eigenvalue continuity there
exists a positived, such that|)\;(62)] < 1 for all i € [5,4n?]. Therefore for any sufficiently small

e € (0,min{d;,d,}), the matrix My + eI has a simple eigenvalue and all other eigenvalues with

moduli smaller than one. [ |

Remark3. Assuming that the gossip algorithii {12) converges to theageein mean square, the speed
of its convergence is determined by the second largest (ouns) eigenvalue of the matrik [M @ M].
We denote this particular eigenvalue by), and refer to it as theonvergence factoof algorithm [12).
Notice that)\gg) depends not only on the graph topology but also on the pasaraeand )\gg) <1lis

equivalent to mean-square average consensus (by Propd3)ti

Remark4. We have established that for small enougkhe gossip algorithm[((12) achieves mean-square
average consensus. Using the same notion of optimal mataigtance and following the procedures
as in Subsectiof 1II-D, it may be possible to derive a genbmlind fore by solving the inequality

4 (|| Mo|los + || Mo + €F|oo) =Y [|eF||X" < 1 — | 5], where My, F are from [I%) and\; from (I5).
The corresponding computation is however rather long,esthe involved matrices are of much larger
sizes. Such a general bound unavoidably again involyeke number of agents in the network, akg

the second largest eigenvalue of one of the four matricesemrha 6. Consequently, the bound fois

conservative and requires the structure of the network.

Finally, we consider almost sure average consensus. Natéhth gossip algorithni (12) can be viewed
as ajump linear systemwith i.i.d. system matrices\/(k), k € Z.. For such systems, it is known
(e.g., [31, Corollary 3.46]) that almost sure convergera loe implied from mean-square convergence.

Therefore the result on almost sure convergence is imnediat
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Corollary 1. Using the gossip algorithni(l2) with the parameter 0 sufficiently small, the agents

achieve almost sure average consensus if and only if thehgj is strongly connected.

V. SPECIAL TOPOLOGIES

We turn now to a special class of topologies — strongly cotmte@and balanced digraphs — and
investigate the required upper bound on the paramef@rthe deterministic algorithni{3). Furthermore,
when these digraphs are restricted to symmetric or cychpeetively, we derive less conservative
bounds compared to the general onelih (5).

Given a digraphg = (V,€), its degreed is defined byd := max;cy card ;7). In the deterministic
algorithm [3) choose the updating and sending weights tesgectivelyu;; = 1/(2dn) andb;; = 1/(dn),
for every(j,i) € £. This choice renders the two matricés- 2L and S identical, when the digrap§ is
balanced. We will see that the equality- 2. = S supports a similarity transformation in dealing with

the cyclic case below.

Lemma?. Suppose that the parametesatisfiese € (0,2), and the zeros of the following polynomial

for every u # 0 with | —1/(2n)| < 1/(2n) lie strictly inside the unit circle:
p(N) == A2 + a1\ + ay, (16)

whereag := 2> — 3p — e + 1, oy := 3u + € — 2. Then the deterministic algorithrhl(3) achieves average

consensus on strongly connected and balanced digraphs.

Proof. We analyze the spectral properties of the mafvixin terms of those of the Laplacian matrix

Let u;, i = 1,...,n, be theith eigenvalue ofL. Sinceg is balanced and all the updating weights are
a;j = 1/(2dn), it follows from the Gershgorin Theorern [28, Chapter 6] that— 1/(2n)| < 1/(2n).
Further, agj is strongly connected, by the Perron-Frobenius Theorein@h&pter 8] we get that; = 0

is simple. Now substituting the equality = I — 2L into (3) one obtains

I-L el
M = .
L I—-2L—¢l

Consider the characteristic polynomial bf:

(_(Al)IJrL el D
det(N — M) = det
L (A—1+e)+2L

=det(A—DI+L)(AN=1+e€)I+2L)—¢L)

=det (A —1)(A—14+€)I +3(A—1)L +2L?).
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Here the second equality is due to thiat— 1) + L and —L commute [[32]. By spectral mapping one

derives that then eigenvalues of\/ can be obtained by solving the following equations:
A=—DA =146 +3AN—1)p+2ui=0, i=1,...,n (17)

For 3 = 0 we have from[(17) thah; = 1 and A = 1 — e. Sincee € (0,2), A2 € (—1,1). Now fix

i € [2,n] so thatu; # 0 and|u; —1/(2n)| < 1/(2n). Note that the left hand side df (17) can be arranged

into the polynomialp()) in (I8), whose zeros are inside the unit circle. It followstth is a simple

eigenvalue ofM, and all other eigenvalues have moduli smaller than onereftwe, by Proposition]2

we conclude that average consensus is achieved. |
Now we investigate the values efthat ensure the zeros of the polynomigl) in (16) inside the

unit circle, which in turn guarantee average consensusrongy connected and balanced digraphs by

LemmaY. For this, we view the polynomig{)) asinterval polynomial433] by letting .« take any value

in the squared < Re(u) < 1/n, —1/(2n) < Im(p) < 1/(2n). Applying the bilinear transformation

we obtain a new family of interval polynomials:

p) = (= (5] ) = oo oy + 2= 20007+ (oo -, (19)

Then by Kharitonov’s result for the complex-coefficienteathe stability ofp(v) (its zeros have negative
real parts) is equivalent to the stability of eight extrenmypomials [33, Section 6.9], which in turn
suffices to guarantee that the zerospfh) lie strictly inside the unit circle. Checking the stabiliof
eight extreme polynomials results in upper boundsedn terms ofn. This is displayed in Figl2 as
the solid curve. We see that the bounds grow linearly, whicimicontrast with the general bourd
in Proposition]L that decays exponentially and is known tccteservative. This is due to that, from
the robust control viewpoint, the uncertainty ofin the polynomial coefficients becomes smallerras
increases.
Alternatively, we employ the Jury stability test [34] to der that the zeros of the polynomial\)

are strictly inside the unit circle if and only if

1 (7)) 1 (&3]
ag 1 Qg Q1
1 (&%)
Bo 1= >0, p[:= > 0. (29)
ap 1
1 & 1 ap
oy Q1 (7))

Herep, andg; turn out to be polynomials in of second and fourth order, respectively; the correspandin

coefficients are functions gf andn. Thus selecting: such thaty # 0 and | — 1/(2n)| < 1/(2n), we
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Fig. 2. Upper bounds on parametesuch that deterministic algorithrfi] (3) achieves averages&asus on general strongly

connected balanced digraphs (solid and dashed curves)yatid digraphs (dotted curve).

can solve the inequalities ib_(119) ferin terms ofn. Thereby we obtain the dashed curve in Eig. 2, each
plotted point being the minimum value efover 1000 random samples such that the inequalitiedid (19)
hold. This simulation confirms that the true boundefor the zeros ofp(\) to be inside the unit circle
is between the solid and dashed curves. Since the discrgpérticese two curves is relatively small, it
is suggested that our previous analysis based on Khari®nesult may not very conservative.

Here ends our discussion erbounds for arbitrary balanced (and strongly connectedpgigs. In the
sequel, we will further specialize the balanced digrgpto be symmetric or cyclic, respectively, and
provide analytice bounds less conservative tham (5) for the general case.rticydar, the exponent is

not involved.

A. Connected Undirected Graphs
A digraphG = (V, €) is symmetridf (j,7) € € implies (i, j) € £. That is,G is undirected.
Proposition4. Consider a general connected undirected grépfihen the deterministic algorithrii](3)

achieves average consensus if the paramesatisfiese € (0, (1 — (1/n))(2 — (1/n)).

Proof. The symmetry of the undirected graghresults in the symmetry of its Laplacian matiix So all

the eigenvalueg, of L are real, and satisfy; = 0 and (Vi € [2,n]) p; € (0,1/n] (G is connected). For
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w1 = 0 we know from [I7) that\; = 1, and Ay € (—1,1) since0 < e < (1 — (1/n))(2 — (1/n)) < 2.
For u; € (0,1/n], i € [2,n], consider again the polynomial()) in (16). According to the Jury stability

test for real-coefficient case [35], the zerospoh) are strictly inside the unit circle if and only if
l+ag+a; >0, 14+ ag—a; >0, \a0]<1.

Straightforward calculations show that these conditioals Iprovidede € (0, (1 — (1/n))(2 — (1/n)).
Hence, the matrix\/ has a simple eigenvaluwg = 1 and all others\,, ..., X\, € (0,1). Therefore, by
Propositioi 2 the deterministic algorithil (3) achievesrage consensus. |

It is noted that for connected undirected graphs, the uppendb one ensuring average consensus
grows asn increases. This characteristic is in agreement with thahefbounds for the more general

class of balanced digraphs as we observed in[Fig. 2.

B. Cyclic Digraphs
A digraphG = (V,€) is cyclicif V={1,...,n} and€ = {(1,2),(2,3),...,(n—1,n),(n,1)}. So a
cyclic digraph is strongly connected.

Proposition5. Suppose that the digraghis cyclic. Then the deterministic algorithin (3) achievesrage

consensus if the parametesatisfies

V2 . _
€€ <O, 3+ /4 (1- |>\3|)> , with A3 as in [8) (20)

Further, in this cas@\s| = /1 — (1/n) + (1/(2n2)) + (1/n)(1 — 1/(2n)) cos 27 /n.

Before providing the proof, we state a perturbation reshé, Bauer—Fike Theorem, for diagonalizable
matrices (e.g./[28, Section 6.3]). Recall that the matdixin (3) can be written ad/ = M; + ¢F’, with
My and F' in (). Throughout this subsection, writg(¢) for the eigenvalues ol/, and \; for those of
M.

Lemma8. Suppose thafl/, is diagonalizable; i.e., there exist a nonsingular matfix C>**?" and a
diagonal matrixJ = diag(\1, ..., \2,) such thatMy = VJV =L If A(e) is an eigenvalue of\Z, then
there is an eigenvaluk; of My, for somei € [1,2n], such thatA(e) — A;| < |[V]|2 |[V 7|2 [|€F]|a.

In other words, every eigenvalue of the perturbed matfifies in a circle centered at some eigenvalue
of the unperturbed matrix\f, of the radius(||V||2 ||V ||2 ||eF||2). We now present the proof of
Propositiorb.

Proof of Propositio bSince the digraply is cyclic, we derive that its Laplacian matrixis given byL =

circ(1/(2n),0,...,0,—1/(2n)) — acirculant matrix[36] with the first row[1/(2n) 0 --- 0 —1/(2n)] €
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R™", Let w := 2™/ with + := /—1. Then the eigenvalues; of L are ;; = (1/(2n))(1 — w' 1),
i=1,...,n. Rewrite the equatiod (17) d\(¢) — 1)(A\(€) — 1 +¢) + 3(\(e) — 1)p; + 2u? = 0. Then for
u1 = 0, we havel;(e) = 1 and X\z(e) = 1 — ¢, corresponding respectively to the eigenvaliigs\s of
M. Evidently the upper bound if_(R0) is strictly smaller tHanso \s(e) € (—1,1).

We turn next to investigating the rest of the eigenvalug&), ..., Ao, (¢), for which we employ

Lemmal8. Let2 denote then x n Fourier matrix given by

1 1 1 1

1 w w? w1t
Q= % 1 w2 OJ4 w2(n—1)

1 w1l 2=l L (n=D)(n—1)

Note that() is unitary, i.e.,Q~' = Q* (the conjugate transpose 6). It is a fact that every circulant

Q 0
matrix can be (unitarily) diagonalized Ky [36, Theorem 3.2.1]. Now leV¥ := , and consider
Q Q

O 0| |I-L o |2 o] |eUu-D2 o0
—or ol | L sl la 0 0*sQ|

The last equality is due t6 = I — 2L. Hencel is diagonalizable vid/, and its spectrum is

o(My) =o(I—L)Uo(S) = {1— %(1—&/—1),1— %(1—&)"—1):2‘: ln}

VMV =

Also, by a direct calculation we géii’||o = ||V "!|]2 = /(3 ++/5)/2 and||F|| = v/2. It then follows
from Lemma[8 that for every eigenvalug(e) of M there is an eigenvalug; of My, [,I" € [3,2n],
such that|\;(e) — A < [[V]l2 [[V7H2 |[eF|l2 = ((3++v/5)/2) V2 e. So the upper bound of in
(20) guarantees);(¢) — A\y| < 1 — |Ag]; namely, the perturbed eigenvalues still lie within thetuni
circle. Summarizing the above we haxg(e) = 1 and |A\y(€)l, [A3(e)],. .., |Aa2n(€)| < 1; therefore, the

deterministic algorithm[{3) achieves average consensuRrbgositior 2. Further, one computes that

[A3| = max {‘1 - i(1 —wi_l)‘,

[
Finally, in Fig.[2 we plot the upper bound enin (20) for the class of cyclic digraphs. We see that

this bound decays as the numberof nodes increases, which contrasts with the bound chaistiate
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Fig. 3. Three examples of strongly connected but non-bafhmtigraphs.

TABLE |
CONVERGENCE FACTORS\éd) AND /\ég) WITH RESPECT TO DIFFERENT VALUES OF PARAMETER.

e=0.2 e=0.7 e =2.15

/\gd) )\;g) /\gd) )\;g) )\;d) /\g!])
Go | 09963 0.9963 | 0.9993 1.0003 | 1.0003 1.0020
Gy | 0.9951 0.9951 | 0.9969 0.9969 | 0.9985 1.0000

Ge | 0.9883  0.9883 | 0.9930 0.9930 | 0.9966 0.9993

of the more general class of balanced digraphs. This magatelithe conservativeness of our current
approach based on perturbation theory. Nevertheless sirec perturbation result used here is specific

only to diagonalizable matrices, the derived upper boun@®) is less conservative than the general one

in @).

VI. NUMERICAL EXAMPLES
A. Convergence Paths

Consider the three digraphs displayed in [Eig. 3, vtithnodes and respectivelyr, 29, and38 edges.
Note that all the digraphs are strongly connected, and icalse of uniform weights they are non-balanced
(indeed, no single node is balanced). We apply both the mi@tgstic algorithm [(B), with uniform weights
a=1/(2card€)) andb = 1/card£), and the gossip algorithri ([12), with uniform weight= 1/2 and
probability p = 1/card &).

The convergence factovéd) and)ég) (see Remarksl 1 and 3) for three different values of the paeme
e are summarized in Tablé I. We see that smeainsures convergence of both algorithms (the gossip
algorithm [12) requires smaller values ofor mean-square convergence), whereas largan lead to
instability. Moreover, in those converging cases the ftanclséd) and/\gg) decrease as the number of edges

increases frong, to G., which indicates faster convergence when there are morencmncation channels
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Fig. 4. Convergence paths of states and surpluses: Obtainagplying the deterministic algorithral (3) with parametet 0.7
on digraphg,.
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Fig. 5. Sample paths of states: Obtained by applying theigadgorithm [3) with parameter = 0.7 on digraphsG., G,, and
Ge.

available for information exchange. We also see that therdiigns are more robust on digraphs with
more edges, in the sense that a larger range of valuessoéllowed.

For a random initial state(0) with the averager, = 0 and the initial surplus(0) = 0, we display
in Fig.[4 the trajectories of both states and surpluses wherdéterministic algorithni3) is applied on
digraphg, with parametee = 0.7. Observe that asymptotically, state averaging is achievetsurplus
vanishes. Under the same conditions, the gossip algorifti) fowever, fails to converge, as shown
in Fig.[ . Applying algorithm[(TIR) instead on the digrapfisand G. which have more edges, average

consensus is again reached, and faster convergence ocgirg¢see Figlh).
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Fig. 6. Convergence factdr;d) of the deterministic algorithn{]3) with respect to paramete
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Fig. 7. Convergence factdrég) of the gossip algorithn{{12) with respect to parameter

B. Convergence Speed versus Parameter

We have seen that a sufficiently small paramet@nsures convergence of both algorithins (3) and
(I2). Now we investigate the influence efon the speed of convergence, specifically the convergence
factorskgd) and)ég). To reduce the effect of network topology in this investigat we employ a type of
random digraphs where an edge between every pair of nodesxestrwith probabilityl /2, independent
across the network and invariant over time; we take onlydftbat are strongly connected.

For the deterministic algorithni(3), consider random dips 0of 50 nodes and uniform weighis =

b = 1/50. Fig.[8 displays the curve of convergence fac!é?) with respect to the parametey each
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plotted point being the mean value mf“ over 100 random digraphs. To account for the trend of this
curve, first recall from the perturbation argument for Theoil that the matrix\/ in (@) has two
(maximum) eigenvalue$ whene = 0, and smalle causes that one of them (denote its modulus by
Ain) Moves into the unit circle. Meanwhile, some other eigamealof M inside the unit circle move
outward; denote the maximum modulus among thesghy In our simulations it is observed that when
€ is small,)\gd) = A\in (> Aout) @nd \;, moves further inside as perturbation becomes Iargerx,\gg)o
decreases (faster convergence} ascreases in the beginning. Since the eigenvalues movéncouisly,
there exists some such that);, = A,.:, corresponding to the fastest convergence speed. Aftér tha
)\gd) = Aout (> Ain) @and,,; moves further outside asincreases; henchgd) increases and convergence
becomes slower, and finally divergence occurs.

An analogous experiment is conducted for the gossip algarifI2), with random digraphs df0
nodes, uniform probability = 1/card &), and uniform weightw;; = 1/2. We see in Figl]7 a similar
trend of)\ég) as the parameterincreases, though it should be noted that the changﬁ%"%r&re smaller
than those inxgd). From these observations, it would be of ample interest pdoéxthe values ot when

the convergence factors achieve their minima, as well asipiper bounds of ensuring convergence.

VIlI. CONCLUSIONS

We have proposed distributed algorithms which enable nésavaf agents to achieve average consensus
on arbitrary strongly connected digraphs. Specificallysyinchronous networks a deterministic algorithm
ensures asymptotic state averaging, and in asynchronowenks a gossip algorithm guarantees average
consensus in the mean-square sense and with probability Tanemphasize, our derived graphical
condition is more general than those previously reportedhin literature, in the sense that it does
not require balanced network structure; also, the matrixupeation theory plays an important role in
the convergence analysis. Moreover, special regular pligrare investigated to give less conservative
bounds on the parameter and numerical examples are provided to illustrate the em@nce results,
with emphasis on convergence speed.

For future research, one direction of interest would be teerek the deterministic algorithnil(3) to
the more realistic scenario awitchingdigraphsg (k) = (V,£(k)); namely, the network topology is
time-varying. If everyG(k), k > 0, is strongly connected, then it is possible to ensure cgerere by
introducingslow switching(e.g., dwell time) as in([5],.[37]. Under the weaker graphicandition that
digraphsg (k) arejointly strongly connected[([2]/ [27]), to verify if average conses can be achieved

seems to be more challenging and requires further invesiiga
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On the other hand, in the literature on gossip algorithms [38], a variety of practical com-
munication issues have been discussed such as link faitugesage collision, broadcast protocol, and
synchronized node selection (i.e., multiple nodes arectslaat the same time). We thus aim at addressing

these issues by making suitable extensions of our gossipithlon (12).
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