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Distributed robust estimation over randomly switching networks
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Abstract

The paper considers a distributed robust estimation problem over a network with Markovian randomly varying topology. The objective
is to deal with network variations locally, by switching observer gains at affected nodes only. We propose sufficient conditions which
guarantee a suboptimalH∞ level of relative disagreement of estimates in such observer networks. When the status of the network is
known globally, these sufficient conditions enable the network gains to be computed by solving certain LMIs. When the nodes are to
rely on a locally available information about the network topology, additional rank constraints are used to condition the gains, given this
information. The results are complemented by necessary conditions which relate properties of the interconnection graph Laplacian to the
mean-square detectability of the plant through measurement and interconnection channels.

Key words: Large-scale systems, distributed robust estimation, worst-case transient consensus, vector Lyapunov functions.

1 Introduction

One of the motivations for using distributed multisensor net-
works is to make the network resilient to loss of communi-
cation. This has led to an extensive research into distributed
filtering over networks with time-varying, randomly switch-
ing topology. In particular, the Markovian approach to the
analysis and synthesis of estimator networks has received
a significant attention in relation to the problems involving
random data loss in channels with memory which are gov-
erned by a Markov switching rule [17,8].

In addition to capturing memory properties of physical com-
munication channels, Markovian models allow for other ran-
dom events in the network, such as sensor failures and re-
covery, to be considered in a systematic manner within the
Markov jump systems framework. However, the Markov
jump systems theory usually assumes the complete state of
the underlying Markov chain to be known to every con-
troller or filter [7] . In the context of distributed estimation
and control, this requires each node of the network to know
the complete instantaneous state of the network to be able
to deploy suitable gains. To circumvent such an unrealistic
assumption, the literature focuses on networks whose com-
munication state is governed by a random process decom-
posable into independent two-state Markov processes de-
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scribing the status of individual links [6,17], even though
this typically leads to design conditions whose complex-
ity grows exponentially [6]. Also, the assumption of inde-
pendence between communication links may not always be
practical, e.g., when dealing with congestions.

The objective of this paper is to develop a distributed fil-
tering technique which overcomes the need for broadcast of
global communication topology and does not require Marko-
vian segmentation of the network. Our main contribution is
the methodology of robust distributed observer design which
enables the node observers to be implemented in a truly dis-
tributed fashion, by utilizing only locally available informa-
tion about the system’s connectivity, and without assuming
the independence of communication links. This information
structure constraint is a key distinction of this work, com-
pared with the existing results, e.g., [17,6]. In addition,the
proposed methodology allows to incorporate other random
events such as sensor failures and recoveries.

The paper focuses on the case where the plant to be ob-
served, as well as sensing and communication models are
not known perfectly. To deal with uncertain perturbations in
the plant, sensors and communications, we employ the dis-
tributedH∞ filtering framework which has received a sig-
nificant deal of attention in the recent literature [15,18,19].
The motivation for consideringH∞ observers in this paper,
instead of Kalman filters [17], is to obtain observers that have
guaranteed robustness properties. It is well known that the
standard Kalman filter is sensitive to modelling errors [12],
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and consensus Kalman filters may potentially suffer from
the same shortcomings. This explains our interest in robust
performance guarantees in the presence of uncertainty.

In contrast to [17,15], in this paper the node estimators are
sought to reach relativeH∞ consensus about the estimate
of the reference plant. As an extension of the consensus
estimation methodology [9], our approach responds to the
challenge posed by the presence of uncertain perturbations
in the plant, measurements and interconnections. Typically,
a perfect consensus between sensors-agents is not possible
due to perturbations. To address this challenge, we employ
the approach based on optimization of the transient rela-
tiveH∞ consensus performance metric, originally proposed
in [18]. We approach the robust consensus-based estimation
problem from the dissipativity viewpoint, using vector stor-
age functions and vector supply rates [4]. This allows us to
establish both mean-square robust convergence and robust
convergence with probability 1 of the distributed filters un-
der consideration and guarantee a prespecified level ofH∞

mean-square disagreement between node estimates in the
presence of perturbations and random topology changes.

The information structure constraint, where the filters must
rely on the local knowledge of the network topology, poses
the main challenge in the derivation of the above-mentioned
results. The standard framework of Markov jump systems is
not directly applicable to the problem of designing locally
constrained filters whose information about the network sta-
tus is non-Markovian. To overcome this difficulty, we adopt
the approach recently proposed for decentralized control of
jump parameter systems [20]. It involves a two-step design
procedure. First, an auxiliary distributed estimation problem
is solved under simplifying assumption that the complete
Markovian network topology is instantaneously available at
each node. However, we seek a solution to this problem
using a network ofnon-fragileestimators subject to uncer-
tainty [5]. Resilience of the auxiliary estimator to uncertain
perturbations is the key property to allow this auxiliary un-
certain estimator network to be modified, at the second step,
into an estimator network which satisfies the information
structure constraint and retains robust performance of the
auxiliary design.

An important question in connection with our distributed
observer architecture is concerned with requirements on
the communication topology under which the consensus of
node observers is achievable. For networks of one- or two-
dimensional agents, and networks consisting of identical
agents, conditions for consensus are tightly related to prop-
erties of the graph Laplacian matrix [10,13,22]. In a more
general situation involving nonidentical node observers,the
role of the interconnection graph is often hidden behind the
design conditions, e.g., see [17,15]. Our second contribution
is to show that for the distributed estimation problem under
consideration to have a solution, the standard requirement
for the graph Laplacian to have a simple zero eigenvalue
must be complemented by detectability properties of certain

matrix pairs formed by parameters of the observers and in-
terconnections.

The paper is organized as follows. The problem formula-
tion is given in Section 2. Section 3 studies an auxiliary dis-
tributed estimation problem without the information struc-
ture constraints. The results of this section are then used
in Section 4 where the main results of the paper are given.
Section 5 discusses requirements on the observer communi-
cation topology. Section 6 presents an illustrating example.

Notation R
n is the real Euclideann-dimensional vector

space, with the norm‖x‖ , (x′x)1/2; ′ denotes the trans-
pose of a matrix or a vector. Also, for a givenP = P ′,
‖x‖P =

√
x′Px. 1k , [1 . . . 1]′ ∈ R

k, and Ik is the
identity matrix inR

k; we will omit the subscriptk when
this causes no ambiguity. ForX = X ′, Y = Y ′, we write
Y > X (Y ≥ X), whenY −X is positive definite (positive
semidefinite).⊗ denotes the Kronecker product of matrices.
diag[P1, . . . , PN ] is the block-diagonal matrix, whose diag-
onal blocks areP1, . . . , PN . The symbol⋆ in position(k, l)
of a block-partitioned matrix denotes the transpose of the
(l, k) block of the matrix.L2[0,∞) is the Lebesgue space
of Rk-valued vector-functionsz(·), defined on[0,∞), with

the norm‖z‖2 ,
(∫∞

0 ‖z(t)‖2dt
)1/2

.

2 Problem formulation

2.1 Networks with Markovian switching topology

Consider a directed weakly connected graphG = (V,E),
whereV = {1, . . . , N} is the set of nodes, andE ⊆ V×V

is the set of edges. The edge(j, i) originating at nodej and
ending at nodei represents the event “j transmits informa-
tion to i”. In accordance with a common convention, we
consider graphs without self-loops, i.e.,(i, i) 6∈ E. However,
each node is assumed to have complete information about
its filter, measurements and the status of incoming commu-
nication links.

We consider two types of random events at each node.
Firstly, node neighborhoods change randomly as a result of
random link dropouts and recovery. Also, to account for
sensor adjustments in response to these changes, as well as
sensor failures/recoveries, we allow for random variations of
the sensing regime at each node. Lettingx(t), yi(t) denote
an observed process and its measurement taken at nodei at
time t, and using a standard linear relation between these
quantities

yi = C̃ix+ D̃iξ +
˜̄Diξi, yi ∈ R

r, (1)

such adjustments are associated with randomly varying co-
efficientsC̃i, D̃i, ˜̄Di. These random events are additional to
link dropouts. This leads us to consider the combined evo-
lution of each node’s neighbourhood and sensing regime.
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Definition 1 For a nodei, letVi, (C̃i, D̃i,
˜̄Di) be its neigh-

bourhood set and the measurement matrix triplet, respec-
tively, at a certain timet. The pair{Vi, (C̃i, D̃i,

˜̄Di)}, is
said to represent thelocal communication and sensing state
(or simply thelocal state) of nodei at timet. Two states of
i at timest1, t2, {V1

i , (C̃
1
i , D̃

1
i ,

˜̄D1
i )}, {V2

i , (C̃
2
i , D̃

2
i ,

˜̄D2
i )}

are distinct if V1
i 6= V

2
i , or (C̃1

i , D̃
1
i ,

˜̄D1
i ) 6= (C̃2

i , D̃
2
i ,

˜̄D2
i ).

From now on, we associate with every nodei the ordered
collection of all its feasible distinct local states and denote
the corresponding indexIi , {1, . . . ,Mi}. The time evo-
lution of each local state will be represented by a random
mappingηi : [0,∞) → Ii.

The global configuration and sensing pattern of the network
at any time can be uniquely determined from its local states.
This leads us to define theglobal stateof the network as
anN -tuple (k1, . . . , kN ), whereki ∈ Ii. Consider the or-
dered collection of all feasible global states of the network
and letI = {1, . . . ,M} denote its index set. In general,
not all combinations of local states correspond to feasible
global states. Owing to dependencies between network links
and/or sensing regimes, the number of feasible global states
may be substantially smaller than the cardinality of the set
I1× . . .×IN of all combinations of local states. The one-
to-one mapping between the set of feasible global states
{(k1, . . . , kN )} and its index setI will be denotedΦ, i.e.,
(k1, . . . , kN ) = Φ(m), wherem is the index of theN -
tuple (k1, . . . , kN ). Also, we writeki = Φi(m), whenever
(k1, . . . , kN ) = Φ(m).

Using the one-to-one mappingΦ, define theglobal pro-
cessη(t) = Φ−1(η1(t), . . . , ηN (t)) to describe the evolu-
tion of the network global state. The local state processes
ηi(t) are related to it asηi(t) = Φi(η(t)) ∀t ≥ 0. Through-
out the paper, we assume that{η(t), t ≥ 0} is a station-
ary Markov random process[0,∞) → I defined in a fil-
tered probability space(Ω,F , {Ft},P), whereFt denotes
a right-continuous filtration with respect to which{η(t), t ≥
0} is adapted1 [1]. The σ-algebraF is the minimalσ-
algebra which contains all measurable sets from the filtration
{Ft, t ≥ 0}. The transition probability rate matrix of the
Markov chain{η(t), t ≥ 0} will be denotedΛ = [λkl]

M
k,l=1,

with λkl ≥ 0, k 6= l andλkk = −
∑

l 6=k

λkl ≤ 0, ∀k ∈ I [1].

Using the global state processη(t), the time evolution of the
communicationgraph can be represented by a random graph-
valued processGη(t), whose value at every time instance is
a directed subgraph ofG. It is assumed that for allt, Gη(t)

is weakly connected and has the same vertex set asG. When
η(t) = k ∈ I ,Ak = [akij ]i,j=1,N will denote the adjacency
matrix of the digraphGk = G

η(t). Note thatakij = 1 if

1 In the sequel, we will consider the filtration generated by a
composite Markov process consisting ofη and error dynamics of
the estimator introduced in the next section.

and only ifj ∈ V
Φi(k)
i . Here and hereafter, the symbolV

ki

i
describes the neighbourhood of nodei when this node is in
local stateki. In accordance with this notation,VΦi(k)

i is the
neighbourhood of nodei when the network is in global state
k. Also, pki =

∑N
j=1 a

k
ij , q

k
i =

∑N
j=1 a

k
ji, andL k denote

the in- and out-degrees of nodei and the Laplacian matrix
of the corresponding graphGk, respectively.

We will use the notation(η,G ,Φ) to refer to the switching
network described above. Sinceη(t) is stationary, then each
processηi(t) is also stationary. However, in general the local
state processesηi(t) are not Markov, and the components of
the multivariate process(η1(t), . . . , ηM (t)) may statistically
depend on each other. Hence our network model allows for
dependencies between links within the network.

2.2 Distributed estimation withH∞ consensus

Consider a plant described by the equation

ẋ = Ax+B2ξ(t), x(0) = x0. (2)

Here x ∈ R
n is the state,ξ(t) ∈ R

l is a deterministic
disturbance. We assume thatξ(·) ∈ L2[0,∞), and that the
solution of (2) exists on any finite interval[0, T ], and isL2-
integrable on[0, T ].

Also, consider an observer network{η,G ,Φ} whose nodes
take measurements of the plant (2) as follows

yi = C̃
ηi(t)
i x+ D̃

ηi(t)
i ξ + ˜̄Di

ηi(t)
ξi, yi ∈ R

ri , (3)

whereξi(t) ∈ R
li represents the deterministic measurement

uncertainty at sensing nodei, ξi(·) ∈ L2[0,∞). The coeffi-
cients of equation (3) take values in given sets of constant
matrices of compatible dimensions,

(C̃
ηi(t)
i , D̃

ηi(t)
i , ˜̄Di

ηi(t)
) ∈ {(C̃k

i , D̃
k
i ,

˜̄Dk
i ), k ∈ Ii}.

It will be assumed throughout the paper thatẼk
i =

D̃k
i (D̃

k
i )

′ + ˜̄Dk
i (

˜̄Dk
i )

′ > 0 for all i andk ∈ Ii.

The measurementsyi are processed at nodei according to
the following estimation algorithm (cf. [17,18,19]):

˙̂xi =Ax̂i + L̃
ηi(t)
i (yi(t)− C̃

ηi(t)
i x̂i)

+
∑

j∈V
ηi(t)

i

K̃
ηi(t)
ij (vij −Hij x̂i), x̂i(0) = 0, (4)

wherevij is the signal received at nodei from nodej,

vij = Hij x̂j +Gijwij , vij ∈ R
rij , (5)

wij ∈ R
sij describes the channel uncertainty affecting the

information transmission from nodej to i. It is assumed

3



thatwij belongs to the class of mean-squareL2-integrable
random disturbances, adapted to the filtration{Ft, t ≥ 0}.

It will be further assumed thatFij = GijG
′
ij > 0 for all i

andj ∈ V
ki

i , ki ∈ Ii. Also in (4),L̃ηi(·)
i , K̃ηi(·)

ij are matrix-
valued functions of the local state processηi(t). These func-
tions are the design parameters of the algorithm describing
innovation and interconnection gains of the observer (4).
Note that the coupling and observer gainsK̃

(·)
ij , L̃(·)

i are re-
quired to be functions of the local state (i.e., functions of
ηi), rather than the global state. This ‘locality’ information
structure constraint is additional to the assumption about
the Markov nature of the communication graph; cf. [17]
where the complete communication graph was assumed to
be known at each node. The problem in this paper is to de-
termine these functions to satisfy certain robust performance
criteria to be presented in Definition 2 below.

Remark 1 In equation (5), the matricesHij ∈ R
ri×n and

Gij ∈ R
ri×sij do not depend onηi(t). This is to reflect a

situation where nodej alwaysbroadcasts its information to
nodei, but nodei randomly fails to receive this information,
or chooses not to accept it, e.g. due to random congestion.
It is possible to consider a more general situation where the
matricesHij andGij also depend onηi(t). Technically, this
more general case is no different from the one pursued here.

Associated with the system (2) and the set of filters (4) is
the disagreement function (cf. [10])

Ψk(x̂) =
1

N

N
∑

i=1

∑

j∈VΦi(k)

‖x̂j − x̂i‖2, k ∈ I , (6)

x̂ , [x̂′1 . . . x̂′N ]′. It represents the average (over the set of
all nodes) of the total disagreement between the estimate at
each node, and the estimates computed at the neighbouring
nodes, when the network is in statek. Following [18], we
adoptΨk(x̂) to define the transient consensus performance
metric in the distributed estimation problem defined below.

Let Px0,m0 , Ex0,m0 denote the conditional probability and
conditional expectation, givenx(0)− x̂i(0) = x0 ∀i, η(0) =
m0. Also, given a matrixP = P ′ > 0, let

µP (x0, ξ, [ξi, wij ]i,j=1,...,N ) , ‖x0‖2P + ‖ξ‖22

+
1

N

N
∑

i=1

(

‖ξi‖22 +
M
∑

j=1

E
x0,m0‖aη(·)ij wij‖22

)

.

Definition 2 The distributed estimation problem under con-
sideration is to determine switching observer gainsL̃k

i and
interconnection coupling gains̃Kk

ij , k ∈ Ii, for the filters
(4) which ensure that the following conditions are satisfied:

(i) In the absence of the uncertainty, all node estimators
converge exponentially in the mean-square sense and

converge asymptotically with probability 1:

E
x0,m0‖x̂i(t)− x(t)‖2 ≤ ce−ǫt, (∃c, ǫ > 0),

P
x0,m0( lim

t→∞
‖x̂i(t)− x(t)‖2 = 0) = 1.

(ii) Given a constantγ > 0, the following mean-square
H∞ consensus performance is guaranteed

sup
x0,(ξ,ξi,wij) 6=0

E
x0,m0

∫∞

0 Ψη(t)(x̂(t))dt

µP (x0, ξ, [ξi, wij ]i,j=1,...,N )
≤ γ2.(7)

(iii) All estimators converge in the mean-square and with
probability 1:

E
x0,m0

∫ ∞

0

‖x(t)− x̂i(t)‖2dt <∞, (8)

P
x0,m0( lim

t→∞
‖x(t)− x̂i(t)‖2 = 0) = 1. (9)

Properties (8) and (9) refer to different types of asymp-
totic behaviour of the estimation errors. Condition (8)
states that̂xi(t) converges tox(t) in the mean-squareL2

sense. From the Chebyshev inequality, this also implies that
limR→∞ P

x0,m0
(∫∞

0
‖x(t)− x̂i(t)‖2dt > R

)

= 0, that
is, almost all estimator trajectories converge inL2 sense.
Property (9) states that‖x(t) − x̂i(t)‖2 converges to zero
asymptotically for almost all realizations of the global state
processη(t). This is a stronger property; in general, it does
not follow from the a.s.L2 convergence. For that reason,
both convergence properties are considered in Definition 2.

3 An auxiliary global distributed estimation problem

3.1 Non-fragile distributed estimation

In this section, we temporarily lift the locality information
structure constraint and assume the global communication
and sensing state processη(t) to be available at every node.

For everyk ∈ I defineCk
i = C̃

Φi(k)
i Dk

i = D̃
Φi(k)
i , D̄k

i =
˜̄D
Φi(k)
i . Note thatEk

i , Dk
i (D

k
i )

′ + D̄k
i (D̄

k
i )

′ = Ẽ
Φi(k)
i >

0. Then, the measurements taken at nodei can be rewritten
in terms of the global state processη(t):

yi = C
η(t)
i x+D

η(t)
i ξ + D̄

η(t)
i ξi. (10)

The auxiliary problem in this section is concerned with es-
timation of the state of the uncertain plant (2), (10) using a
network of estimators subject to uncertainty, as follows

˙̂xi =Ax̂i + L
η(t)
i (yi(t)− Ci(η(t))x̂i)

+
∑

j∈VΦi(η(t))

K
η(t)
ij (vij −Hij x̂i)

+
∑

j∈VΦi(η(t))

(ω
(1)
ij + ω

(2)
ij ) + ωi, x̂i(0) = 0. (11)

4



Here,L(·)
i , K(·)

ij are matrix-valued functions of the state

of the global Markov chainη to be found, andω(1)
ij , ω(2)

ij ,
andωi are estimator perturbations. It is assumed that these
perturbations are random processes adapted to the filtra-
tion {Ft, t ≥ 0} and such that the multivariate process
(x̂1, . . . , x̂N , η) is Markov with respect to that filtration.
Also in this section, it will be assumed that these uncertain-
ties satisfy the following norm-bound conditions:

‖ωi(t)‖2 ≤ α2
i

∥

∥

∥
C

η(t)
i ei(t) +D

η(t)
i ξ(t) + D̄

η(t)
i ξi(t)

∥

∥

∥

2

,

‖ω(1)
ij (t)‖2 ≤ β2

ij ‖Hijei(t) +Gijwij‖2 ,
‖ω(2)

ij (t)‖2 ≤ β2
ij ‖Hijej(t)‖2 a.s.∀t ≥ 0, (12)

whereαi, βij are given constants, andei = x − x̂i is the
estimation error of the auxiliary estimator at nodei, which
evolves according to the equations

ėi = (A− L
η(t)
i C

η(t)
i )ei

+
∑

j∈V
Φi(η(t))

i

K
η(t)
ij (Hij(ej − ei)−Gijwij)

+ (B2 − L
η(t)
i D

η(t)
i )ξ − L

η(t)
i D̄

η(t)
i ξi

−





∑

j∈VΦi(η(t))

(w
(1)
ij + w

(2)
ij ) + wi



 , ei(0) = x0. (13)

It will be shown in Section 4 that when the locality informa-
tion structure constraints are imposed, this will result inan
uncertainty due to the mismatch between filter error dynam-
ics in the network subject to these constraints, and the errors
which would arise in the same network if its communica-
tion state was known globally. It will be shown in the proof
of Theorem 2 that this uncertainty satisfies conditions (12).
The resilience of the constraint-free auxiliary network (11)
to this uncertainty will be used in the next section to show
that the network (4), constructed from the auxiliary solution,
maintains the same convergence and robustH∞ consensus
performance properties when the information structure con-
straints are enforced.

Definition 3 The auxiliary distributed consensus estimation
problem is to determine sets of gainsLk

i , Kk
ij , k ∈ I , for

the filters (11) to ensure the following:

(i) When(ξ, ξi, wij) ≡ 0, the interconnected system con-
sisting of subsystems (13) must be exponentially sta-
ble in the mean-square sense and asymptotically stable
with probability 1 for all estimator perturbationsω(1)

ij ,

ω
(2)
ij , andωi for which the correspondingly modified

constraints (12) hold.
(ii) In the presence of exogenous disturbancesξ, ξi, wij ,

the mean-square consensus performance condition in
(7) is satisfied for all admissible estimator perturba-
tionsω(1)

ij , ω(2)
ij , andωi subject to (12).

(iii) All estimators converge in the mean-square and with
probability 1; i.e., conditions (8), (9) hold.

A solution to this auxiliary problem is given in Theorem 1
below. The conditions of the theorem involve the following
linear matrix inequalities in the variablesτki > 0, θkij > 0,
ϑkij > 0, Xk

i = (Xk
i )

′ > 0, i = 1, . . . , N , k ∈ I , j ∈
V

Φi(k)
i :

γ2I − τki α
2
iE

k
i > 0, γ2I − θkijβ

2
ijFij > 0, (14)



















Qk
i ⋆ ⋆ ⋆ ⋆

Nk
i −γ2I ⋆ ⋆ ⋆

Sk
i 0 −γ2I ⋆ ⋆

11+2Mi
⊗Xk

i 0 0 −Ti ⋆

Ξ′
i 0 0 0 −Zi



















< 0, (15)

where

Nk
i ,

(

I − (Dk
i )

′(Ek
i )

−1Dk
i

)

B′
2X

k
i ,

Sk
i , −(D̄k

i )
′(Ek

i )
−1Dk

i B
′
2X

k
i ,

T
k
i , diag

[

τki , θ
k
i,j1 , . . . , θ

k
i,j

pk
i

, ϑki,j1 , . . . , ϑ
k
i,j

pk
i

]

,

Qk
i , Xk

i (A+ δiI −B2(D
k
i )

′(Ek
i )

−1Ck
i )

+ (A+ δiI −B2(D
k
i )

′(Ek
i )

−1Ck
i )

′Xk
i + (pki + qki )I

+
∑

j:i∈V
Φj (k)

j

ϑkjiβ
2
jiH

′
jiHji +

M
∑

l=1

λklX
l
i

− γ2(Ck
i )

′(Ek
i )

−1Ck
i − γ2

∑

j∈V
Φi(k)

i

H ′
ijF

−1
ij Hij ,

Ξi=

[

γ2H ′
ij1
F−1
ij1
Hij1 − I . . . γ2H ′

ij
pk
i

F−1
ij

pk
i

Hij
pk
i

− I

]

,

Zi = diag





2δj1
qkj1 + 1

Xk
j1 , . . . ,

2δj
pk
i

qkj
pk
i

+ 1
Xk

j
pk
i



 .

Theorem 1 Suppose the network(η,G ,Φ) and the con-
stantsγ > 0, αi, βij and δi > 0 are such that the cou-
pled LMIs (14) and (15) in the variablesτki > 0, θkij > 0,

ϑkij > 0, Xk
i = (Xk

i )
′ > 0, j ∈ V

Φi(k)
i , i = 1, . . . , N ,

k ∈ I , are feasible. Then the network of observers (11) with

Kk
ij = γ2(Xk

i )
−1H ′

ijF
−1
ij ,

Lk
i =

[

γ2(Xk
i )

−1(Ck
i )

′ +B2(D
k
i )

′
]

(Ek
i )

−1 (16)

solves the auxiliary estimation problem in Definition 3. The
matrix P in condition (7) corresponding to this solution is
P = 1

γ2N

∑N
i=1X

m0

i , wherem0 = η(0).

The proof of Theorem 1 is given in the Appendix.
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3.2 Special case: Broadcast of the global state

When the global Markov state of the network is available
at every node, the solution to the distributedH∞ consensus
estimation problem can be obtained from Theorem 1 by
lettingωi = ω

(1)
ij = ω

(2)
ij = 0 and takingαi = βij = 0.

Corollary 1 Suppose the network(η,G ,Φ) and the con-
stantsγ > 0 and δi > 0 are such that the following cou-
pled LMIs in the variablesXk

i = (Xk
i )

′ > 0, j ∈ V
Φi(k)
i ,

i = 1, . . . , N , k ∈ I , are feasible:















Q̄k
i ⋆ ⋆ ⋆

Nk
i −γ2I ⋆ ⋆

Sk
i 0 −γ2I ⋆

Ξ′
i 0 0 −Zi















< 0, (17)

Q̄k
i , Xk

i (A+ δiI −B2(D
k
i )

′(Ek
i )

−1Ck
i )

+(A+ δiI −B2(D
k
i )

′(Ek
i )

−1Ck
i )

′Xk
i + (pki + qki )I

+
M
∑

l=1

λklX
l
i − γ2(Ck

i )
′(Ek

i )
−1Ck

i − γ2
∑

j∈V
Φi(k)

i

H ′
ijF

−1
ij Hij .

Then the network of observers (11) withωi = ω
(1)
ij = ω

(2)
ij =

0 andKk
ij, L

k
i defined in (16) solves the estimation problem

in Definition 3. The matrixP in condition (7) corresponding
to this solution isP = 1

Nγ2

∑N
i=1X

m0

i , wherem0 = η(0).

4 The main result

In this section, the solution to the auxiliary distributed esti-
mation problem developed in Section 3 will be used to ob-
tain a distributed estimator whose nodes utilize only locally
available information. This will be achieved by taking the
asymptotic conditional expectation of the auxiliary gains,
given a local state. Our method is based on the following
technical result of [20].

Lemma 1 Suppose the Markov processη(t) is irreducible
and has a unique invariant distribution̄λ. Given a matrix-
valued functionK(·) : I → {K1 . . . ,KM} ⊂ R

n×s, for
every nodei and for all ki ∈ Ii we have:

lim
t→∞

E

(

Kη(t) | ηi(t) = ki

)

=

∑

l:Φi(l)=ki
λ̄lK

l

∑

l:Φi(l)=ki
λ̄l

. (18)

Now let Kk
ij , L

k
i , k ∈ I , be the coefficients of the aux-

iliary distributed estimator obtained in Theorem 1. Using
Lemma 1, for eachi = 1, . . . , N andki ∈ Ii we define

K̃ki

ij =

∑

l:Φi(l)=ki
λ̄lK

l
ij

∑

l:Φi(l)=ki
λ̄l

, L̃ki

i =

∑

l:Φi(l)=ki
λ̄lL

l
i

∑

l:Φi(l)=ki
λ̄l

. (19)

From Lemma 1, the processes̃Kηi(t)
ij , L̃

ηi(t)
i are then

the asymptotic minimum variance approximations of the
corresponding processesKη(t)

ij , L
η(t)
i . However, unlike

K
η(t)
ij , L

η(t)
i , the evolution ofK̃ηi(t)

ij , L̃
ηi(t)
i is governed by

the local communication and sensing state processηi.

To formulate the main result of this paper, consider the col-
lection of the LMIs in the variablesτki , θkij , ϑ

k
ij , X

k
i and

Y k
i , consisting of the LMIs (14), (15), and the following

additional LMIs,

[

α2
i I ∆L,k

i

(∆L,k
i )′ I

]

> 0,

[

β2
ijI ∆K,k

ij

(∆K,k
ij )′ I

]

> 0, (20)

whereαi, βij are the same constants as those employed in
the LMIs (14), (15), and

∆L,k
i ,

∑

l:l 6=k,

Φi(l)=Φi(k)

γ2λ̄l
[

Y k
i (C

k
i )

′(Ek
i )

−1 − Y l
i (C

l
i)

′(El
i)

−1
]

∑

l:Φi(l)=Φi(k)
λ̄l

,

∆K,k
ij ,

∑

l:l 6=k,

Φi(l)=Φi(k)

γ2λ̄l
[

Y k
i − Y l

i

]

H ′
ijF

−1
ij

∑

l:Φi(l)=Φi(k)
λ̄l

.

Also, consider the rank constraints

rank

[

Y k
i I

I Xk
i

]

≤ n, (21)

Theorem 2 Given a Markovian switching network(η,G ,Φ)
and a collection of constantsγ, αi, βij and δi > 0,
i = 1, . . . , N , associated with each node, suppose there
exist matricesXk

i = (Xk
i )

′ > 0, Y k
i = (Y k

i )′ > 0, and pos-

itive scalarsτki , θkij , ϑ
k
ij , i = 1, . . . , N , k ∈ I , j ∈ V

Φi(k)
i

which satisfy the matrix inequalities (14), (15), (20), and
the rank constraint (21). Using the solution matricesY k

i ,
define the auxiliary gains

Kk
ij = γ2Y k

i H
′
ijF

−1
ij ,

Lk
i =

[

γ2Y k
i (C

k
i )

′ +B2(D
k
i )

′
]

(Ek
i )

−1. (22)

Next, using (19) and (22), construct the estimator network
(4). The resulting distributed estimatior network solves the
distributed robust estimation problem in Definition 2.

Proof The result follows from Theorem 1 in a manner
similar to the proof of Theorem 4 in [20].

First we observe that the observer gainsKk
ij ,L

k
i constructed

in this theorem, also satisfy the conditions of Theorem 1,
since(Xk

i )
−1 = Y k

i in view of (21). This allows us to claim
that the network of auxiliary estimators (11), (22) solves the
auxiliary robust estimation problem in Definition 3.
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Next, consider the observer gains defined using (19) and
(22). Note that for alli = 1, . . . , N , k ∈ I , andj ∈ V

Φi(k)
i ,

Kk
ij − K̃

Φi(k)
ij =

∑

l:l 6=k,Φi(l)=Φi(k)
λ̄l
[

Kk
ij −K l

ij

]

∑

l:Φi(l)=Φi(k)
λ̄l

,

Lk
i − L̃

Φi(k)
i =

∑

l:l 6=k,Φi(l)=Φi(k)
λ̄l
[

Lk
i − Ll

i

]

∑

l:Φi(l)=Φi(k)
λ̄l

,

Then it follows from (20) that

‖L̃Φi(k)
i − Lk

i ‖2 ≤ α2
i , ‖K̃Φi(k)

ij −Kk
ij‖2 ≤ β2

ij . (23)

Therefore the particular perturbations in the estimators (11),

ωi = (L̃
ηi(t)
i − L

η(t)
i )(C

η(t)
i ei(t) +D

η(t)
i ξ + D̄

η(t)
i ξi),

ω
(1)
ij = (K̃

ηi(t)
ij −K

η(t)
ij )(Hijei +Gijwij),

ω
(2)
ij =−(K̃

ηi(t)
ij −K

η(t)
ij )Hijej , (24)

satisfy (12). This means that the estimator (4) in which the
above particular set of gains̃Kηi(t)

ij , L̃
ηi(t)
i is employed, rep-

resents one instance of the auxiliary estimator (11), corre-
sponding to the particular perturbation (24), which is an ad-
missible perturbation, due to (12). Therefore, since the ma-
tricesKk

i , Lk
i , m ∈ I solve the auxiliaryH∞ consensus

estimation problem in Definition 3, then the distributed es-
timator (4) with the local gains selected above, solves the
robust consensus estimation problem in Definition 2.✷

Remark 2 Due to the rank constraints(21), the solution
set to the matrix inequalities in Theorem 2 is non-convex.
In general, it is difficult to solve such problems. Fortunately,
several numerical algorithms have been proposed for this
purpose [3,11].

5 Requirements on the communication graph and in-
terconnections

In this section, we briefly discuss necessary requirements
on the network topology. Recall that condition (i) of Defini-
tion 2 requires that in the absence of perturbations, estima-
tion error dynamics must be asymptotically stabilizable via
output injection in the mean-square. This problem belongs
to the class of stochastic mean-square detectability prob-
lems for linear jump parameter systems [2]. Unfortunately,
even without the locality information structure constraint,
there is no easy direct algebraic test to verify this property.
Some conclusions can however be drawn to provide an in-
sight into the connection between the graph Laplacian and
the existence of stabilizing output injection gains.

To highlight such a connection, in this section we will make
the simplifying assumptionHij = H , Gij = Gi, rij =

r̄i for all j ∈ V
Φi(k)
i . From (22), it follows that in this

caseK̃ki

ij does not depend onj. Hence we will also assume

K̃ki

ij = K̃ki

i . Define Ā = IN ⊗ A, Ak , A + 1
2λkkI,

Āk , Ā+ 1
2λkkInN , H̄k = L k ⊗H .

Let C k
i , Ōk, OH denote the undetectable subspace of

(Ck
i , Ak) and the unobservable subspaces of(H̄k, Āk) and

(H,A), respectively. The following theorem shows that for
the problem in Definition 2 to have a solution, every com-
bination of undetectable states of the pairs(Ck

i , Ak) must
necessarily form an observable vector of(H̄k, Āk). The
proofs of this and subsequent results are removed for the
sake of brevity.

Theorem 3 Suppose there exist output injection gainsL̃ki

i ,
K̃ki

ij = K̃ki

i , j ∈ V
ki

i , ki ∈ Ii, i = 1, . . . , N , such that the
first condition in Definition 2(i) holds. Then,

Ō
k ∩

N
∏

i=1

C
k
i = {0} ∀k ∈ I . (25)

We now present a necessary and sufficient condition for (25)
to hold. The sufficient condition is explicitly expressed in
terms of the network Laplacian matricesL k.

Theorem 4 (a) If (25) holds, then for everyk ∈ I :
(i)
⋂N

i=1 C k
i = {0}, and

(ii) OH ∩ C k
i = {0} for all i = 1, . . . , N ;

(b) Conversely, suppose the geometric multiplicity of the
zero eigenvalue ofLk is equal to 1. If the above prop-
erties (i) and (ii) hold for everyk, then (25) is satisfied.

One can further specialize the sufficient conditions in The-
orem 4, e.g., for the cases of a balanced graph or a graph
containing a spanning tree. Also, note that the information
structure constraint is not used in the proofs. Therefore, the
results in this section apply to more general distributed esti-
mation problems, such as the auxiliary problem considered
in Section 3.

6 Example

Consider a plant of the form (2), withA =
[

−3.2 10 0
1 −1 1
0 −14.87 0

]

,

B2 =
[

−0.1246
−0.4461
0.3350

]

. The nominal part of the plant describes

one of the regimes of the so-called Chua electronic circuit.
The Chua circuit is an example of a system which switches
between three regimes of operation in a chaotic fashion. For
the sake of simplicity, here we consider only one regime.

The plant is observed by a 5-node switching observer net-
work which operates intermittently in two regimes. Its graph
topologies are shown in Figure 1. The evolution of the net-
work is modelled as a two-state Markov chain with the tran-
sition probability rate matrixΛ =

[

−0.1 0.1
0.1 −0.1

]

. Note that the

7



PSfrag replacements 11 22

33

44 55

k = 1 k = 2

Fig. 1. Switching graph topology for the example.

Table 1
CoefficientsCk

i for the example,C∗1 = 10−3
× [3.1923 −

4.6597 1], C∗2 = [−0.8986 0.1312 − 1.9703].

i = 1 i = 2 i = 3 i = 4 i = 5

k = 1 C∗1 C∗1 C∗2 C∗1 C∗2

k = 2 C∗1 C∗2 C∗2 C∗1 C∗2

graph corresponding to statek = 2 was used in [18,21] to
demonstrate synchronization of Chua systems. Indeed, the
filters share the same matrixA as the plant, and can be inter-
preted as ‘slave’ Chua systems operating in the same regime
as the master. Accordingly, the convergence of the filters in
our example can be interpreted as the observer-based syn-
chronization between the slaves and the master; see [18] for
further details. However different from [18], in this example
the graph topology is time-varying, as explained below.

From Figure 1, nodes 3, 4, and 5 have varying neighbour-
hoods. Also, in this example we suppose that node 2 changes
its sensor parameters when the network switches between
two configurations. As a result, in this example, each lo-
cal state process, except for that of node 1, has two states
and always takes the same value as the global state process.
On the other hand, node 1 always maintains the same local
state, and its local process is constant. Therefore, we seek
to obtain nonswitching observer gains for node 1 only. Ac-
cording to this description, in this example,I = I2 =
I3 = I4 = I5 = {1, 2}, I1 = {1}, and the mappingΦ is
as follows:Φ(1) = (1, 1, 1, 1, 1), Φ(2) = (1, 2, 2, 2, 2). Nu-
merical values of the matricesCk

i , k = 1, 2, for this exam-
ple are given in Table 1; they are assumed to take one of the
two valuesC∗1, C∗2, shown in the table. These values were
chosen so that the pairs(Ck

1 , A+ 1
2λkkI), (C

k
4 , A+ 1

2λkkI),
k = 1, 2, corresponding to nodes 1 and 4, had undetectable
modes, while node 2 was allowed to switch between de-
tectable and undetectable coefficient pairs. Therefore, for
estimation these nodes were to rely on communication with
their neighbours. Also, we letDk

i = 0, D̄k
i = 0.025 for all

nodes and allk, andHij = I3×3, Gij = 0.5× I3×3.

Note that both instances of the network have spanning trees
with roots at nodes 3 and 5. These nodes have detectable
matrix pairs(Ck

3 , A+ 1
2λkkI), (C

k
5 , A+ 1

2λkkI), k = 1, 2,
respectively. Also,(H,A) is observable. It follows from
these properties that the conditions in part (b) of Theorem 4
are satisfied. Hence, the necessary condition for global de-
tectability, stated in Theorem 3 holds.
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Fig. 2. One path ofη(t) (Fig. (a)) and estimations errors for the
first coordinate at nodes 1, 2 and 5 (Fig. (b)).

The design of the observer network was carried out us-
ing Matlab and the LMI solver LMIrank based on [11]. To
obtain a set of non-switching gains for node 1, the norm-
bounded uncertainty constraints of the form (23) were de-
fined for the communication link(3, 1) at node 1, where we
setα2

13 = 102, β2
13 = 4 × 102. These constants as well as

δi = 0.365 were chosen by trial and error, to ensure that the
corresponding rank constrained LMIs in Theorem 2 were
feasible. The feasibility was achieved withγ2 = 0.7407.
This allowed us to compute the nonswitching gainsK̃13 and
L̃1 for node 1 using (22).

To validate the design, the system and the designed filters
were simulated numerically, with a random initial condi-
tion x0. All uncertain perturbations were chosen to be of
the formsin(aπt + ϕ)e−bt, with different coefficientsa, ϕ
and b for each perturbation. Also we letwij(t) = wji(t),
assuming an undirected nature of the channels in this exam-
ple. The graphs of one realization of the global state process
η(t), and the corresponding estimation errors at nodes 1 (the
nonswitching filter), 2 (the filter with the switching sensing
regime) and 5 (the filter with the varying neighbourhood)
are shown in Figures 2(a) and 2(b), respectively. The graph
in Figure 2(b) confirms the ability of the proposed node es-
timators to successfully mitigate the changes in the graph
topology and sensing regimes, as well as uncertain pertur-
bations in the plant, measurements and interconnections.

7 Conclusions

The paper has presented sufficient conditions for the synthe-
sis of robust distributed consensus estimators connected over
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a Markovian network. The proposed estimator provides a
guaranteed suboptimalH∞ disagreement of estimates, while
using only locally available information about the commu-
nication and sensing state of the network. Our conditions
allow a robust filter network to be constructed by solving an
LMI feasibility problem. The LMIs are partitioned in a way
which opens a possibility for solving them in a decentral-
ized manner. When the network’s global state is available at
every node, this feasibility problem is convex, and the cor-
responding LMIs are solvable, e.g., using the decentralized
gradient descent algorithm in [18]. However, the elimina-
tion of the network state broadcast has led to the introduc-
tion of rank constraints additional to the LMI conditions.
Therefore, new numerical algorithms need to be developed
to exploit the proposed partition of the LMIs and rank con-
straints. This problem is left for future research. Other pos-
sible directions for future research may be concerned with
an integration of our approach with other distributedH∞

filtering techniques, such as for example, techniques involv-
ing randomly sampled measurements [16].
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8 Appendix: Proof of Theorem 1.

The following continuous-time counterpart of the Robbins-
Siegmund convergence theorem [14] will be used in the
proof of Theorem 1. Its proof is similar to [14].

Lemma 2 Consider nonnegative random processesv(t),
φ(t) andψ(t) adapted to a filtration{F̄t, t ≥ 0}, with the
following properties:

(a) v(t) is right-continuous on[0,∞);
(b) ψ(t) is locally Lebesgue-integrable on[0,∞)with prob-

ability 1, i.e., almost all realizations ofψ(t) have the
property

∫ t

s
ψ(θ)dθ <∞ for all t ≥ s ≥ 0;

(c) E
∫∞

0
φ(s)ds <∞;

(d) The following inequality holds a.s. for allt ≥ s ≥ 0

E

[

v(t) +

∫ t

s

ψ(θ)dθ
∣

∣F̄s

]

≤ v(s) + E

[∫ t

s

φ(θ)dθ
∣

∣F̄s

]

.(26)

Then the limitlimt→∞ v(t) exists and is finite with proba-
bility 1. Also,

∫∞

0
ψ(s)ds <∞ a.s..

Proof of Theorem 1 We will use the notationki = Φi(k),
kj = Φj(k), wherek ∈ I , ki ∈ Ii, kj ∈ Ij . Also,

D̂k
i = [Dk

i D̄k
i ], B̂2 = [B2 0 ], ξ̂i = [ ξ′ ξ′i ]

′.

Let L denote the infinitesimal generator of the intercon-
nected system consisting of subsystems (13) [1]. Con-
sider the vector Lyapunov candidate for this system,

[V1(e1, k) . . . VN (eN , k)]
′, with quadratic components

Vi(ei, k) = e′iX
k
i ei. Also, defineV (e, k) =

∑N
i=1 Vi(ei, k).

SinceL is a linear operator and∂Vi

∂ej
= 0 for j 6= i, then

[LV ](e, k) =
∑m

i=1[LiVi](e, k), where

[LiVi](e, k) ,
∑M

l=1
λklVi(ei, l) +

(

∂Vi

∂ei

)T
(

(A− Lk
iC

k
i )ei

+
∑

j∈V
ki
i

Kk
ij(Hij(ej − ei)−Gijwij)

+(B̂2 − Lk
i D̂

k
i )ξ̂i − ωi −

∑

j∈V
ki
i

(ω
(1)
ij + ω

(2)
ij )
)

.

For arbitraryτki , θ
k
ij , ϑ

k
ij > 0, consider the expression

[LV ](e, k) +
∑N

i=1

[

τki (α
2
i ‖Ck

i ei + D̂k
i ξ̂i‖2 − ‖ωi‖2)

+
∑

j∈V
ki
i

θkij(β
2
ij‖Hijei +Gijwij‖2 − ‖ω(1)

ij ‖2)

+
∑

j∈V
ki
i

ϑkij(β
2
ij‖Hijej‖2 − ‖ω(2)

ij ‖2)
]

=
∑N

i=1
Ri(e, k),

where we let

Ri(e, k) , [LiVi](e, k) + τki

(

α2
i ‖Ck

i ei + D̂k
i ξ̂i‖2 − ‖ωi‖2

)

+
∑

j∈V
ki
i

θkij

(

β2
ij‖Hijei +Gijwij‖2 − ‖ω(1)

ij ‖2
)

+e′i

(

∑

j: i∈V
kj

j

ϑkjiβ
2
jiH

′
jiHji

)

ei −
∑

j∈V
ki
i

ϑkij‖ω
(2)
ij ‖2. (27)

By completing the squares, one can establish that

Ri(e, k)≤ e′iUiei + 2e′iX
k
i

∑

j∈V
ki
i

Kk
ijHijej

+γ2(‖ξ‖2 + ‖ξi‖2) + γ2
∑

j∈V
ki
i

‖wij‖2, (28)

where

Ui = Xk
i

(

A− B̂2(D̂
k
i )

′(Ek
i )

−1Ck
i

)

+
(

A− B̂2(D̂
k
i )

′(Ek
i )

−1Ck
i

)′

Xk
i +

M
∑

l=1

λklX
l
i

+
( 1

τki
+
∑

j∈V
ki
i

( 1

θkij
+

1

θkij

))

Xk
i X

k
i +

∑

j: i∈V
kj

j

ϑkjiβ
2
jiH

′
jiHji

+
1

γ2
Xk

i B̂2

(

I − (D̂k
i )

′(Ek
i )

−1D̂k
i

)

B̂′
2X

k
i

−γ2(Ck
i )

′(Ek
i )

−1Ck
i − γ2

∑

j∈V
ki
i

H ′
ijF

−1
ij Hij .
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We now observe that it follows from the LMI (15) that for
any nonzero collection of vectorsei, ej ∈ R

n

e′iUiei + 2e′iX
k
i

∑

j∈V
ki
i

Kk
ijHijej + (pki + qki )‖ei‖2

−2e′i
∑

j∈V
ki
i

ej <

N
∑

j=1

πk
ij(e

′
jX

k
j ej), (29)

whereπk
ij are elements of theN ×N matrixΠk, defined as

πk
ij =











−2δi, j = i,
2δj
qk
j
+1
, j ∈ V

ki

i ,

0, otherwise.

(30)

Together with (28), the latter inequality leads to

Ri(e, k) + (pki + qki )‖ei‖2 − 2e′i
∑

j∈V
ki
i

ej < γ2‖ξ̂i‖2

+γ2
∑

j∈V
ki
i

‖wij‖2 +
∑

j∈Vk
i
∪{i}

πk
ijVj(ej , k). (31)

It is easy to verify using (30) that all components of the
vector 1′

NΠk are negative and do not exceed−ǫ, where
ǫ = mini,k

2δi
qk
i
+1

. Hence, it follows from (27), (31) that

the following dissipation inequality holds for allei, ξ, ξi,
wij , and for all uncertainty signalsωi(t), ω

(1)
ij (t), ω(2)

ij (t)
satisfying the constraints (12)

NΨk(e) + [LV ](e, k) ≤ −ǫV (e, k)

+γ2
N
∑

i=1






‖ξi‖2 + ‖ξ‖2 +

∑

j∈V
ki
i

‖wij‖2






. (32)

The statement of Theorem 1 now follows from (32). This
can be shown using the same argument as that used to derive
the statement of Theorem 1 in [18] from a similar dissipation
inequality. Indeed, letξ, ξi ∈ L2[0,∞), i = 1, . . . , N . Since
equation (13) defines(e(t), η(t)) to be a Markov process,
we obtain from (32) using the Dynkin formula that

E

[

V (e(t), η(t))
∣

∣

∣e(s), η(s)
]

− V (e(s), η(s))

+E

[∫ t

s

(ǫV (e(t), η(t)) +NΨη(t)(e(t))dt
∣

∣

∣e(s), η(s)

]

≤ γ2E

[

∫ t

s

(

N
∑

i=1

‖ξi(t)‖2 + ‖ξ(t)‖2

+
N
∑

j=1

a
η(t)
ij ‖wij(t)‖2

)

dt

∣

∣

∣

∣

∣

e(s), η(s)

]

. (33)

HereE [·|e(s), η(s)] is the expectation conditioned on theσ-
field generated by(e(t), η(t)), t ≤ s. We now observe that
the processesv(t) , V (x(t), η(t)),

φ(t),

N
∑

i=1



‖ξi(t)‖2 + ‖ξ(t)‖2 +
N
∑

j=1

a
η(t)
ij ‖wij(t)‖2



 ,

ψ(t),NΨη(t)(e(t)) + ǫV (e(t), η(t))

satisfy the conditions of Lemma 2. This leads to the con-
clusion that

∫∞

0
(NΨη(t)(e(t))) + εV (e(t), η(t)))dt < ∞

a.s., and alsolimt→∞ V (e(t), η(t)) < ∞ a.s.. Due
to the conditionXi > 0 for all i, we conclude that
limt→∞ ‖ei(t)‖2 exists and

∫∞

0
‖ei(t)‖2dt < ∞ a.s.. This

implies limt→∞ ei(t) = 0 with probability 1 for all i and
arbitrary disturbancesξ, ξi, wij ∈ L2[0,∞); i.e., (9) holds.

In the case whereξi = 0,wij = 0, ξ = 0, the above observa-
tion immediately yields the statement of the theorem about
internal stability of the system (13), (16) with probability
1. The claim of internal exponential mean-square stability
follows directly from (32), sinceΨk ≥ 0 by definition.

Also, by taking the expectation conditioned onei(0) = x0,
η(0) = m0 on both sides of (33) and then lettingt → ∞,
we obtain condition (7), in whichP = 1

Nγ2

∑N
i=1X

m0

i .
Condition (8) follows from (33) in a similar manner.
Taking the expectation conditioned onei(0) = x0,
η(0) = m0 on both sides of (33), then dropping the
nonnegative term

∫ t

0 NΨη(t)dt and letting t → ∞, we
establish thatEx0,m0

∫∞

0 V (e(t), η(t))dt < ∞. Hence
E
x0,m0

∫∞

0
‖e(t)‖2dt <∞. ✷

References

[1] A. Bain and D. Crisan. Fundamentals of Stochastic Filtering.
Springer, NY, 2009.

[2] E. F. Costa and J. B. R. do Val. On the observability and detectability
of continuous-time Markov jump linear systems.SIAM J. Contr.
Optim., 41:1295-1314, 2002.

[3] L. El Ghaoui, F. Oustry, and M. Ait Rami. A cone complementarity
linearization algorithm for static output-feedback and related
problems. IEEE Tran. Automat. Contr., 42:1171-1176, 1997.

[4] W. M. Haddad, V. Chellaboina, and S. G. Nersesov. Vector
dissipativity theory and stability of feedback interconnections for
large-scale non-linear dynamical systems.Int. J. Contr., 77:907-919,
2004.

[5] W. M. Haddad and J. R. Corrado. Robust resilient dynamic controllers
for systems with parametric uncertainty and controller gain variations.
Int. J. Contr., 73:1405-1423, 2000.

[6] C. Langbort, V. Gupta, and R. Murray. Distributed control over
failing channels. Networked Embedded Sensing and Control, pp.
325–342. Springer, 2006.

[7] L. Li, V. Ugrinovskii, and R. Orsi. Decentralized robustcontrol
of uncertain Markov jump parameter systems via output feedback.
Automatica, 43:1932-1944, 2007.

10



[8] I. Matei, N. C. Martins, and J. S. Baras. Consensus problems with
directed Markovian communication patterns. InProc. 2009 ACC,
2009.

[9] R. Olfati-Saber. Distributed Kalman filtering for sensor networks.
In Proc. 46th IEEE CDC, 2007.

[10] R. Olfati-Saber and R. M. Murray. Consensus problems innetworks
of agents with switching topology and time-delays.IEEE Trans.
Automat. Contr., 49:1520-1533, 2004.

[11] R. Orsi, U. Helmke, and J. B. Moore. A Newton-like method
for solving rank constrained linear matrix inequalities.Automatica,
42:1875-1882, 2006.

[12] I. R. Petersen and A. V. Savkin.Robust Kalman Filtering for Signals
and Systems with Large Uncertainties. Birkhäuser Boston, 1999.
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