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Abstract

This paper develops and illustrates a new maximum-likelihood based method for the identification of Hammerstein–Wiener
model structures. A central aspect is that a very general situation is considered wherein multivariable data, non-invertible
Hammerstein and Wiener nonlinearities, and coloured stochastic disturbances both before and after the Wiener nonlinearity
are all catered for. The method developed here addresses the blind Wiener estimation problem as a special case.
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1 Introduction

A useful and general class of nonlinear dynamical models
are so-called block-oriented models that consist of con-
figurations of linear dynamic blocks and nonlinear mem-
oryless blocks. The simplest examples in this class are
cascaded systems with the nonlinear block either preced-
ing (Hammerstein model) or following (Wiener model)
the linear block. The Hammerstein model was appar-
ently first discussed in [30], while the Wiener model has
its roots in Wiener’s interest in nonlinear system using
Volterra expansions [41, 35].

The model where a nonlinear block both precedes and
follows a linear dynamic system is called a Hammerstein-
Wiener model. This is illustrated diagrammatically in
Figure 1. More recently, generalisations based on feed-
back variants have been studied, such as the work [37,
21].
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Fig. 1. The general Hammerstein-Wiener model structure,
which consists of sandwiching a linear time invariant system
L between memoryless nonlinearities fH and fW .

The literature on how to estimate the Hammerstein-
Wiener model (and the Hammerstein or Wiener only
special cases) is extensive indeed, as evidenced by the se-
lection [18, 33, 4, 40, 42, 23, 7] and their bibliographies.
In relation to this, it is important to emphasise that the
work here is distinguished from these and other previous
contributions in the following ways.

First, the models here are fully multivariable in that all
signals passing between all linear and nonlinear blocks
in Figure 1 may not only be multivariable, but may be
of di↵ering dimensions.

Second, the memoryless nonlinear blocks fH and fW

illustrated in Figure 1 may be of very general form. For
example, they need not be invertible as is often required
in pre-existing literature.

Finally, the models considered here allow for a stochas-
tic disturbance before the final Wiener nonlinearity fW .
This is illustrated as the signal ⌫t in Figure 1. This point
is significant, since in the absence of ⌫t, the model is
essentially an output-error one for which standard esti-
mation methods are well established. However, the pres-
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ence of ⌫t significantly complicates the estimation prob-
lem due to the di�culty of computing the influence of
fW on it.

Furthermore, in this paper ⌫t may be a linearly corre-
lated (coloured) process, as may the stochastic distur-
bance µt shown if Figure 1. Importantly, by allowing ⌫t

to be coloured it may capture noise entering “internally”
to the linear component L, which can be necessary for
accurate modeling [28].

It was established in [19] that ignoring ⌫t when it is
present so that a simple output error solution can be
employed typically gives a biased estimate, and it was
then shown how a maximum likelihood method in case
⌫t is white can be used to obtain unbiased estimates.
That treatment was extended in [43] for the scalar signal
case to a practical maximum likelihood method for ⌫t of
general color.

This paper also adopts a maximum likelihood approach,
and employs two main tools. The problem of computing
the e↵ect of the Wiener nonlinearity on the noise ⌫t will
be addressed by using particle filtering and smoothing
techniques. This allows the formulation of the appropri-
ate likelihood, and in order to compute as estimate a lo-
cal maximizer, the second main tool is adopted. Namely,
the expectation maximisation (EM) algorithm.

Finally, it is important to note that the exogenous input
ut may be absent in the model shown in Figure 1 so
that since ⌫t may be coloured, the techniques developed
here provide a solution to the blind Wiener estimation
problem, which has also attracted significant interest [3,
1, 39, 45].

2 Problem Formulation and Model Structure

This paper addresses the problem of using N -point data
measurements of input UN , {u1, . . . , uN} and output
YN , {y1, . . . , yN} to estimate a coe�cient vector ✓ that
parametrizes a block nonlinear structure modeling these
observations.

The particular model structure considered is illustrated
in Figure 1, and may be expressed as

yt = fW (zt,�) + µt, (1)
zt = L(wt,#) + ⌫t, (2)
wt = fH(ut,↵). (3)

Here, fH(·,↵) and fW (·,�) are memoryless nonlineari-
ties that are respectively parametrized by vectors ↵ 2
Rn↵ and � 2 Rn� , while L(·,#) is a linear time-invariant
system parametrized by # 2 Rn# . The terms µt and ⌫t

are zero mean stationary stochastic processes modeling
measurement and modeling errors.

This represents a Hammerstein–Wiener model struc-
ture. It is particularly general in that it allows for a cor-
related noise term ⌫t preceding the Wiener nonlinearity
fW (·,�). Furthermore, all signals may be multivariable
with

ut 2 Rnu , wt 2 Rnw , zt 2 Rnz , yt 2 Rny (4)

and the dimensions of µt, ⌫t being conformal to those of
yt and zt.

The linear dynamics L(·,#) are modeled by the state
space structure
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(5)

with # 2 Rn# denoting a vector containing the non-
constrained elements of the system matrices A,B, C, D.

Likewise, the correlation structure of the stationary pro-
cesses ⌫t and µt are also modeled via a state space struc-
ture

⇠t+1 = A⇠⇠t + vt, (6a)
⌫t = C⌫⇠t, (6b)
µt = Cµ⇠t + et, (6c)

where
"
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#
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0

0

#

,
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Q 0

0 R

#!

. (7)

In what follows, these noise models are “fully”
parametrized in that no elements in the matrices A⇠, C⌫

and Cµ specifying them are constrained. The matrices
Q and R are also “fully” parametrized, but assumed
to be symmetric and positive definite. We denote by
� 2 Rn� a vector containing them.

Finally, the Hammerstein fH(·,↵) and Wiener fW (·,�)
memoryless nonlinearities may be quite general. They
need not be invertible, but it is required that the deriva-
tives

@

@↵
fH(·,↵),

@

@�
fW (·,�) (8)

with respect to their parameter vectors ↵ and � exist.
This is satisfied by many common examples, such as
deadzone, saturation, polynomial and piecewise linear
descriptions.

The combined linear, nonlinear, and noise descriptions
comprising the model structure (1)-(3) are therefore
parametrized by the vector

✓ = [#T ,�T ,↵T ,�T ]T . (9)
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3 Maximum Likelihood Estimation

This paper examines the formation of an estimate b✓ of
✓ via the maximum likelihood (ML) approach

b✓ = arg max
✓

L✓(YN ), L✓(YN ) , log p✓(YN ). (10)

Here p✓(YN ) denotes the joint density of the measure-
ments YN and via subscript makes explicit that accord-
ing to the model (1)-(3) it will depend upon ✓, and like-
wise for L✓(YN ).

Via Bayes’ rule, the log-likelihood can be expressed as

L✓(YN ) =
N
X

t=1

log p✓(yt | Yt�1), p✓(y1 | Y0) , p✓(y1).

(11)

This provides a means for evaluating the criterion
L✓(YN ) if the prediction density p✓(yt | Yt�1) can be
computed.

If all stochastic components appeared additively after
the Wiener nonlinearity fW , then the prediction density
could be straightforwardly obtained via a Kalman filter.

However, our model structure is more general in that it
allows for the noise term ⌫t preceding the Wiener non-
linearity, with the penalty that evaluating p✓(yt | Yt�1)
is then a serious challenge.

Recently developed sequential importance sampling or
“particle filter” methods [16, 12] o↵er a potential so-
lution for computing (approximately) the required pre-
diction density. Unfortunately, the resulting approxima-
tions of p✓(yt | Yt�1) are not di↵erentiable (or even nec-
essarily continuous) with respect to ✓. Therefore, com-
puting the maximizer b✓ is complicated, since standard
gradient-based search techniques cannot be used.

To address this di�culty, the work here employs the
expectation-maximisation (EM) algorithm [10],[29] to
compute the maximiser b✓, since this technique avoids the
need to compute L✓(YN ) or its derivatives. Sequential
importance sampling methods are still employed, but
critically this is by way of using particle smoothers as
opposed to particle filters.

The reader is referred to the comprehensive monograph
on the topic [29], and the previous works [17, 44, 36] for
an introduction and explanation of the EM algorithm.
Central to the approach is the employment of so-called
“incomplete data” X and a given fixed value ✓ = ✓k to
decompose the log-likelihood using Bayes’ rule as

L✓(YN ) = Q(✓, ✓k)� V(✓, ✓k) (12)

where

Q(✓, ✓k) ,
Z

log p✓(YN , X) p✓k(X | YN ) dX (13)

V(✓, ✓k) ,
Z

log p✓(X | YN ) p✓k(X | YN ) dX. (14)

The choice of the incomplete data X is a key design
variable in the implementation of the EM-algorithm, and
will be discussed in detail presently.

The resulting function Q(✓, ✓k) acts as a local (about
✓k) approximant of L✓(YN ). The EM algorithm seeks a
maximizer of L✓(YN ) by computing and seeking maxi-
mizers of Q(✓, ✓k) as follows:

Algorithm 1 : Expectation Maximisation Algorithm
(1) Set k = 0 and initialize ✓0 such that L✓0(YN ) is

finite.
(2) Expectation (E) step: Compute

Q(✓, ✓k) = E✓k {log p✓(YN , X) | YN} . (15)

(3) Maximisation (M) step: Compute

✓k+1 = arg max
✓

Q(✓, ✓k). (16)

(4) If not converged, update k := k + 1 and return to
step 2.

The evaluation ofQ(✓, ✓k) can be thought of as a smooth-
ing step since it involves computing an expectation con-
ditional on the whole observations sequence YN . In what
follows, this smoothing will be approximately computed
using a particle smoothing approach.

Crucially, this depends on the point ✓k around which
L✓(YN ) is being approximated, which is fixed. The de-
pendency of Q(✓, ✓k) on ✓ then arises via di↵erentiable
functional forms of the smoothed quantities, and this fa-
cilitates the maximisation of Q(✓, ✓k) via gradient based
search.

3.1 Convergence of the Maximum-Likelihood Estimate

The main topic of this paper is to suggest an algorithm
that finds the ✓ML

N that maximizes (11) for each N . That
will involve a number of steps like EM (15)-(16) and par-
ticle filters to be defined below (32)-(34). As a result we
cannot guarantee that we find ✓ML

N . This is basically the
same situation as when (11) can be explicitly maximized
by gradient methods and we cannot guarantee that we
do not end up in a local maximum. Nevertheless it is
if of interest to establish what are the properties of the
sought estimate ✓ML

N as a function of N .
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The maximum-likelihood (ML) framework employed
here has historically been much favoured due its general
statistical e�ciency; i.e. consistency with variability
approaching the Cramér–Rao bound as the amount of
available measurements N increases [27, 9].

However, these attractive theoretical properties do not
apply generically, as evidenced by counter-example [31].
A rigorous analysis of the stochastic convergence of
the ML estimate proposed here requires establishing
detailed moment bounds on various signals and their
derivatives together with checking detailed technical
conditions on model structure parametrization. See,
for example, the work [5] where the consistency of
Hammerstein–Wiener model estimates derived from a
least-squares criterion is studied by application of the
stochastic convergence framework developed in [32].

Nevertheless, the convergence properties of a very gen-
eral class of estimation methods, including the ML one
proposed here, have been established in works such
as [24, 20]. For example, the essential conditions re-
quired to apply the results of [24] are first, that the true
system is exponentially stable [24, condition (S3)].

Second, that the log-likelihood criterion (11) can be ex-
pressed as

L✓(YN ) = h

 

1
N

N
X

t=1

`(t, ✓, ✏t(✓))

!

(17)

where h(·) and `(t, ✓, ·) are functions satisfying mild
growth conditions [24, conditions (C1-C3)] and the “pre-
diction error” ✏t(✓) is defined as

✏t(✓) = yt � byt|t�1(✓) (18)

for some predictor byt|t�1(✓) based on the model structure
(1)-(3).

Third, that the predictor byt|t�1(✓) have an exponentially
decaying dependence on past data [24, condition (M1)]
for all parameter values ✓ 2 ⇥ with the latter being
some compact set. The results of [24] then establish the
convergence

lim
N!1

b✓ 2 {✓ 2 ⇥ : L(✓) � L(�), 8� 2 ⇥} (19)

with probability one where

L(✓) = lim
N!1

E {L✓(YN )} . (20)

Furthermore, if there exists a set of parameter values ⇥�
whose members are “true” in that sense that ✏t(✓�), ✓� 2
⇥� becomes an innovations process satisfying

E {✏t(✓�) | ✏t�1(✓�), ✏t�2(✓�), · · · } = 0 (21)

then
lim

N!1
b✓ 2 ⇥�. (22)

Let us comment on how to establish the conditions that
guarantee this result.

Stability of the System (S3): We assume that the true
system is given by (1)-(7) for a ✓0 that gives stable eigen-
values of A and A⇠. Then we can define the output y0

s(t)
that would be obtained by the true system if vt and et

are zero prior to time s. Clearly this would di↵er from
the actual output y(t) by an exponentially decaying (in
t � s) amount. If the fourth order moments of v and e
exist, and fW is such that also the fourth order moment
of the output exists, condition S3 of [24] is satisfied.

Smoothness of the criterion function (C1-C3): It is well
known (e.g. Lemma 5.1 with discussion in [26]) how the
ML criterion in terms of joint probabilities can be rewrit-
ten in the general form (17) by repeated application of
Bayes’ rule:

L✓(YN ) =
N
X

t=1

log p✓(yt | Yt�1) =
N
X

t=1

`(t, ✓, ✏t(✓)) (23)

where `(t, ✓, ✏t(✓)) is the log of the conditional pdf of
the innovations (given past data). We can thus take
h(x) = x/N and this `(·, ·, ·) in (2.23)-(2.24) in [24] so
that conditions C1-C3 reduce to smoothness conditions
on the log of the conditional density of the innovations.
Now, we do not have any closed form expression for this
pdf, since the innovations are formed from e and v and
also the Wiener non-linearity. That is why we will use
particle methods to handle the posterior densities, which
is the main motivation for this paper. But we only need
to establish condition C1, that requires the log of the
innovations pdf to be di↵erentiable wrt ✓ and show lim-
ited growth as a function of ✏t. These should be rather
weak restrictions.

Smoothness and stability of the predictor function (M1):
M1 requires that the predictors are di↵erentiable wrt ✓
and that the influence of observations y(s) in the remote
past on the current prediction ŷ(t|✓) is exponentially de-
caying. Since we have no closed form expression for the
predictors in this non-linear setting, it is di�cult to es-
tablish this formally. But the smoothness assumptions
on nonlinearity models (8) and the linearly parameter-
ized state space model make it reasonable that this is in-
herited by the predictors. Likewise, the only dependence
of the past in the models follows from the exponentially
stable linear model (5)-(6), so it is reasonable that the
predictors must depend on past observations to an ex-
ponentially decreasing degree.
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4 Computing Q(✓, ✓k)

The function Q(✓, ✓k) is completely determined by the
choice of the incomplete data X. In general, a sensible
choice for X is a set of measurements that, while not
available, would greatly simplify the estimation problem.

In previous work [36, 44, 17], the utility of choosing X
as the time history of the full state vector of the under-
lying dynamics has been established. However, in this
paper, the particulars of the Hammerstein Wiener struc-
ture lead to a di↵erent choice.

This involves noting that since the input ut is assumed
observed, if the noise ⌫t = C⌫⇠t were known, then for
a given fixed ✓k, the input zt = L(wt,#) + ⌫t to the
Wiener nonlinearity fW would also be known. Further-
more, if the state ⇠t where known, then this would allow
the likelihood L✓(YN ) to be simply computed by noting
that the density of yt in this case is simply the density
(7) of et evaluated at

"t , yt � fW (zt,�)� Cµ⇠t (24)

where
zt = L(wt,#) + C⌫⇠t. (25)

With this as motivation, this paper examines the incom-
plete data choice of

X , [⇠1, ⇠2, . · · · , ⇠N ] . (26)

This leads to the formulation of Q(✓, ✓k) according to
the following Lemma.

Lemma 4.1 Assume that p✓(⇠1) does not depend on ✓,
but instead it is a fixed and known distribution. Then
neglecting any additive constants, the choice (26) for the
incomplete data implies

�2Q(✓, ✓k) = N log |Q|+ N log |R|+ Tr
�

R�1⌥
 

+
Tr

�

Q�1
⇥

�� AT
⇠ �A⇠ T + A⇠⌃AT

⇠

⇤ 

(27)

with

� ,
N�1
X

t=1

E✓k

�

⇠t+1⇠
T
t+1 | YN

 

, (28)

 ,
N�1
X

t=1

E✓k

�

⇠t+1⇠
T
t | YN

 

, (29)

⌃ ,
N�1
X

t=1

E✓k

�

⇠t⇠
T
t | YN

 

, (30)

⌥ ,
N
X

t=1

E✓k

�

"t"
T
t | YN

 

. (31)

PROOF. By Bayes’ rule, the Markov property of the
noise model (6) and the definition (13)

Q(✓, ✓k) = E✓k {log p✓(X) + log p✓(YN |X) | YN}

=
N�1
X

t=1

E✓k {log p✓(⇠t+1|⇠t) | YN}

+ E✓k {log p✓(⇠1) | YN}

+
N
X

t=1

E✓k {log p✓(yt|⇠t) | YN} .

Again using the formulation (6), the Gaussian assump-
tions, and neglecting additive constants (and this in-
cludes p✓(⇠1))

� 2Q(✓, ✓k) =

N log |Q|+
N�1
X

t=1

E✓k

�

(⇠t+1 �A⇠⇠t)T Q�1(⇠t+1 �A⇠⇠t)
 

+ N log |R|+
N
X

t=1

E✓k

�

"T
t R�1"t

 

. (32)

Using the identity that Tr{xT y} = Tr{yxT } for arbi-
trary vectors x and y then completes the proof. ⌅

To address the di�culty of computing the conditional
expectations (28)-(31) that are required to evaluate
Q(✓, ✓k) this paper will employ sequential importance
resampling (SIR) methods, which are more colloquially
known as “particle” techniques.

Underpinning these approaches, is the central idea of
generating a user chosen number M of random realisa-
tions (particles) ⇠i

t, i = 1, · · · ,M from the smoothing
density of interest ⇠i

t ⇠ p(⇠t | YN ).

Generating random realisations from the smoothing
density requires a preceding step of generating reali-
sations ⇣i

t for i = 1, · · · ,M from the filtering density
p(⇠t | Yt). The following algorithm for achieving this
has now become a benchmark, although there are many
variants on it [15, 2, 34].

The development of particle smoothing methods is
much less mature. However, the recent work [13] has
derived a new approach that is both computationally
e�cient, and has the great advantage of generating re-
alisations from the complete joint smoothing density
p(⇠1, · · · , ⇠N | YN ).

This is particularly important for the work here since via
(29), approximations based on realisations drawn from
the joint density p(⇠t+1, ⇠t | YN ) are required. In pre-
vious work where realisations only from the marginal
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Algorithm 2 Particle Filter
1: Initialize particles, {⇣̃i

1}M
i=1 ⇠ p✓(⇣̃1) and set t = 1;

2: Compute the importance weights {wi
t}M

i=1,

wi
t , w(⇣̃i

t) =
p✓(yt|⇣̃i

t)
PM

j=1 p✓(yt|⇣̃j
t )

, i = 1, . . . ,M.

(33)

3: For each j = 1, . . . ,M draw a new particle ⇣j
t with

replacement (resample) according to,

P(⇣j
t = ⇣̃i

t) = wi
t, i = 1, . . . ,M. (34)

4: Predict the particles by drawing M i.i.d. samples
according to

⇣̃i
t+1 ⇠ p✓(⇣̃t+1|⇣i

t), i = 1, . . . ,M. (35)

5: If t < N increment t 7! t + 1 and return to step 2,
otherwise terminate.

p(⇠t | YN ) are available, it is then necessary to approxi-
mate an extra integration step [36, Lemma 6.1] that can
now be avoided.

The smoothing method developed in [13] address a very
general class of problems and initial particle filtering
methods for which a central consideration is a desired
target density p(⇠t+1 | ⇠t) which in this paper, according
to the model (6) has the Gaussian form

p(⇠t+1 | ⇠t) = (|2⇡Q|)�1/2g(⇠t+1, ⇠t, ✓), (36)

where

g(⇠t+1, ⇠t, ✓) , exp
✓

�1
2
(⇠t+1 �A⇠⇠t)T Q�1

⇠ (⇠t+1 �A⇠⇠t)
◆

.

(37)
This form, and the fact that the particle filter defined in
Algorithm 2 resamples at every time step allows some
important simplification of the general smoother devel-
oped in [13] so that it can be expressed in the following
concrete form of Algorithm 3.

This paper proposes using the realisations ⇠i
t i =

1, · · · ,M from the joint smoothing density p(⇠1, · · · , ⇠N |
YN ) generated by Algorithm 3 to approximate the com-

Algorithm 3 Rejection Sampling Based Particle
Smoother
1: Run the particle filter (Algorithm 2) and store all

the generated particles ⇣i
t for t = 1, · · · , N and i =

1, · · · ,M ;
2: Set t = N and initialize the smoothed particles ⇠i

N =
⇣i
N for i = 1, · · · ,M ;

3: for i = 1 : M do
4: Draw an integer j randomly according to j ⇠

U([1, · · · ,M ]) where the latter is the uniform dis-
tribution over the integers 1, · · · ,M ;

5: Draw a real number ⌧ randomly according to
⌧ ⇠ U([0, 1]) where the latter is the uniform distri-
bution over the real numbers in the interval [0, 1];

6: if ⌧ > g(⇠i
t, ⇣

j
t�1, ✓) then

7: return to step 4;
8: end if
9: Set ⇠i

t�1 = ⇣j
t�1.

10: end for
11: if t > 1 then
12: Decrement t 7! t� 1. Return to step 4
13: else
14: Terminate;
15: end if

ponents (28)-(31) as follows

� ⇡ b� , 1
M

N�1
X

t=1

M
X

i=1

⇠i
t+1(⇠

i
t+1)

T , (38)

 ⇡ b , 1
M

N�1
X

t=1

M
X

i=1

⇠i
t+1(⇠

i
t)

T , (39)

⌃ ⇡ b⌃ , 1
M

N�1
X

t=1

M
X

i=1

⇠i
t(⇠

i
t)

T . (40)

⌥ ⇡ b⌥ , 1
M

N
X

t=1

M
X

i=1

"i
t("

i
t)

T (41)

"i
t , yt � fW (zi

t,�)� Cµ⇠i
t, (42)

zi
t = L(wt,#) + C⌫⇠i

t (43)

and therefore approximate Q(✓, ✓k) ⇡ bQ(✓, ✓k) defined
as

� 2 bQ(✓, ✓k) , N log |Q|+ N log |R|+ Tr
n

R�1
b⌥
o

+

Tr
n

Q�1
h

b�� b AT
⇠ �A⇠

b T + A⇠
b⌃AT

⇠ + R�1
b⌥
io

.

(44)

This approximation bQ(✓, ✓k) is based on the standard
rationale underpinning particle filtering and smoothing
methods wherein by the law of large numbers (LLN),
sample averages of the random realisations (38)-(41)
converge, with increasing number of particles M to the
ensemble expectations (28)-(31), and therefore approx-
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imate convergence can be expected to hold in the finite
M cases (38)-(41).

To formally establish that the LLN applies in this par-
ticular case is a formidable technical challenge, since
the particle realisations are not independent. For cer-
tain classes of particle filtering methods, some results
are available establishing stochastic convergence for gen-
eral functions of the particle realisations [22, 14]. Unfor-
tunately, there are at present no such theoretical stud-
ies available for the recently developed particle smooth-
ing method employed here. In absence of this, section 6
following provides an empirical study to establish evi-
dence for convergence and the utility of the LLN-based
approximations (38)-(41).

5 Maximising bQ(✓, ✓k)

The second “M-step” of the EM algorithm involves max-
imization of Q(✓, ✓k) over ✓. In this paper, this will be
approximated by the maximization of bQ(✓, ✓k), which
may be decomposed into two separately parametrized
components

�2 bQ(✓, ✓k) = I1(A⇠, Q) + I2(R, ⌘) (45)

where

I1(A⇠, Q) , N log |Q|+

Tr
n

Q�1
h

b�� b AT
⇠ �A⇠

b T + A⇠
b⌃AT

⇠

io

(46)

I2(R, ⌘) , N log |R|+ Tr
n

R�1
b⌥
o

(47)

and

⌘ , [#T ,↵T ,�T , vec {C⌫}T
, vec {Cµ}T ]T (48)

where the vec {·} operator creates a vector from a matrix
by stacking its columns on top of one another.

Maximising bQ(✓, ✓k) therefore involves minimizing these
two components. Achieving this for I1(A⇠) is straight-
forward.

Lemma 5.1 If b⌃ � 0 then I1(A⇠, Q) as a function of
A⇠ is uniquely minimized by the choice

A⇠ = b b⌃�1. (49)

PROOF. The term inside the trace operator in (46)
may be expressed as

b��b AT
⇠ �A⇠

b T + A⇠
b⌃AT

⇠ =

(A⇠�b b⌃�1)b⌃(A⇠ � b b⌃�1)T + b�� b b⌃�1
b T . (50)

Therefore, I1 depends as a function of A⇠ only on the
first term in (50) which is non-negative, but may be set
to zero by the choice (49). ⌅

Likewise, minimizing I1(A⇠, Q) with respect to Q and
I2(R, ⌘) with respect to R is also straightforward.

Lemma 5.2 The value

Q =
1
N

h

b�� b b⌃�1
b T

i

(51)

is a stationary point of I1(b b⌃�1, Q) with respect to Q,
and the value

R =
1
N
b⌥ (52)

is a stationary point of I2(R, ⌘) with respect to R.

PROOF. Beginning with I2(R, ⌘), via well known re-
sults of matrix calculus [6]

@

@R
N log |R|+ @

@R
Tr

n

R�1
b⌥
o

= NR�1 �R�1
b⌥R�1

(53)

which is clearly zero for the choice (52). Furthermore,
via (50), I1(A⇠, Q) evaluated at the minimizer (49) is
given as

I1(b b⌃�1, Q) = N log |Q|+ Tr
n

Q�1
h

b�� b b⌃�1
b T

io

.

(54)
Establishing that Q given by (51) is a stationary point
of this expression then proceeds via the argument (53)
just used in relation to I2(R, ⌘). ⌅

Unfortunately, it is not possible to derive closed form ex-
pressions for the stationary point of I2(R, ⌘) with respect
to the remaining parameter vector ⌘. As a solution, this
paper suggests computing a minimizer with respect to ⌘
via a standard gradient based search update of the form

⌘  ⌘ + �⇢. (55)

Here the vector ⇢ is given by the Gauss-Newton search
direction [11] defined as

⇢ = H(⌘)�1g(⌘), (56)

where the j’th element of the (negative) gradient vector
g is given by

gj(⌘) , @I2(R, ⌘)
@⌘j

=
1
M

N
X

t=1

M
X

i=1

"i
t(⌘)

@"i
t(⌘)

@⌘j
(57a)
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and the (`, j)’th element of the scaling matrix H is given
by

H(`,j)(⌘) =
1
M

N
X

t=1

M
X

i=1

@"i
t(⌘)

@⌘`

@"i
t(⌘)

@⌘j
. (58)

Based on this choice for ⇢, it can be shown that there
exists a � > 0 so that I2(R, ⌘ +�g(⌘)) > I2(R, ⌘), which
we achieve using a backstepping line search in this paper.

To be more precise, the combination of the results of
Lemmas 5.1 and 5.2 together with a gradient based
search relative to ⌘ results in the following proposed Al-
gorithm 4 for maximising bQ(✓, ✓k).

Algorithm 4 M-step
Given the current parameter values ✓k and a positive
scalar ✏, perform the following:
1: Update the elements of ✓ a↵ected by A⇠, Q and R

via (49),(51),(52);
2: Initialise ⌘ from the appropriate elements of ✓k.
3: while kg(⌘)k < ✏ do
4: Compute ⇢ = H(⌘)�1g(⌘);
5: Set � = 1;
6: while I2(⌘ + �⇢) < I2(⌘) do
7: Update �  �/2;
8: end while
9: Set ⌘  ⌘ + �⇢;

10: end while
11: Set the appropriate elements of ✓ to the terminal

values of ⌘.
12: Compute R via (52), using the new estimates just

obtained and update the appropriate elements in ✓.

The utility and e�cacy of this combined EM/particle
smoothing approach will now be illustrated via empirical
study.

6 Simulation Examples

6.1 Blind Estimation of Wiener Model with 4’th Order
Linear Part and Non-invertible Nonlinearity

In this first example we consider a Wiener system in the
form of Figure 1 where the Hammerstein nonlinearity
fH and the linear dynamic block L are not present. This
results in a blind Wiener estimation problem where only
the output measurements are available for estimating
the parameters of the state-space colouring filter (6), and
the Wiener nonlinearity fW . To that end, the process
noise µt was generated by a passing Gaussian white noise
vt through a 4’th order transfer function

⌫t = H(q)vt, (59)

H(q) =
c1q

�1 + · · ·+ c4q
�4

1 + a1q�1 + · · · a4q�4
(60)

with parameter values a = [a1, · · · , a4], c = [c1, · · · , c4]
given by

a =
h

0.3676, 0.88746, 0.52406, 0.55497
i

, (61)

c =
h

1, 0.1, �0.49, 0.01
i

. (62)

The true nonlinearity fWtrue is given by a saturation
function according to

fWtrue(⌫t) =

8

<

:

0.3 : ⌫t > 0.3
⌫t : �0.2  ⌫t  0.3
�0.2 : ⌫t < �0.2.

(63)

In terms of the estimation model structure, the non-
linearity was modeled as a piecewise linear func-
tion with a number npw of transitions between lin-
ear sub-components. It is parametrized by a vector
� 2 R2(npw+1) that specifies a linear base together with
npw “hinge” functions hj(·,�) [8]:

fW (⌫t,�) = �0,0 + �0,1⌫t +
npw
X

j=1

hj(⌫t,�), (64a)

hj(⌫t,�) =

8

>

>

<

>

>

:

�j,0 + �j,1⌫t ; ⌫t > ��j,0
�j,1

,

0 ; Otherwise

(64b)

� =
h

�0,0 �0,1 �1,0 �1,1 · · · �npw,0 �npw,1

i

. (64c)

For the purposes of estimation, N = 5000 samples of the
output were simulated via

yt = fWtrue(⌫t) + et, ⌫t = H(q)vt, (65)

with the state noise source vt ⇠ N (0, 0.1). The
measurement noise was distributed according to
et ⇠ N (0, 0.001).

The number of hinges used in the nonlinear block was
chosen as npw = 2. Further, the parameter vector � was
initialised as

� =
h

0, 1, �0.001, �1, 0.001, 1
i

, (66)

which approximates a straight line.
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The parameters of the noise filter state-space matri-
ces (A⇠, C⌫ , Q) were initialised by using a subspace
method [38] based on the measurements {y1, · · · , yN}.

Using the above combination of initial parameter values,
the EM method was employed to provide ML estimates
based on M = 200 particles and using 100 iterations.
The results of 100 Monte Carlo runs are shown in Fig-
ures 2–3. For each run, di↵erent noise realisations were
used according to the distributions specified above.
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Fig. 2. Bode plot of estimated mean (thick red-dashed) and
standard deviation (thin red-dashed) against the true (blue–
solid) system for the example studied in Section 6.1.
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Fig. 3. Estimated mean (solid red-dashed) and standard de-
viation (thin red-dashed) together with the true (blue-solid)
memoryless nonlinearities for the example studied in Sec-
tion 6.1.

6.2 MIMO Hammerstein-Wiener System

As a further example, a multiple-input/multiple-output
Hammerstein-Wiener system is now considered. The sys-
tem has two inputs, two outputs and the linear dy-
namic block L(·,#) is a 4’th order system described by

(5), where the state-space matrices (A,B, C, D) conform
with the transfer function

G , C(qI �A)�1B + D =

"

G11 G12

G21 G22

#

, (67a)

where

G11 =
1.1� 0.99q�1 � 0.17q�2 + 0.51q�3 � 0.18q�4

1� 0.77q�1 � 0.56q�2 + 0.38q�3 + 0.012q�4
,

G12 =
0.35q�1 � 0.31q�2 � 0.24q�3 + 0.066q�4

1� 0.77q�1 � 0.56q�2 + 0.38q�3 + 0.012q�4
,

G21 =
�0.86 + 0.39q�1 + 0.40q�2 � 0.20q�3 + 0.012q�4

1� 0.77q�1 � 0.56q�2 + 0.38q�3 + 0.012q�4
,

G22 =
�0.12q�1 + 0.15q�2 + 0.12q�3 � 0.0033q�4

1� 0.77q�1 � 0.56q�2 + 0.38q�3 + 0.012q�4
.

The true Hammerstein nonlinearity fH is given by

fH(ut,↵) =

"

fH,1(ut(1),↵)

fH,2(ut(2),↵)

#

(67b)

where fH,1 is a saturation function, fH,2 is a deadzone
function and ut(i) is used to denote the i’th input signal.
More specifically,

fH,1(ut(1),↵) =

8

<

:

↵1 : ut(1) < ↵1

ut(1) : ↵1  ut(1)  ↵2

↵2 : ut(1) > ↵2

(67c)

fH,2(ut(2),↵) =

8

<

:

ut(2)� ↵3 : ut(2) < ↵3

0 : ↵3  ut(2)  ↵4

ut(2)� ↵4 : ut(2) > ↵4

(67d)

with the true values for ↵ given by

↵1 = �0.8, ↵2 = 0.8, ↵3 = �0.9, ↵4 = 0.9. (67e)

The true Wiener nonlinearity fW is given in a similar
manner by

fW (zt,�) =

"

fW,1(zt(1),�)

fW,2(zt(2),�)

#

(67f)

where fW,1 is a deadzone function, fW,2 is a saturation
function and zt(i) is used to denote the i’th element of
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the vector signal zt 2 R2. More specifically,

fW,1(zt(1),�) =

8

<

:

zt(1)� �1 : zt(1) < �1

0 : �1  zt(1)  �2

zt(1)� �2 : zt(1) > �2

(67g)

fW,2(zt(2),�) =

8

<

:

�3 : zt(2) < �3

zt(2) : �3  zt(2)  �4

�4 : zt(2) > �4

(67h)

with the true values for � given by

�1 = �0.8, �2 = 0.8, �3 = �0.9, �4 = 0.9. (67i)

Finally, the process noise signal µt was coloured accord-
ing to (6c) with state-space matrices given by

A⇠ =

"

0.2 �0.82

1 0

#

, Cµ =

"

0 �0.81

0 �0.81

#

, Q = I2. (67j)

In terms of the estimation model structure, we used a
4’th order state-space model for the linear dynamic sys-
tem and the nonlinearities were modeled by the 4’th or-
der piecewise linear structure described in (64a)-(64c).
The coloured noise was modeled using a 2’nd order state-
space structure.

For the purposes of estimation, N = 2000 samples of
the inputs and outputs were simulated using (67). The
output measurements were corrupted by Gaussian noise
⌫t ⇠ N (0, I2).

The goal is to estimate the parameter vector ✓ based
on input and output measurements. In this case, three
di↵erent algorithms were employed:

(1) A prediction error method that assumes output
noise only, called the OE method. This is the ap-
proach used in the industry standard software tool-
box [25];

(2) A maximum-likelihood method developed in [19]
that employs numerical integration techniques and
assumes that the noise ⌫t is Gaussian and indepen-
dent. This will be called the ML-NI approach;

(3) The method developed in this paper, called the ML-
EM approach.

It should be mentioned that the first two algorithms do
not cater for estimating either of the noise filter dynam-
ics. It is interesting nonetheless to observe their perfor-
mance based on the wrong assumptions that each make
about the process noise, i.e. it doesn’t exist in the first
case, and it is assumed white in the second.

The first two algorithms were initialised with the true
parameter values in order to reduce the likelihood of cap-
ture in local minima. The EM approach was initialised

at ✓/5 in order to demonstrate that the method performs
well even when starting from poor initial estimates.

For ML-EM method, M = 100 particles were used.
Again the algorithm was terminated after just 100 iter-
ations. The results of 80 Monte Carlo runs for all algo-
rithms are shown in Figures 4–10. For each run, di↵erent
noise realisations were used according to the distribu-
tions specified above.

These figures demonstrate the utility of the proposed al-
gorithm in that the estimates appear to be informative,
even though the initial estimates are clearly far from ac-
curate. Note in particular that both the OE and ML-NI
methods appear to produce biased estimates, while the
ML-EM approach appears to be unbiased and accurate.
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Fig. 4. Input nonlinearity-1 for the example studied in Sec-
tion 6.2.
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Fig. 5. Input nonlinearity-2 for the example studied in Sec-
tion 6.2.
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Fig. 6. Output nonlinearity-1 for the example studied in
Section 6.2.
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Fig. 7. Output nonlinearity-2 for the example studied in
Section 6.2.

7 Conclusion

This paper has considered the problem of identifying pa-
rameter values for Hammerstein-Wiener systems where
both coloured process noise and white measurement
noise are considered. It also straightforwardly captures
the blind identification problem for Wiener systems
as an interesting special case. The static nonlineari-
ties associated with the Hammerstein-Wiener system
are allowed to be quite general and do not need to be
invertible.

This identification problem was specified using a max-
imum likelihood formulation, which depends on an un-
derlying prediction density. The key technical di�culty
in solving this problem is that the prediction density can-
not be straightforwardly characterized. The impact is

10−2 10−1 100
−10

−5

0

5

10

15

G11
10−2 10−1 100

−10

−5

0

5

10

15

G12

10−2 10−1 100
−25

−20

−15

−10

−5

0

5

10

G21
10−2 10−1 100

−25

−20

−15

−10

−5

0

5

10

G22

Fig. 8. Bode magnitude response using the OE method for
the example studied in Section 6.2.
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Fig. 9. Bode magnitude response using the ML-NI method
for the example studied in Section 6.2.

that the likelihood function cannot be straightforwardly
evaluated, let alone maximised.

To address this, the paper employs the expectation max-
imisation (EM) algorithm, which does not need to eval-
uate the likelihood nor directly maximise it. The results
of this new approach were profiled on two examples that
establish the utility of the new methods developed here.
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[12] P.M. Djurić and S.J. Godsill (Guest Editors). Spe-

cial issue on Monte Carlo methods for statistical sig-
nal processing. IEEE Transactions on Signal Pro-
cessing, 50(2), 2002.

[13] R. Douc, A. Garivier, E. Moulines, and J. Olsson.
Sequential Monte Carlo smoothing for general state
space hidden Markov models. Submitted to Annals
of Applied Probability, 2010.

[14] Randal Douc and Eric Moulines. Limit theorems
for weighted samples with applications to sequen-
tial monte carlo methods. The Annals of Statistics,
36(5):pp. 2344–2376, 2008.

[15] A. Doucet, N. de Freitas, and N. Gordon, edi-
tors. Sequential Monte Carlo Methods in Practice.
Springer Verlag, 2001.

[16] A. Doucet and A. M. Johansen. Oxford Handbook
of Nonlinear Filtering, chapter A tutorial on par-
ticle filtering and smoothing: fifteen years later, D.
Crisan and B. Rozovsky (eds.). Oxford University
Press, 2009. To appear.

[17] S.H. Gibson and B. Ninness. Robust maximum-
likelihood estimation of multivariable dynamic sys-
tems. Automatica, 41(10):1667–1682, 2005.

[18] F. Giri and E. Bai, editors. Block-oriented Non-
linear System Identification, volume 404 of Lec-
ture Notes in Control and Information Sciences.
Springer, 2010.

[19] A. Hagenblad, L. Ljung, and A.G. Wills. Maximum
Likelihood Identification of Wiener Models. Auto-
matica, 44(11):2697–2705, November 2008.

[20] A.J. Heunis. Asymptotic properties of prediction
error estimators in approximate system identifica-
tion. Stochastics, 24:1–43, 1988.

[21] K. Hsu, T. Vincent, and K. Poolla. A kernel based
approach to structured nonlinear system identifica-
tion part i: Algorithms, part ii: Convergence and
consistency. In Proc. IFAC Symposium on System
Identification, Newcastle, March 2006.

[22] X. L. Hu, Thomas Schön, and Lennart Ljung. A
basic convergence result for particle filtering. IEEE
Transactions on Signal Processing, 56(4):1337–
1348, April 2008.

[23] A.D. Kalafatis, L. Wang, and W.R. Cluett. Identi-
fication of wiener-type nonlinear systems in a noisy
environment. International Journal of Control,
66:923–941, 1997.

[24] L. Ljung. Convergence analysis of parametric iden-
tification methods. IEEE Transactions on Auto-
matic Control, AC-23(5):770–783, 1978.

[25] L. Ljung. MATLAB System Identification Toolbox
Users Guide, Version 9. The Mathworks, 2011.

[26] Lennart Ljung. Identification for control – what is
there to learn? In Y. Yamamoto and S. Hara, edi-
tors, Learning, Control and Hybrid Systems, volume
241 of Springer Lecture Notes in Control and Infor-
mation Sciences, pages 207–221, Berlin, Dec 1998.
Springer Verlag.

[27] Lennart Ljung. System Identification: Theory for

12



the User, (2nd edition). Prentice-Hall, Inc., New
Jersey, 1999.

[28] Lennart Ljung and Adrian Wills. Issues
in sampling and estimating continuous-time
models with stochastic disturbances. Au-
tomatica. Available online 15th March 2010
doi:10.1016/j.automatica.2010.02.011., 2010.

[29] G. McLachlan and T. Krishnan. The EM Algo-
rithm and Extensions (2nd Edition). John Wiley
and Sons, 2008.

[30] K.S. Narendra and P.G. Gallman. In iterative
method for the identification of nonlinear systems
using a Hammerstein model. IEEE Transactions
on Automatic Control, 11(7):546–550, 1966.

[31] B.M. Ninness. Estimation of 1/f noise. IEEE
Transactions on Information Theory, 44(1):32–46,
January 1998.

[32] B. Pötscher and I. Prucha. Dynamic Nonlin-
ear Econometrics Models. Springer-Verlag, Berlin-
Heidelberg, 1997.

[33] R. Raich, G.T. Zhou, and M. Viberg. Subspace
Based Approaches for Wiener System Identifica-
tion. IEEE Transactions on Automatic Control,
50(10):pp1629–1634, 2005.

[34] B. Ristic, S. Arulampalam, and N. Gordon. Beyond
the Kalman Filter: Particle Filters for Tracking Ap-
plications. Artech house, Boston, MA, USA, 2004.

[35] M. Schetzen. The Volterra and Wiener Theories of
Nonlinear Systems. Wiley, 1980.

[36] T.B. Schön, A.G. Wills, and B. Ninness. System
identification of nonlinear state-space models. Au-
tomatica, 37(1):39–49, jan 2011.

[37] J. Schoukens, J.G. Nemeth, P. Crama, Y. Rolain,
and R. Pintelon. Fast approximate identification of
nonlinear systems. Automatica, 39(7):1267–1274,
2003. July.

[38] Peter van Overschee and Bart De Moor. Subspace
identification for linear systems – Theory, Imple-
mentation, Applications. Kluwer Academic Pub-
lishers, 1996.

[39] L.R. Vanbeylen, R. Pintelon, and J. Schoukens.
Blind maximum likelihood identification of wiener
systems. IEEE Transactions on Signal Processing,
57(8):3017–3029, 2009.

[40] D. Westwick and M. Verhaegen. Identifying MIMO
Wiener systems using subspace model identification
methods. Signal Processing, 52:235–258, 1996.

[41] N. Wiener. Response of a nonlinear system to
noise. Technical report, Radiation Lab MIT 1942,
restricted. report V-16, no 129 (112 pp). Declas-
sified Jul 1946, Published as rep. no. PB-1-58087,
U.S. Dept. Commerce, 1942.

[42] T. Wigren. Recursive prediction error identifica-
tion using the nonlinear Wiener model. Automat-
ica, 29(4):1011–1025, 1993.

[43] A.G. Wills and L. Ljung. Block-oriented Nonlinear
System Identification, Lecture notes in control and
information sciences number 404, chapter Wiener
system identification using the maximum likelihood

method. Springer, 2010.
[44] A.G. Wills, B. Ninness, and S.H. Gibson. Max-

imum likelihood estimation of state space models
from frequency domain data. IEEE Transactions
on Automatic Control, 54(1):19–33, January 2009.

[45] A.G. Wills, T.B. Schön, L. Ljung, and B. Ninness.
Blind identification of wiener models. In Proceed-
ings of the IFAC World Congress, 2011.

13


