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Abstract

This paper investigates the properties of the solutionh®@beneralised discrete algebraic Riccati equation grisom the classic infinite-
horizon linear quadratic (LQ) control problem. In partatla geometric analysis is used to study the relationshigieg between the
solutions of the generalised Riccati equation and the autplling subspaces of the underlying system and the qooreting reachability
subspaces. This analysis reveals the presence of a sulthaqaays an important role in the solution of the relatetirogl control
problem, which is reflected in the generalised eigenstractii the corresponding extended symplectic pencil. Inbdistsing the main
results of this paper, several ancillary problems on therdie Lyapunov equation and spectral factorisation aeadslressed and solved.
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1 Introduction R™M are such that thBopov matrixi1 satisfies
Due to their ubiquitousness in optimal control and filtering n % QS —n">o. )
problems, as well as in linear factorisation and stochastic STR -

realisation problems, Riccati equations are universadly r

garded as a cornerstone of modern control theory. Severakhpea set of matrices — (A,B;Q,R S) is often referred to
monographs have been entirely devoted to providing a gen-5¢ Popov triple see e.g. [7]. Equation (1) is the so-called

eral and systematic framework for the study of Riccati equa- pigerete Riccati Algebraic Equation DARE,
tions, see e.g. [8,7,1].

Nevertheless, an LQ problem may have solutions even if

The classic solution of the discrete-time infinite-horiz@p DARE(Z) has no solutions, and the optimal control can be
problem is traditionally expressed in terms of the solution written in this case as a state feedback given in terms of a
X of the Riccati equation matrix X such thatR+BTX B is singular and satisfies the

more general Riccati equation
_ATY A (AT T -1/pT T
X=AXA-(AXBS(REBXB) ((BXA+S)HQ. (1) y _ Arxa (ATXB+S)(R+B'XB)(BTXA+S)+Q, (3)
ker(R+BTXB) C ker(A"XB+S), 4)
whereA e R™", Be R™M Q e R™", Se R™M andR e
where the matrix inverse in DARE] has been replaced
by the Moore-Penrose pseudo-inverse, see [10]. Eq. (3) is
. : s . known as thegeneralised discrete-time algebraic Riccati
* Partially supported by the Italian Ministry for Educationda . ) -
Research (MIUR) under PRIN grant n. 20085FFJ2Z and by the €qUationGDARE(Z). The GDAREE) with the additional
Australian Research Council under the grant FT120100604. C ~ constraint (4) is sometimes referred to@mstrained gen-

responding author L. Ntogramatzidis. Tel. +61-8-92663143 eralised discrete-time algebraic Riccati equatitierein de-
Email addressesaugusto@dei.unipd.it (Augusto noted by CGDAREX). It is obvious that (3) is a generalisa-

Ferrante)L.Ntogramatzidis@curtin.edu.au (Lorenzo tion of the classic DAREY), in the sense that any solution

Ntogramatzidis). of DARE(2) is also a solution of GDARBY) — and therefore
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also of CGDAREE) because kéR+ BT X B) = Oy, — but the desired locations without changing the cost.
vice-versas not true in general. Despite its generality, this

type of Riccati equation has only been marginally studied ; ; ;

in the monographs [11,7,1] and in the paper [3]. The only 2 Linear Quadratic optimal control and CGDARE
contributions entirely devoted to the study of the solution
of this equation are [6] and [12]. The former investigates
conditions under which the GDARE) admits a stabilising
solution in terms of the deflating subspaces of the extended
symplectic pencil. The latter studies the connection betwe
the solutions of this equation and the rank-minimising so-
lutions of the so-called Riccati linear matrix inequaliky.
pursuing this task, the authors of [12] derived a series-of re

sults that shed some light into the fundamental role played

by the termRx = R+ BT X B. An example is the important  yhereA € R™" andB € R™™, and let the initial stateq €

observation according to which the inertia of this maijx RM be given. The problem is to find a sequence of inpits
orem 2.4]. Hence) if X is a solution of DAREE), then all

In this section we analyse the connections between LQ op-
timal control and CGDARE. Most of the results presented

here are considered “common wisdom”. However, we have
not been able to find a place where they have been explicitly
derived, so we believe that this section may be useful. Con-
sider the discrete linear time-invariant system governed b

%+1=Ax%+Bu, (5)

solutions of CGDAREYX) will also satisfy DAREE) and, w S
ii) if X is a solution of CGDAREY) such thatRy is sin- I(xo,u) & [XtT utT:| Q x| (6)
gular, then DAREX) does not admit solutions. The results IZO STR| | W

presented in [12] are established in the very general set-

ting in which the Popov matrikl is not necessarily positive

semidefinite as in (2). Before we introduce the solution of the optimal control prob
lem, we recall some well-known classic linear algebra re-

It is often taken for granted that GDAREY generalises the sults which will be useful in the sequel, see e.g. [3,5].

standard DAREZ.) in the solution Of. the ir_n‘inite LQ Opti“.”a' Lemma 2.1 Consider the symmetric positive semidefinite
control problem in the same way in which [10] established ) P11 Pro

that the generalised Riccati difference equation gersasli  matrix P= [PT PZJ- Then,

the standard Riccati difference equation in the solution of v
the finite-horizon LQ problem. However, to the best of the . +
authors’ knowledge, this fact has never been presented in ali) kerP2 2 kerPy, (iii) Po2 (I = PyP22) =0,
direct, self-contained and rigorous way. Thus, the first aim (i) P12|:>2’r2 Py = Po, (iv) Py — Plngzpfz > 0.

of this paper is to show the connection of the CGDARE(

and the solution of the standard infinite-horizon LQ optimal

control prqblem. The secqn_d aim of this paper is to pr0\_/ide GivenX = XT € R™" we define

a geometric picture describing the structure of the sahstio

of the CGDAREE) in terms of the output nulling subspaces %l ATX A X % AT B Ry ' RLBTXB. (7
and the corresponding reachability subspaces. dhdeed, x defQJr : ’ Sfr T +S R ;L » (7)
whenf >0, the null-space oRx is independent of the so- ~ Gx =Im—(R+B'XB) (R+B'XB) =Im—RxRx,  (8)
lution X of CGDARE(Z), and_ is linked to thg presence of Ky d:ef(R+ BTX B)T(BTXA+ S = RLSL 9)
a subspace which plays an important role in the character- ; ot .

isation of the solutions of CGDAREJ and in the solution ~ Ax=A—-B(R+B'XB)"(B'XA+S")=A—-BKx, (10)

of the related optimal control problem. This subspace does st | Ox Sx
not depend on the particular solutidnnor does the closed- TNx = | =7 . (11)
loop matrix restricted to this subspace. This new geometric Sk Rx

analysis reveals that the spectrum of the closed-loop sys-

tem is divided into a part that depends on the soluton  The term RI(RX is the orthogonal projector that projects
of CGDAREE), and one — coinciding with the eigenvalues onto imR}, = imRx so thatGy is the orthogonal projector
of the closed-loop restricted to this subspace — which is in- that projects onto kéx. Hence, keRx = imGx. WhenX
dependent of it. At first sight, this fact seems to constitute js 5 solution of CGDAREY), thenKx is the corresponding
a limitation in the design of the optimal feedback, because gain matrix,Ax the associated closed-loop matrix, ang
regardless of the solution of the generalised Riccati equa-js the so-calledfissipation matrix All symmetric and pos-
tion chosen for the implementation of the optimal feedback, jtive semidefinite solutions of GDARE] satisfy (4), and
the closed-loop matrix will always present a certain fixed are therefore solutions of CGDAREY In fact, if X > 0,

eigenstructure as part of its spectrum. However, wReils : Qx+X &7 [AT
singular, the set of optimal controls presents a further de- e find { s Rx} = [BT} X[A BJ+M > 0. Therefore,

gree of freedom — which is also identified in [11, Remark applying Lemma 2.1 we find (4), that can be rewritten as
4.2.3] — that allows to place all the closed-loop poles at the kerRx C kerSx and also a$x Gx = 0.



Theorem 2.1 Suppose that for every there exists aninput  sufficient to show that lim, RJr = RJr In fact, the pseudo-
u € R™ witht e N, such that Jxp, u) is finite. Thenwe have: inverse is the only possible source of discontinuity in the
Riccati iteration. To prove the latter equality, considee t
(1) CGDAREE) admits symmetric solutions: a solution sequencgR-+BTX; B}icy. Since it is a monotonically non-
= XT> 0 may be obtained as the limit of the sequence decreasing sequence of positive semidefinite matrices, the
of matrices generated by iterating tigeneralised Riccati  chain of inclusions
difference equatiolisee (14)) with zero initial condition.

(2) The value of the optimal cost i§ %Xx. ker(R+B"XoB) D kern(R+B™X;B) D ker(R+B"X;B) D
(3) X is the minimum positive semidefinite solution of _ _
CGDAREE). holds. Clearly, there exist asuch that for anyt >t this
(4) The set ofill optimal controls minimising (6) is chain becomes stationary, i.e., for ahy>t there holds
ker(R+ B™X B) = ker(R+ B"X1B). This implies that
w = —Kgx +Gxw, W arbitrary. (12) a change of coordinates independent @xists such that

in the new basiRy, = R+ BT X B = diag{R’,0}, where
Proof: (1). Consider the finite horizon LQ problem consist- {R%}>f; is a non-decreasing sequence of positive definite

ing in the minimisation of the performance index matrices. Clearly, lim,.» Rx, = Ry, so that, in this basis,
Ry has the formRg = R+ BTX B = diag{R°, 0}, where
T-1 Rodefl h _
def - X iM¢_. R°. Moreover, since the sequen{ﬁ?} is non
= tZﬁ [X‘ Y } i lu‘] (13) decreasing®’ is also nonsingular, so thé®?) 1 — (R%) L.
a Thus, in the chosen basis we have indeed
subject to (5) with assigned initial statge R". The optimal R 1o Rt o

Rl = (R+B™%B)" =

R

control is obtained by iterating, backward in time starting
from the terminal conditio®r (T) = 0O, the generalised Ric-
cati difference equatiofr(t) = R[Pr(t + 1)], [10], where (2). Let g

R[] is the Riccati operator defined as J%(%0) = infJ(xo, u). (15)

. Clearly,J°(xo) > J' (Xo) = X; % Xo. Then, by taking the limit,
R[P| £ ATPA—(ATPB+S)(R+B'PBf(B'PA+S)+Q (14)  we getd (x )>xOX><0 We now show that the time-invariant

xIPr (0) feedback controw —Kxxt yields the cost(OXxo, which

is therefore the optimal value of the cost. Consider the cost
def

mdexJTX =W +X1 TX xr, wheredr is defined in (13). It fol-
lows from [10, Sectlon I, that an optimal control for this

O O o O

and the optimal value of the cost I (Xp) =

Consider the “reverse time” sequence of matrices defined
def

as X = R(0). SincePT(t_) = PH((_)) for. allt <7, the se-
quence{X }icy is obtained by iterating the generalised index is given by the time-invariant feedbak = —Kzx

Riccati difference equatlon f(gg:/vilrd with |r?|t|al c.ondmo and the optimal cost does not depend on the lefigth the
Xp = 0. The sequencgJ’(xo) = XgXXo}ten iS ObvioUSly  ime interval and is given bty « = %§ Xo. For this conclu-
monotonically non-decreasing (it is the sequence of opgtima

sion we only need the fact thtis a positive semidefinite

costs over intervals of increasing lengthsHence { X }ten, _
and {R+ BT % B}y are monotonically non-decreasing se- S0lution of CGDAREE). Now we have

guences of positive semidefinite matrices. We now show that .
these sequences are bounded. Assume, by contradictior%)z)@ < 3°(%) < I(%o,U") = Z} [XtT (Ut*)T} M [Xt]
t=l

that M+ || %|| = +. The sequenceX! = 137 ten U

is bounded. Thus, there exists a converging sub-sequence T

{X}- LetX* be its limit. Clearly||X*|| = 1: letxj € R" be = lim |:XtT (Ut*)T} M [Xi]

such that|[x3|| = 1 and (x3)"™Xx} = 1. Since we assumed TS B U] N

that for anyxg there exists a trajectory that render ( 2 = lim J5 ¢ —x;Xxr < lim X% =x3Xx0.  (16)
T—oe T—o0

finite, there eX|st a constamo and an input trajectory

such thatk’(x; o) < J(XO ut) < mo, where the first inequality Comparing the first and last term of the latter expression we
follows from the optimality of the cosk'(x5) and the fact  see that all the inequalities are indeed equalities, sotieat
that, for a giveru!, the index (6) is a sum of infinite non-  infimum in (15) is a minimum and its value is indegX x.
negative terms which is greater than or equal to the sum

of the firstt; terms of the sum. On the other hand we have (3). Suppose by contradiction that there exist another pos-

J (%5 3) = 1% )T th — o0, which is a contradiction. itive semidefinite solutiorX of CGDARE() and a vector
Since {X }ten is non-decreasing and bounded, it admits Xo € R" such that] X x < x] X %. Take the time-invariant
a limit X for t — . Then, liM_oX = limi_o X1 = feedbacku = —Kyx. The same argument that led to (16)

limi o R[X] = X. Thus, if lim_.R[X] = R[X], then now givesJ(xo, 0) < xJXxo < x§ X %o, Which is a contradic-
R[X] = X, i.e. X is a positive semidefinite solution of tion because we have shown thgX x, is the optimal value
CGDAREE). To prove that this is indeed the case, it is of the cost functionl.



(4). Let%, be the set of optimal control inputs at tirhe: 0.

Let & € kerX. On pre-multiplying (18) byé* and post-

Let ug € R™andx; = Ax + B be the corresponding state  multiplying it by &, we obtain&*(A AT+ 1,) 1 Q(A*A+

att = 1. Clearly the optimal cost can be written as

Xo
Uo.

Moreover,up € % if and only if the optimal cost can be
written in the following alternative form:

X O
00

I =x X% = [xg ug}

J*:xlT)?xl—i—[xg uﬂl’l 32]
_[xgug]< g\: X[ A B]+n> 3‘;]

By subtracting the first expression from the second, we ge

thatug € % if and only if xg ug} {25 2(] {uxﬂ =0. Since
X X
Qx Sk

ST Re | are positive semidefinite, thisis
Qx SK | X0
S¢ Ry {UO_
Ug = —R;%SJZXOJF Gy Vo, Wherevp € R™Mis arbitrary, because

the columns of5¢ form a basis for keRg. By iterating this
argument for alt =1,2,..., we get (12). |

X, and hencély = [

—_

= 0. Finally, this is equivalent to

equivalent to[

3 Preliminary technical results

In this section, we present several technical results af-ind

pendent interest that will be used in the sequel.

3.1 The Hermitian Stein equation

In)~1& =0, and sincéA AT +1,) "t Q(A* A+ 1)L is Her-
mitian and positive semidefinite, we get
QA*A+In e =0 (19)

By post-multiplying (18) byé, we getX (A* A+1,) & =0,

which means that ket is (A*A+ 1n)~L-invariant. Hence,

it is also (A* A+ In)-invariant and therefor@-invariant. In

view of (19), ketX = (A*A+1,)"tkerX is also contained

in kerQ. |

We recall that equation (17) has a unique solution if and

only if Ais unmixedi.e. for all pairsAi, A, € o(A) we have

A1A2 #£ 1. In this case, we have (see [14]):

tLemma 3.2 (Lemma5.1in [14]) . Let A be unmixed and
X be the unique solution of (17) where=QQ™ > 0. Then,

kerX is the unobservable subspace of the gArQ).

Lemma 3.3 LetAc R™", F e R™" Be R™Mand assume

X € R™"Mjs such that

AT
BT

X
0]

XF = (20)

Then, B (AT)XX =0 for all k > 0, i.e.,imX is contained
in the unobservable subspace of the p@#r,B").

Proof: We first prove thaB™ X = 0. Let us choose a ba-
sis in whichF = diag{N,F }, whereN is nilpotent andr
is invertible. Let us decompos¥ accordingly, i.e..X =
[Xy X2]. Then,AT™X;N = X; implies X; = 0. In fact, mul-
tiplying such equation byA™ andN to the left and to the
right, respectively, we obtai¥; = (AT)*X; N¥ for all k > 0.
Choosingk to be greater than the nilpotency index Igf

In this section, we give some important results on the so- we getX; = (AT)*X;NK = 0. From (20) we also obtain
lutions X of the so-called Hermitian Stein equation (known BT™XzF = 0, which givesBT X, = 0 sinceF is invertible.

also as the discrete-time Lyapunov equation):
X=ATXA+Q, (17)

whereA,Q e R™" andQ=Q" > 0.

Lemma 3.1 Let X be a solution of the Hermitian Stein equa-

tion (17). ThenkerX is A-invariant and is contained in the
null-space of Q.

Proof: LetA € C be on the unit circle and such thgk+
Alp) is invertible. We can re-write (17) a¥ = ATX (A+
Al) —AATX+Q, so that(AAT + 1) X = AATX (A*A+
In) +Q, sinceA is on the unit circle (which implies that
A* = A1), This is equivalent to

X(A*A+1y) 7t

= A (AATHI) IATX+ AAT+H) T IQ(ATA+I) L (18)

Thus,BT X = 0. The same argument can be iterated to prove
thatB™ (AT)XX = 0 for allk > 0. Indeed, by pre-multiplying
the first of (20) byA™ we getAT(ATX)F = ATX. By pre-
multiplying the same equation B/, we getB"(ATX)F =0
sinceB™X = 0. Hence, we can write these two equations

as [’Qi] (ATX)F = {A;X} and re-apply the same argument
used above to show thB' ATX = 0, and so on. n

3.2 Spectral Factorisation

SincelM =MT > 0, we can consider the factorisation

-3 -5 le o)

whereQ=CTC, S=C™D andR=DTD. Let us define the

rational matrixW(z) d:EfC(z I, —A)~!B+D. The spectrum

(21)




def ~ def

(or Popov functionyp(z) =W~ (2)W(2) — whereW ™ (2) =
WT(z 1) — associated witlL can be written as

®(2) = [BT(z 11— AT) L Iy | [Q S] l(z'n—mls

STR

In

The matrix inequality for an unknown matr= X7 of the
form My > 0 is called thaliscrete linear matrix inequality
and is denoted by DLME). Let us define

ATXA-X ATXB
B'™A B'XB

def

LX) &Ny —n=

Lemma 3.4 ([12, p.322], seee.g. [2] for a detailed proof).
For any X= XT e R™", there holds

(zlh—A)"'B

In

®(2) = | BT(z L, —AT) L |n} Mx [ . (22)

Theorem 3.1 Letr denote the normal rank of the spectrum
®(2).1 If X is a solution of CGDAREY), the rank of R is
equal tor. If X is a solution of DRLME), the rank of R

is at most equal tor.

Proof: ConsiderX = XT such thatly > 0. By Lemma
2.1, in particulafi) Ry is positive semidefinitgji) kerSx ©
kerRx, and(iii) Qx — Sx RI(SE is positive semidefinite. Note
that(iii) means thakK satisfies the Riccati inequality

def

Z(X)EATXA
—(ATXB+9)(R+B™XB)'(BTXA+S")+Q—X>0.

Therefore, we can writ& (X) = Hy Hx for some matrixtx,
which leads to the expression

T

Mx = [&IR;]RX[R;SE |]+ "g] {HX o}. (23)

Plugging (23) into (22)#(z) =W~ (2)W(z) becomes

D) =W, (Wi (2)+W, (2Ws(2)= [WJ(Z) w;(z)] mg]

whereWi(2) is given by

zl,—A)"1B

)
In

Wl(z):Ré[R;r(S} 1] l(

1 The normal rank of a rational matritm(z) is defined as
normrankMi(z) oef maXcc rankM(z).

i.e,Wi(2) = R)%((RI(S} (zlh—A)"1B+ 1), andWs(2) is

A1
A)B =Hx (zlh—A)"!B.

def

Notice thatWi(z) = RéTx(z), whereTx(z) = R;QS} (zlh—
A)"1B+ I is square and invertible for all but finitely many
ze C. Itsinverse can be written dg *(2) = Im— RI(S}(Z Ih—
Ax)~'B. Thus, the normal rank of

T @0@T = [RE T{(z)W{(z)}[WZ(Z)Rf1(2)]
X

1
is equal to the normal rankof ®(z). Then, the rank oRZ,
which equals that oRy, is not greater than Now consider
the case wher® = X7 is a solution of CGDAREY). In this
case, the ternHy in (23) is zero, and therefore so is the
rational functiol\b(z). As suchW(z) is a square spectral
factor of ®(2), i.e., W™ (2)W(2) =W, (2)Wi(2). Moreover,
Ty (2P(2)Ty 1(2) = Rx, which implies that wheX = X7
is a solution of CGDAREY), the rank ofRx is exactlyr. W

Remark 3.1 Theorem 3.1 is strictly related to Theorem 2.4
in [12]. The latter has been derived in the very generalrsgtti
in which the Popov matrix may not be positive semidefinite.
In that case, ranRx =r for any solutionX of CGDARE.
Since we are assuming (2), a stronger result holds. Namely,
rankRx < r for any solutionX of the linear matrix inequality.

4 Geometric properties of the solutions of GDARE

Now we show that, given a solutiof of GDARE({Z)

(a) kerX is an output-nulling subspace for the quadruple
(A,B,C,D), i.e., [é} kerX C (kerX & Op) +im [g};
(b) the gainKy is such that-Kx is afriend of kerX, i.e.,

A-BKy
{&DKK} kerX C kerX @ Op.

In the case wher¥ = X T is the solution of GDAREY) cor-
responding to the optimal cost, these properties are ivduit
Now we prove that the following stronger result holds.

Proposition 4.1 Let X be the minimal positive semidefinite
solution of GDAREY). ThenkerX is the largestoutput-
nulling subspace of the quadruplé, B,C,D). Moreover,
—Kx is the corresponding friend.

Proof: LetXg € kerX. Since the corresponding optimal cost
is J = xJXx = 0, the initial statex, must belong to the
largest output-nulling subspace of the quadriplé,C, D).
Vice-versaif we takexy on the largest output-nulling sub-
space?™ of (A,B,C,D), we can findug (k > 0) such that



the state lies o¥* by maintaining the output at zero, so the
corresponding value of the cost is zero. Hengg{ xo = 0
impliesxg € kerX. The fact that-Kx is a friend of keiX fol-
lows from the fact that iy € kerX and we assume by con-
tradiction that(A— BKx) xo ¢ kerX, the corresponding tra-
jectory is not optimal because it is associated with a $jrict

positive cost. Moreover, since the optimal cost is zero, we Ry =

must have(C — DKx) kerX = 0p. [ |

Our aim is to prove thafa) and(b) hold for any symmetric
solutionX of GDARE(®R).

Theorem 4.1 Let X be a solution of GDARE]J. ThenkerX
is an output-nulling subspace of the quadruphe B,C,D)
and —Ky is a friend ofkerX.

Proof: SinceX is a solution of GDAREX), the identity
X = AZX Ax + Qox (24)
def t1[QsS][ I
holds, whereQpx = [In —SxR} ] [sT R} {*R;%ﬂ > 0. From

Lemma 3.1, keX is Ax-invariant and is contained in k€.
By factorisingll as in (21), we geQox = CxCx where

¢ | [ "

_C_ U
—R;s;]_c DRIS;.  (25)

Proof: Since the columns o6Gx span keRx, we need
to show thatRGx = 0. Recall from the proof of Theo-
rem 3.1 that wherX = X7 is a solution of CGDARKE),
®(z) can be written a®(z) =W (2)W(2) =Ty (2)RxTx(2)
where Tx(z) = R;SE (zlh — A)"B+ Iy is square and in-
vertible for all but finitely manyz € C. Hence, we have
W@ T (2] W(@2) Ty 1(2)] so thatRxGx = 0 im-
pliesW(2) T, 1(2)Gx = 0. Recall from the proof of Theorem
3.1 thatTy 1(2) = Im— RSk (zl — Ax) 1B, so that

W(2)Ty 1(2) = (C(zlh—A) " B+D)(Im—RL Sk (zh—Ax) ~!B).
Consider the following term of the product:
H(2) =C(zh—A) *BRSk(zlh— Ax)'B.

By noticing thatBRL S} = A— Ay = (zlh— Ax) — (zh — A),
we obtainH (z) =C(zl,—A)"'B—-C(zl,— Ax)!B. Hence,

W(2)Ty '(2) =W(2) — DR[Sk(zh— Ax) 'B—H(2)
=D+Cx(zlh—Ax)'B.

SinceW(2) T, 1(2)Gx is identically zero, it must be zero also
whenz— . In particularD Gx = 0, so thaR Gx = 0, which
yields the first of (27). FrorW(z)Txfl(z)Gx =0 we also get

Hence, keK is also contained in k€ so that keK is 1

output-nulling and—Kx is a friend of kei. n Cx(zl — Ax)""BGx = 0 so that the reachable subspace of
the pair(Ax,BGx), i.e. (26), is contained in k€ so that

Now we provide a characterisation of the reachable subspacefiso the second of (27) holds. L

on kerX. We show that this subspace plays a crucial role

in the solution of the associated optimal control problem. In Lemma 4.1 we have shown that kx C kerR.

We recall that the reachable subspagg on an output-
nulling subspace” is the subspace of points ¢f that can

Since Rx = R+ B™XB, it also straightforwardly fol-
lows that keRx C ker(B'™XB) for any solution X of

be reached from the origin along trajectories contained on CGDARE(E). However, a stronger result holds, which says

¥ by at the same time maintaining the output at zero.

We will show that the reachable subspagg, on kerX,
coincides with the reachable subspace of the (#&irB Gx ).

that kelRx C ker(X B). This is an obvious consequence
of Lemma 4.1 for any solutioixX > 0, while it is a quite
surprising and deep geometric result in the general case.

To prove this fact, we first need to give some additional | gmma 4.2 Let X= X be a solution of CGDARE]. Then

results on the solutions of CGDAREY, In particular, we
now focus our attention on the terRx. Clearly, whenX is
positive semidefinite, the null-spaceRy is the intersection
of the null-space oR with that of X B. This result, which is
intuitive and easy to prove for positive semidefinite salng
of CGDARE(), holds for any solution. However, in this

kerRx C ker(X B). (28)

Proof: From Lemma 4.1, ifv € kerRy, thenv € kerRn

case the proof — which is divided between Lemma 4.1 and ker(B"X B). We can select a change of coordinates in the
Lemma 4.2 presented below —is more involved, and requiresinput spacéR™induced by thenx morthogonal matrixx =

the machinery constructed in the first part of the paper.

Lemma 4.1 Let X= XT be a solution of CGDARE], Cx
be defined by (25) and

T ='im [BGx AxBGx AZBGx ... AY 1BGy |. (26)

Then,

kerRx C kerR, and Yo C kerCy. (27)

[Tlx sz} where imlix = imRx and imTyx = imGyx =

kerRx. In this basidx is block-diagonal, with the first block
being non-singular and the second being zero. Sinck ker
kerRx as proved in Lemma 4.1, matrR in this basis has

the formR = [%1 g]. In the same basis, matr® can be
partitioned accordingly aB = [Bl Bz}, so that inBy =
im(BGx). We must show thaX B, = 0. Since keRx C



ker(BT X B), in this basis we find

B{

BTXB, = [BT X B, = 0. (29)

2

Moreover, since kéR C kerS, in the selected basi$S
takes the formS = [sl 0}. Thus, Sx = ATXB+ S =

[ATXBl+Sl ATXBZ}. From keRy C kerSy it now fol-
lows thatA™X B, = 0 which, together with (29), yields

AT

oo | XB2=0.

(30)

If A is non-singular or, more in general, if the zero eigen-

value ofA, when present, is controllable froBythen clearly

X B, = 0. However, this result is true in general, without any

assumption. To prove this, let us considéy defined in (26)

which, in the chosen input space basis, is the reachable sub-
space of the paifAx, By). 2 Let us consider a basis of the

state-space where the pékx,B;) are in Kalman control-
lability form. In such a basis, the subspag@lg is spanned

by the columns of the matri%(')} and we have

B B
By 21 B - 11

O Blz
where(Ax 11, Bz1) is reachable. In this basiSx =[O | Cx 1]
in view of the second of (27). SincBx = A— BKx, we

. Al +KIBT
can re-write (30) a{ X TX
B

Ax 11 Ax.12

Ax =
O Ax2

, (31)

} X B, = 0 or, equivalently,

.
as [AX] X B, = 0. We can write this equation as

BT
Ax1n ©
Axa2 Axza | | X1 X2 | | Bar | _ o (32)
BIl BIz X1T2 X22 o
X11 X127 [ By .
We want to showthaﬁ T } [ } =0, i.e., thatX;1By1 =
XlZ Xo2 (@]
0 andX;,B,; = 0. From (32) we find
A>T<,11X11 B21 =0, (33)
BJ;1X11B21=0. (34)

Since the pair(Ax 11,B21) is reachable by construction,
X11B21 = 0. Itremains to show tha€,B,1 = 0. In this basis,

equation (24) — which is exactly GDARE)— now reads as

X11 X12
Xi5 %22

O O
0Cr1Cxa

Ax 11Ax 12

X1 X12| _|Ax11 O
O Ax2

T AT T
X12 ng AX,:LZ AX,22

from which we find in particulaiX;; = A>T<,11X11Ax,11. This
equation can be written together with (33) and (34) as

A 11X1A 11— X11 Ay 11 X11Bar | 0
BlexllAX,ll BZT1X11 Boq

Since the paifAx 11, Bz21) is reachable, we can apply Lemma
2.9 in [12], which guarantees thA{; is zero. Now we can
re-write (24) as

O X2 _ A>T<,11 O O Xi2||Ax11Ax12|,|O0 O
X[pX22|  |Ax12Ax22)| X2 Xe2]| O Ax22| |OCk1Cxa
In particular, we get
Xi2 = Ax 11X12Ax 22. (35)
PluggingXi1 = 0 into (32), we obtain
BJ1X12Ax 22 = 0. (36)
Equations (35) and (36) can be re-written as
lAéil X12Ax 20 = Xéz (37)

Applying Lemma 3.3 fok = 0, we getB], X2 = 0. |

Remark 4.1 In the last line of the proof of Lemma 4.2 we
can apply Lemma 3.3 fd¢> 0, and obtairxszA‘f(’llBﬂ =0

for all k> 0. Since the paifAx 11,B21) is reachable, this
yieldsX;» = 0. Therefore the following stronger result holds.

Proposition 4.2 Let X= XT be a solution of CGDARE]
and %, be defined by (26). Then, % = Op.

Remark 4.2 As an obvious corollary of Lemmas 4.1 and
4.2, we have kdRx = ker(XB) nkerR= ker[xﬂ.

Remark 4.3 The result established in Lemma 4.2 does not

continue to hold if we only assume thét= X" is a solution
of GDARE). Consider e.gA = [:; PG}, B= [704 702],

C=[o1] andD = [4 0]. It can be easily verified thaX =

2 In the symbol denoting this subspace we dropped the subscrip diag{—1,1} is a solution of the GDAREX) but not of the
X because, as it will be proved in the sequel, this subspace isCGDARE(Z) Here keRy = im {1} ” ker[x B} — O
. o R :

independent of the particular solution of the CGDARJE(



Remark 4.4 The result established in Lemma 4.2 does not to fix an arbitrary value ofr, saya = % Then,

hold when is not positive semidefinite. Consider e.g.

_[11] 5 _fo1 _J1o0 _[oo _Jz1o0
A=[13].B=[g1] 0= 5 4], 5= |o o] andr=[7q].
A solution of CGDAREE) is given by X = diag{1, —1}.

Indeed, X satisfies (4) sinc&x = 0 and keRyx = im [2]

Changing coordinates in the input space as shown in the

proof of Lemma 4.2 leads 88; = m andB; = m How-

ever, this timeX B, = [}1}

Theorem 4.2 Let X=XT be a solution of CGDARE]. Let
Zo denote the reachable subspace of the gaix,BGx)

as defined in (26), and?,,x be the largest reachability
subspace on the output-nulling subsp&eeX. Then,

Rrorx = Ro. (38)
Proof: Let us first show that
im(BGx) = kerXNBkerD. (39)

We recall that inGx = kerRyx. From Remark 4.2 we know
that keRx = ker(XB) nkerR. Then imBGx) = BkerRx =
B(ker(XB) NnkerR) = kerX nBkerR=kerX N BkerD. Sub-
spaceZ is by definition the smallegix -invariant subspace
containing in{BGx) = kerX N B kerD. On the other hand,
rerx IS characterised as follows [9, p. 424]: Lietbe an
arbitrary friend of kerX, i.e.,F is any feedback matrix such
that(A+BF)kerX C kerX and(C+DF)kerX = 0,. Then
verx is the smallestA+ BF)-invariant subspace contain-
ing kerXNB kerD. Note that%, does not depend on the
choice of the friendr, [13, Theorem 7.18]. We have seen in
Theorem 4.1 thaF = —Kx is a particular friend of keX.
For this choice of, we haveA+BF = A— BKx = Ax, SO
that 7}« is the smallesfx-invariant subspace containing
kerX N B kerD, which is the definition of#Z,. |

In [12] it is proved that the inertia dRx is independent of
the solutionX = XT of CGDARE(E). Here, we show that
much more is true whehnl > 0, i.e., keRx is independent
of the solutionX = X of CGDAREE).

Theorem 4.3 Let X, Xo be two solutions of CGDARE].
Then,kerRyx, = kerRy,.

Proof: Consider two solution; = X and X, = X; of
CGDARE(R). In particular,X; andX; also satisfy the gen-
eralised Riccati inequality, so thBltx, > 0 andllx, > 0. In

other words, with the same notation used in the proof of

Theorem 3.1y, =L(X)+ M >0 fori € {1,2}. The set of

1 1
0= 5 (Mxy+Mx) =My 5y =MN+L (§(X1+X2)> ;

where the last equality holds in view of the linearity of

L(-). This means tha¥ d:ef%(x1+x2) satisfies the Riccati

inequality My > 0. By virtue of Theorem 3.1, the rank of

Ry &R+ BTY Bis not greater than. On the other hand,

(Rx; +Rx, ). (40)

NI =

1
Ry = R+ > BT(X1+X2)B:

Hence, since; andX; are both solutions of CGDARE],
the ranks ofRx, andRy, are exactly equal to. Thus, the
rank ofRy is greater or equal to. This means that the rank
of Ry must be exactly equal tp, i.e., from (40) we have
thatRx, andRx, must have the same null-space. [ |

Now we want to prove that the subspa, is inde-
pendent of the particular solutioh= XT of CGDARE().
Moreover Ay restricted to this subspace does not depend on
the particular solutiorX = X of CGDARE().

Theorem 4.4 Let X and Y be two solutions of CGDARI(
Let Ax and A/ be the corresponding closed-loop matrices.
Then Zieix = Ziery and Az = Avlaz -

def

Proof: Let A=Y — X. Since keRx coincides with keRy
by virtue of Theorem 4.3, we ha\R*;r< = RI(RY RI( so that

Ax— Av=B(RIS] — R S[) = BRY(S) - ReRLS])

PluggingS] = BTY A+S" = BTAA+S] andRy = Rx +BTAB

into (41) yieldsAx — Ay = BR/(BTAA—BTABR, S]) =
BR/BTAA. This means thay = Ax — BRIBTAAx. We
already know that in a suitable basis of the state space such
that the first coordinates spa#, x and a suitable orthog-
onal basis of the input space such that the second group of
coordinates span kBx, matricesAx andB can be written

as in (31), see Lemma 4.2. The reachable subspace of the
pair (Ax,BGx) is written in this basis aszy = [('j} We
want to show that, in the same basis, we also have

(41)

Ax 11 Av,12
O A

Ay =

B
. and 82:[ 21]. (42)
o)

In fact, if this is the case, the reachable subspace of the pai

solutions of the generalised Riccati inequality is a convex (Ay,BGy) exactly coincides with the reachable subspace of

set, i.e., by takingr € (0,1), thena Ty, + (1 —a)ly, is

the pair(Ax,BGx), i.e., withZo, because the pajAy 2,0)

positive semidefinite because it is a convex combination of is completely non controllable. In the chosen basis, the dif

positive semidefinite terms. For our purposes, it is sufficie

ferenced =Y — X can be written aA = diag{O, A, } in view



of [12, Theorem 2.10]2 Thus

(OO
(O AV

Ax 11 *
O x

Ax.11 Ax 12
O Ax2

Ay =Ax —BR/BT

Therefore, the reachable subspace of the (f&itBGy) is
exactlyZy = { é} , andAx = Ay [ |

‘%ﬁerx %ﬁerY = AX,ll-

5 Stabilisation

is stabilising, but no stabilising solutions of GDARE(
exist. This fact can be explained on the basis of the fact
that the set of all solutions of the LQ problem is given by
U = {—Kx X+ GxVk | vk € R™}, whereX is the optimizing

solution of GDAREE) andGy = (Im— Rk Ry) = 1 [jl 2.
Therefore, the problem becomes that of using the degree of
freedom given by to find a closed-loop solution that is

optimal and also stabilising, i.e., to determine a madltrir
%+1=(A—BKx)X% +BGxLx = Axx+BGxLx

such that the closed-looficy. = Ax + BGx L is stabilised.
It is easy to see that, in general, the set of all optimal

In the previous sections, we have observed that the eigenval ¢l0sed loop matricefci. = Ax +BGx L are parameterised

ues of Ax restricted to%, are independent of the solution
X = XT of CGDARE(E). This means that these eigenval-

ues are present in the closed-loop regardless of the selutio by selecting a suitable. In fact, sinceBGx =

X = XT of CGDARE() that we consider. On the other hand,
Zo coincides with the subspacg],,, which is by defini-
tion the smalles{A — BKx)-invariant subspace containing
im(BGx). Then, we can always find a matiixthat assigns
all the eigenvalues ofAx + B Gx L) restricted toZ,y, by
adding a further ternB Gy L x to the feedback control law,

by AcL = [g ‘;] wherea and 3 can be arbitrarily chosen
1-1
33

choosingL = we obtain the desired form for the

closed-loop matrix. Hence, in particular, we can obtain a
zero or nilpotent closed-loop matrix. In both cases, theé cos
is the same and is equal 8 = x3(0).

a—lﬁ}
0 O

because this does not change the value of the cost with re4 other words, there is only one solution to GDAREand

spect to the one obtained oy = —Kx k. In doing so, we
can stabilise the closed-loop if Kéris externally stabilised
by —Kx. We show this fact in the following example.

Example 5.1 Consider a Popov triple in whicA = é 1 ,

B= [i ﬂ Q= {8 (ﬂ S= {88} andR= 88 . The matrix

X =diag{0,1} is the only solution of GDAREY) but not a
solution of DAREE), sinceR+ B X B is singular. Hence,
DARE(X) does not admit solutions. The closed-loop ma-
trix is Ax = diag{1,0}, and the resulting closed-loop sys-
tem is not asymptotically stable. However, the solutioof
GDARE() is optimal for the LQ problem, because it leads
to the costl* = x2(0) which cannot be decreased. Now, con-
sider the gaifk = B~1A, which leads to the closed-loop ma-
trix Ac. = A—BK =0, and the value of the performance in-
dex associated with this closed-loop is again x%(O) =J*.
Therefore, this is another optimal solution of the LQ prob-
lem, which differently fromX is also stabilising. However,
this optimal solution is not associated with any solution of
GDARE(), sinceX is the only solution of GDAREY). This

example shows that there can be an optimal control which

is not stabilising, and all the optimal solutions of the oyl
control problem are given by the closed-loop mathix+
B Gx L, wherel is a degree of freedom. By using this degree
of freedom, we have found solutions of the optimal control
problem that are stabilising but which do not correspond
to stabilising solutions of GDARE), because GDAREY)
does not have stabilising solutions. O

Example 5.2 Consider an infinite-horizon LQ problem with
00 00

A= [77 74}, B— {59},(:: (-3 —5],andD=[0 — 3.

Let Q=C'C, S=C'™D and R= D'D. This system has

one invariant zero at the origin. Moreover, it is not left-

invertible. Thus, DAREX) cannot be solved. However, the

2 x 2 zero matrix is a solution of CGDAREJ. The corre-

sponding closed-loop matrix &y = {7016 fig] . The eigen-
value at the origin is fixed because it is an invariant zero of
the system. The remaining eigenvald&9, which is unsta-
ble, is an eigenvalue ohy restricted toZj,x, and it can
therefore be placed arbitrarily in the complex plane with-
out affecting the cost. MatriGy = I, — R;Rx =diag{1,0}

is such that infBBGx) = im m as expected. By using the

3 The result in [12, Theorem 2.10] is shown in a basis that standard procedure to assign the eigenval(2vie obtain
is the same considered here. Indeed, the basis of the state

space considered in [12, Theorem 2.10] has the first codetina
spanning the largest controllability subspace of the qualdr

(A,B,S¢,Rx). However, this subspace coincides with the largest L=

controllability subspace of a quadruple obtained from the- p
vious one by applying the control inpu = —Kx % + Hx w,
where imHy = kerRx. The quadruple thus obtained is exactly
(Ax,BGx, S} — Rx RS}, 0) = (Ax,BGx,0,0), and the corre-
sponding largest controllability subspace is indeggl, .

84/273 3910
-1 -5/3]|

It is easy to check that the eigevalues/f+BGxL are
exactly{0,0.5}. O



Concluding remarks

In this paper we presented a self-contained analysis of some
structural properties of the CGDARE that arises in infinite-
horizon discrete LQ optimal control. The consideratiorad th
emerged from this analysis revealed that a subspg&oean

be identified that is independent of the particular solutibn
CGDARE considered. Even more importantly, it has been
shown that the closed-loop matrix restricted to this subspa
does not depend on the particular solution of CGDARE, and
has been shown to be fixed for any state-feedback control
constructed from a solution of the CGDARE. On the other
hand, if such subspace is not zero, in the optimal control a
further term can be added to the state-feedback generated
from the solution of the Riccati equation that does not mod-
ify the value of the cost. This term can in turn be expressed
in state-feedback form, and acts as a degree of freedom that
can be employed to stabilise the closed-loop even in cases in
which no stabilising solutions exists of the Riccati eqoati
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